Climate predictions with MIROC6 Takahito Kataoka¹, Hiroaki Tatebe¹, Hiroshi Koyama¹, Takashi Mochizuki^{1,2}, Koji Ogochi¹, Hiroaki Naoe³, Yukiko Imada^{3,4}, Hideo Shiogama⁵, Masahide Kimoto⁵, Masahiro Watanabe⁴ (1: JAMSTEC, 2: Kyushu Univ., 3: MRI, 4: AORI, Univ. Tokyo, 5: NIES)

(tkataoka@jamstec.go.jp)

1. Introduction

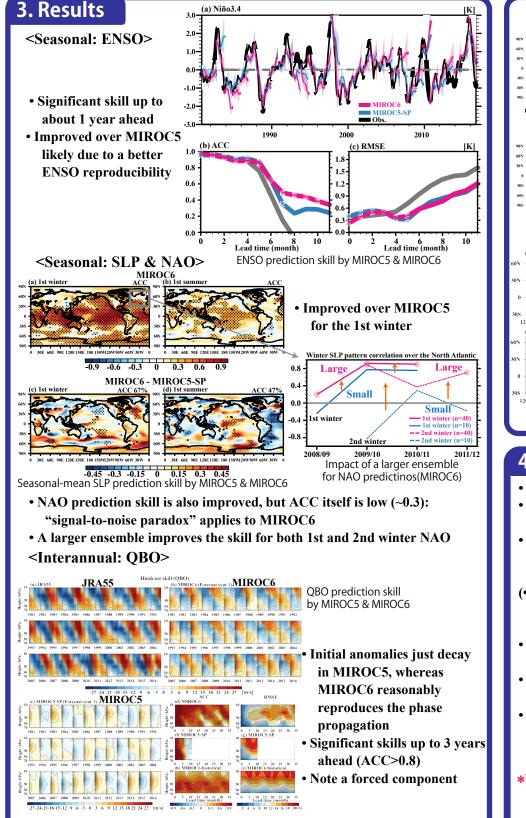
Recently, a Japanese modeling community has cooperatively developed a new ocean-atmosphere coupled model called MIROC6 (Tatebe et al., 2019). There are two major updates from MIROC5: a finer atmospheric vertical resolution with a higher model top and incorporation of a shallow convective parameterization. Overall reproducibility of mean climate and internal climate variability on intraseasonal to decadal timescales in **MIROC6 is improved over MIROC5.**

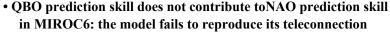
We performed decadal predictions using MIROC6, which contribute to the Decadal Climate Prediction Project (DCPP) for the CMIP6. In this study, we address whether a climate model with a better representation of climate and/or initial conditions constrained by more observations lead to the improvement in seasonal to decadal prediction skill.

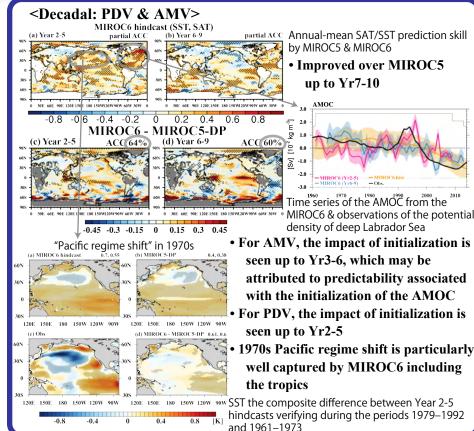
2. Prediction system

			MIROC6	MIROC5
	Atmosphere Ho	rizontal resolution	T85	T85
		Vertical levels	81 levels	40 levels
	Ocean Ho	rizontal resolution	360 x 256	256 x 224
		Vertical levels	63 levels	50 levels
	CMIP6 -> MIROC6		MIROC5 CM	
	seasonal-decadal MIROC6	Hist	decadal MIROC5-DP	seasonal MIROC5-S
Assimilati method			IAU (anomaly)	IAU (anomaly)
Assimilati variable	TO SO SIC		TO, SO	TO, SO
Issuing da duration	te, Every Nov. 1st between 1960-2015, 10year	Every Nov. 1st between 1960-2008, 10year	Every Jan. 1st between 1960-2008, 10year	Every Nov. 1st be 1980-2015, 1ye
Ensembl	e 10	50	3 (jul, oct, jan) x 2 = 6	8
Atmosphe Initial condition	JRA55	No replacement	No replacement	NCEP/NCAI

• Drifts are removed by transforming raw outputs into anomalies with respect to the lead time-dependent forecast climatology

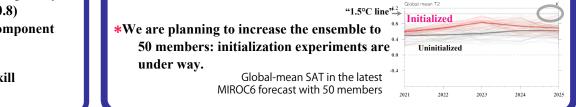

 Larger ensembles are prepared for a few selected cases: 40 for 2008-10 (26 months) and 50 members for 2019-2020 (10 years)


• For evaluation, in addition to the anomaly correlation coefficient (ACC), "partial ACC" proposed by Smith et al. (2019) is used to evaluate the


impact of initialization:

 $O' = \widetilde{O'} + O'_{res}$ $Y' = \widetilde{Y'} + Y'_{res}$

Observed (O') and ensemble mean initialized forecast anomalies (Y') are decomposed into components that can be explained by linear regression with the ensemble mean of uninitialized experiments and the residuals.



4. Conclusions Decadal predictions with MIROC6 are performed:

• ENSO hindcast skills (particularly major events) are improved • QBO is predictable up to 3 years ahead (ACC>0.8) owing to a better

- reproducibility in MIROC6 (and initialization)
- NAO hindcast skill is also improved, though the ACC itself is relatively low. A larger ensemble (40 members) improves the skill forboth 1st and 2nd winter NAO.
- Barents-Kara, Hudson Bay, and Sea of Okhotsk sea ice in the 1st winter and sea ice around the Arctic pole in the 1st September is improved)
- MIROC6 hindcast has a larger fraction of areas with better skill both for ACC and RMSE at all lead times compared to the MIROC5-DP
- AMV: the impact of initialization over subpolar gyre region seen up to Yr4-7 -> success in the initialization of AMOC
- PDV: the impact of initialization up to Yr2-5. 1970s Pacific regime shift is particularly improved, including the tropics

Kataoka .et al. (2019) Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. JAMES, 12, e2019MS002035. https://doi.org/10.1029/2019MS002035.

1. Introduction

Recently, a Japanese modeling community has cooperatively developed a new ocean-atmosphere coupled model called MIROC6 (Tatebe et al., 2019). There are two major updates from MIROC5: a finer atmospheric vertical resolution with a higher model top and incorporation of a shallow convective parameterization. Overall reproducibility of mean climate and internal climate variability on intraseasonal to decadal timescales in MIROC6 is improved over MIROC5.

We performed decadal predictions using MIROC6, which contribute to the Decadal Climate Prediction Project (DCPP) for the CMIP6. In this study, we address whether a climate model with a better representation of climate and/or initial conditions constrained by more observations lead to the improvement in seasonal to decadal prediction skill.

2.11	ediction sys	stem			
			MIROC6	MIROC5	
	Atmosphere Ho	rizontal resolution	Т85	Т85	
		Vertical levels	81 levels	40 levels	
	Ocean Ho	rizontal resolution	360 x 256	256 x 224	
		Vertical levels	63 levels	50 levels	
	CMIP6				
	MI	MIROC6		MIROC5 CM	
	seasonal-decadal MIROC6	Hist	decadal MIROC5-DP	seasona MIROC5-S	
Assimilatio method	n IAU (anomaly)		IAU (anomaly)	IAU (anomaly	
Assimilatio variables	n TO, SO, SIC		TO, SO	TO, SO	
Issuing dat duration	e, Every Nov. 1st between 1960-2015, 10year	Every Nov. 1st between 1960-2008, 10year	Every Jan. 1st between 1960-2008, 10year	Every Nov. 1st b 1980-2015, 1y	
Ensemble	10	50	3 (jul, oct, jan) x 2 = 6	8	
Atmospher Initial condition	ic JRA55	No replacement	No replacement	NCEP/NCA	

2. Prediction system

60N 30N 0 30S 60S 90S 90S 90N 60N 30N

> 305 605 905

S

Height (hPa)
2.5 £ 1