

PORTABILITY FOR THE PATATRACK

PIXEL TRACKS AND VERTICES

RECONSTRUCTION
 OCTOBER 2021

AUTHOR:

Abhinav Ramesh

SUPERVISORS:

Dr. Felice Pantaleo

Wahid Redjeb

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
2

PROJECT SPECIFICATION

As an Openlab Summer Student at CERN, my work involved the standalone Patatrack pixel track
and vertex reconstruction repository (https://github.com/cms-patatrack/pixeltrack-standalone). My
focus was on the Alpaka version of pixel tracking. Alpaka is a header-only C++ abstraction library for
accelerator development supporting many accelerator back-ends.

In order to meet the goals of performance improvement and reduction of repeated memory
allocations when processing many events as well as to mirror the CUDA version of pixel tracking, it
was desired that a mechanism to reuse device and host memory blocks be incorporated.

This was accomplished by implementing a caching allocator each for the host and device in order to
handle memory allocations and free-ups by managing memory blocks and caching them upon
deallocation for future use. Smart pointers were provided to handle memory allocations in order to
facilitate the usage of these allocators, which could also be disabled if necessary, at compile-time.
The corresponding pull request can be found at https://github.com/cms-patatrack/pixeltrack-
standalone/pull/248 .

https://github.com/cms-patatrack/pixeltrack-standalone
https://github.com/cms-patatrack/pixeltrack-standalone/pull/248
https://github.com/cms-patatrack/pixeltrack-standalone/pull/248

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
3

ABSTRACT

The purpose of this report is to explain in detail the improvements to the Alpaka version of the
Patatrack pixel track and vertex reconstruction repository in the form of caching allocators for
allocating and reusing device and host memory as well as smart pointers as an interface for memory
management. Furthermore, it’s aim is to also quantify these improvements.

The report begins with an introduction to the CMS silicon pixel detector within the LHC. It then
discusses heterogeneous computing in the context of CMSSW briefly, before moving on to the
Alpkaka library. After this, there is an overview of the pixel track and vertex reconstruction process.
Finally, the caching allocators and the associated smart pointer interface is explained in detail along
with the performance improvement results.

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
4

TABLE OF CONTENTS

CMS 05

HETEROGENEOUS COMPUTING 06

ALPAKA 06

PATATRACK PIXEL TRACK AND VERTEX RECONSTRUCTION 07

CACHING ALLOCATOR 09

INTRODUCTION

IMPLEMENTATION

INTERFACE

RESULTS 13

CONCLUSION 13

REFERENCES 14

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
5

1. CMS

The Large Hadron Collider (LHC) is a circular collider, designed for proton-proton or heavy ion collisions.
The LHC accelerates protons up to an energy of 7 TeV, producing an energy in the center of mass system
of 13-14 TeV.

In the LHC, there are four points at which the beam collisions take place. At one of these points is placed
the Compact Muon Solenoid (CMS) detector. It is responsible for observing new particles and Physics
phenomena by “taking photos” of the collisions 40 million times a second. The particles produced from the
collisions are detected, and then, their momenta and energies are measured. Figure 1 is an illustration of
the CMS detector.

Figure 1: An illustration of the CMS detector

In order to process the data collected, the CMS has developed a software framework, called CMSSW. This
allows us to perform simulations, High Level Trigger (HLT) reconstruction, offline reconstruction, and
analysis, among other things. The independent chunks of data collected after each collision are called
events. Data from each event is processed by so called CMSSW Modules. Each Module works on a specific
reconstruction (pixel tracks reconstruction, calorimeter reconstruction, particle flow, etc). Modules can
produce objects and put them in the event, making them available to be used by other modules.

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
6

2. HETEROGENEOUS COMPUTING

As part of the CMS phase-2 upgrade, there will be a lot of data being produced as well as an increase in
luminosity (5x). The output of the L1 trigger will be increasing from 100 kHz to 750 kHz (7.5x). The High
Level Trigger (HLT)’s output will also be increasing by 5-7x. There will be more complex detectors involved.
There will also be an increase in pile-up of 4x (50 to 200). Moreover, reconstruction algorithms do not scale
linearly with pile-up. Importantly, we wish to run better Physics algorithms that are more complex at the
same cost. This motivates the need to look into heterogeneous computing and hardware accelerators.

Heterogeneous systems consist of different types of computational units such as multicore CPUs, GPUs
and FPGAs. Hardware accelerators can perform specific functions more efficiently compared to software
running on a general-purpose CPU. They have always been used for 3D graphics acceleration,
compression, encryption and pattern recognition. Each of CPUs and GPUs have their strengths and
weaknesses and the key lies in offloading the right kind of computationally intensive tasks to GPUs.

3. ALPAKA

There are many architectures and vendors today - NVIDIA GPUs (CUDA), ARM GPUs (HIP), OpenMP and
TBB, to name some. Writing code mundanely for each back-end that’s used would lead to code duplication.
Changes will have to be made in multiple places, and this could lead to mistakes cropping up in several
areas. Alpaka was created in order to address this issue, allowing users to write source code once, that can
be executed on different architecture by compiling for each one of them, with performance close to the
native ones.

Alpaka is a header-only C++ library that provides performance portability across accelerators by abstracting
the underlying parallelism. It is platform independent, and can support the concurrent and cooperative use
of multiple devices. A good number of accelerator back-ends are supported and there is no need to write
any specialized code for any particular back-end. The abstraction used is similar to the CUDA grid-blocks-
threads division strategy.

Memory allocations are managed using buffers. Buffers may be allocated on the host or device. Moreover,
we can also execute copy operations from one buffer to another, irrespective of where they reside. Alpaka
operations are synchronized using a queue. The following code snippet (Figure 2) illustrates buffer
allocation:

Figure 2: Alpaka code snippet on buffer allocation

The code below (Figure 3) illustrates how to define a kernel and launch it. This is similar to how it’s done in
CUDA. In this case, we launch a number of threads equal to the number of points. For each point, we check
whether it falls within a certain circle. We have to pass the accelerator as an argument to the kernel in order
to give the kernel access to accelerator information like device, work division, etc.

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
7

Figure 3: Alpaka code snippets on kernel definition and launch

4. PATATRACK PIXEL TRACK AND VERTEX RECONSTRUCTION

The CMS silicon detector is designed for particle tracking. Its 65 million silicon pixels, which are arranged
in layers of two-dimensional tiles, allow us to reconstruct the trajectories of particles. This is done using the
three-dimensional picture formed using the pixels touched by the particles. These “hits” are caused by
charges accumulated on the pixel surface due to the charged particles that pass through that pixel. An
illustration of the silicon pixel detector is given below (Figure 4):

Figure 4: An illustration of the CMS silicon pixel detector

The steps involved in the reconstruction are as follows:

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
8

1. Digis, which represent a single pixel, and contain information about the collected charge as well as
grid position, are created. Then, neighboring digis are grouped together to form clusters.

2. Hits belonging to adjacent pairs of layers are connected to form doublets. The doublets that share
a common hit are tested for compatibility to form a triplet. These compatible doublets form a directed
acyclic graph. Some of these doublets are marked as root doublets, from each of which a depth-
first search is executed. This Cellular Automaton pattern recognition algorithm is used to form n-
tuplets.

3. The Fishbone mechanism is used to resolve ambiguities due to several n-tuplets that could
correspond to the same particle.

4. Broken Line Fit(a multiple scattering-aware fit) are performed over all n-tuplets, to produce the final
pixel tracks. The final pixel tracks are eventually clusterized to produce the vertices.

Parallel algorithms were developed to perform the track reconstruction on GPUs, starting from the raw data
from the CMS pixel detector. The structure of arrays(SoA) data structures used by the parallel algorithms
are optimized for coalesced memory access on the GPU. Since data transfer between CPU and GPU is
time consuming, the chain of modules that produce the final tracks and vertices from the raw data all run on
the GPU. The flow-chart below (Figure 5) describes the reconstruction process:

Figure 5: Pixel tracks and vertices reconstruction flow-chart

There is a standalone repository for the pixel track and vertex reconstruction (https://github.com/cms-
patatrack/pixeltrack-standalone). Various performance portability solutions are explored using this
repository, and Alpaka is being tried as well.

https://github.com/cms-patatrack/pixeltrack-standalone
https://github.com/cms-patatrack/pixeltrack-standalone

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
9

5. CACHING ALLOCATOR

a. INTRODUCTION

A major part of the reconstruction has been ported to Alpaka, but performance improvement is needed. It’s
not desirable to keep allocating memory repeatedly as we process the events. So, we wish to reuse memory.
Moreover, the CUDA version makes use of caching allocators whose job is to cache blocks of memory
allocations and keep track of them using data structures. Memory that’s freed is reclaimed by these
allocators for future allocations. My work involved porting these allocators to Alpaka (https://github.com/cms-
patatrack/pixeltrack-standalone/pull/248).

There is a caching allocator for the host and one allocator for managing allocations on all devices
corresponding to that particular accelerator back-end. Both the allocators are thread-safe. In order to make
reuse of memory blocks better, it’s better to quantize the size of the memory blocks. If we allocate exactly
for every request, we would have to wait for a request of the same or a smaller size in order to reuse that
block once it becomes available, and there would also be a lot of wastage. This is why we have a certain
number of bins, and every memory block belongs to a certain bin and all blocks belonging to a particular
bin have the same size.

The caching allocators are configured with the minimum bin, maximum bin, bin growth as well as the
maximum bytes cached. The maximum bytes cached is equal to the maximum fraction of bytes cached
times the smallest amount of free memory present on a device, in case there are multiple devices existing.
We restrict the number of bins possible to maximum bin minus minimum bin plus one. The minimum bin will
correspond to bytes equal to bin growth to the power of minimum bin, and the maximum bin will correspond
to bytes equal to bin growth to the power of maximum bin, and so on for every other bin in between. For
example, the default constructed allocator has bin growth equal to 8, minimum bin equal to 3, and maximum
bin equal to 7. This delineates 5 bin sizes: 512B, 4KB, 32KB, 256KB, and 2MB.

b. IMPLEMENTATION

There is a block descriptor data structure that corresponds to every memory block. There is a data structure
each for managing live allocations (blocks that are in use) and cached allocations (cached blocks that can
be reused for future allocations). These are implemented as unordered multisets in C++. The device
allocator block descriptor definition is as follows (Figure 6):

https://github.com/cms-patatrack/pixeltrack-standalone/pull/248
https://github.com/cms-patatrack/pixeltrack-standalone/pull/248

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
10

Figure 6: Definition of the memory block descriptor

The one for the host is similar, with the difference being that the buffer involved is a host buffer.

The live device blocks are compared and hashed using the device identifier and native device pointers of
the memory blocks involved, while the cached device blocks are compared and hashed using the device
identifier and the size in bytes. The ones for the host are similar, except that there is no device identifier
involved. The associated code is as follows (Figure 8):

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
11

Figure 7: Functors for hashing and comparing blocks

Figure 8: Type definitions for the cached and live blocks data structures

The allocation method of the caching allocator takes the number of bytes as a parameter and returns a host
or device buffer corresponding to the C++ standard byte (std::byte) data type. For the caching device
allocator, the device on which the block is to be allocated is also taken as a parameter. The allocation
proceeds as follows:

1. First of all, the nearest power of bin growth that is greater than or equal to the bytes requested is
found out. We create a new block descriptor and set its bin to this and the descriptor’s bytes to the
bytes corresponding to this bin.

2. If this bin is greater than the maximum bin, we mark the descriptor’s bin as invalid and set the bytes
of the block descriptor to the bytes requested, and we go to step 5. Else, we go to the next step.

3. First, we check if the bin is smaller than the minimum bin, in which case we set the bin and bytes of
the block descriptor to the minimum bin and the corresponding bytes.

4. Then, we try to find a cached block on the same device corresponding to the same bin. If this is
found, we remove this block from the cached blocks and insert it into the live blocks, and we return
the corresponding buffer. Else, we go to the next step.

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
12

5. We allocate a new buffer with bytes equal to the block descriptor’s bytes. We insert the block into
the live blocks, and return this buffer.

The method for freeing up a block takes in the corresponding buffer as a parameter, and the freeing
proceeds as follows:

1. First, we try to search for a live block that contains the same buffer as the parameter. If it’s found,
we remove it from the live blocks and proceed to the next step.

2. If the corresponding bin is not invalid and we won’t exceed the maximum cached threshold if we
keep this allocation, we insert this into the cached blocks.

The illustration below (Figure 9) depicts allocation and free-up. First, an allocation request comes by for 20
KB. This is assigned to the 32 KB bin. Then, a 32 KB block is allocated and marked as a live block and then
returned. Then, it is marked as a cached block during deallocation/free-up. After this, another allocation
request for 24 KB comes by. This is also assigned to the 32 KB bin by finding the nearest power. SInce the
earlier 32 KB block is present as a cached block, it’s reused and returned after being marked as a live block.

Figure 9: An illustration showcasing memory allocation, free-up, caching, and subsequent allocation

At compile-time, we can choose the allocation policy. This can be one of three types: caching, synchronous,
and asynchronous. The caching allocator is used for the caching policy type, whereas the allocation is
performed normally without using the allocator for the other two types. The only difference between the
other two types is that the allocated buffer is prepared for asynchronous copy operations for the
asynchronous policy type.

c. INTERFACE

Allocation is managed in the form of unique pointers provided for host and device. A function each for host
and device is provided for making this pointer, and is templated on the data type and takes a single
parameter, which is the extent of the allocation. The function makes the pointer as follows:

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
13

If the policy is a caching policy type, we find the number of bytes corresponding to this allocation and allocate
a buffer using the caching allocator’s allocation method. Else, we normally allocate a buffer using the data
type and extent. If the policy is of type asynchronous, we also prepare the buffer for asynchronous copies.
Then, we create an instance of the unique pointer by obtaining the underlying native pointer from this buffer.
We also pass in a custom deleter to this pointer, which stores this buffer. At destruction time, if the policy is
a caching policy type, this deleter checks whether the underlying raw pointer is not null and if true, calls the
freeing up function of the allocator with the stored buffer.

The process described above is similar for host and device. The only exception is that for the device pointer,
if the back-end is not a GPU back-end, in which case the host and device are same, the device pointer is
defined to be the same as the host pointer and the device pointer making function simply delegates to the
host pointer making function.

6. RESULTS

Measurements were made on a machine having an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz and an
NVIDIA Tesla T4 GPU. The throughput when processing 5000 events was measured by taking the average
of 5 runs for 3 back-ends: CUDA, Serial and TBB with and without the caching allocator(asynchronous).
The results are summarized in the table below:

 Without allocator With allocator

CUDA 205.328 events/s 519.500 events/s

TBB 9.453 events/s 10.056 events/s

Serial 21.102 events/s 21.749 events/s

We can see a phenomenal improvement of 2.5x in the throughput for CUDA. This is because, we are gaining
by minimizing the number of CUDA API calls for allocating device memory and pinned host memory. The
gains for TBB and Serial are small. This is because there is no external device for these cases and
everything takes place on the host. Despite that, there is still some improvement because we are minimizing
repeated allocations by reusing memory blocks.

7. CONCLUSION

We had set out with a goal to increase event processing throughput by minimizing device and host
allocations for the Alpaka version of the Patatrack pixel tracks and vertices reconstruction repository. It was
agreed that the way to do this was to not simply keep allocating chunks of memory when each request came
by, but to somehow come up with an efficient scheme that will allocate memory blocks of the right size and
cache these blocks when they are no longer needed and use them again when a request of the same or
smaller size comes up in the future.

The key to solving this problem lies in not allocating exactly for every request, but rather denominating a
number of bins and allocating with respect to these bin sizes, so as to maximize reuse when that block is
returned. The management of these live and cached blocks involving memory allocations and free-ups was
up to the caching allocators, which were implemented for the host and device. These allocators, which had
already been implemented for the CUDA version of the repository, were efficiently ported to Alpaka. Then,
these allocators were exposed indirectly through a smart pointer interface, with the user being given the
choice to disable them, if necessary.

Then, experiments were conducted to see if the introduction of these caching allocators led to performance
improvements over the plain old non-caching allocation scheme for three back-ends: CUDA, Serial and

CERN openlab Report // 2021

 PORTABILITY FOR THE PATATRACK PIXEL TRACKS AND VERTICES RECONSTRUCTION
14

TBB. The results demonstrated an excellent increase in throughput for CUDA (2.5x), and fair improvements
for the other two back-ends, thus proving that the objectives of the project were realized.

8. REFERENCES

• https://home.cern/science/accelerators/large-hadron-collider
• https://home.cern/science/experiments/cms
• https://cms.cern/detector/identifying-tracks/silicon-pixels
• https://github.com/alpaka-group/alpaka
• https://arxiv.org/abs/2008.13461

https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/experiments/cms
https://cms.cern/detector/identifying-tracks/silicon-pixels
https://github.com/alpaka-group/alpaka
https://arxiv.org/abs/2008.13461

	1. CMS
	2. HETEROGENEOUS COMPUTING
	3. ALPAKA
	4. PATATRACK PIXEL TRACK AND VERTEX RECONSTRUCTION
	5. CACHING ALLOCATOR
	a. INTRODUCTION
	b. IMPLEMENTATION
	c. INTERFACE

	6. RESULTS
	7. CONCLUSION
	8. REFERENCES

