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ABSTRACT

Flow of cerebrospinal fluid in perivascular spaces is a key mechanism underlying brain transport and clearance. In this paper,
we present a mathematical and numerical formalism for reduced models of pulsatile viscous fluid flow in networks of generalized
annular cylinders. We apply this framework to study cerebrospinal fluid flow in perivascular spaces induced by pressure
differences, cardiac pulse wave-induced vascular wall motion and vasomotion. The reduced models provide approximations of
the cross-section average pressure and cross-section flux, both defined over the topologically one-dimensional centerlines of
the network geometry. Comparing the full and reduced model predictions, we find that the reduced models capture pulsatile flow
characteristics and provide accurate pressure and flux predictions across the range of idealized and image-based scenarios
investigated – at a fraction of the computational cost of the corresponding full models. The framework presented thus provides
a robust and effective computational approach for large scale in-silico studies of pulsatile perivascular fluid flow and transport.

1 Introduction
Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVSs) is a key transport mechanism in and around the
brain1–3. A PVS is a space or potential space along or around a blood vessel through which fluid and particles can
pass4. Such spaces appear along blood vessels on the brain surface (surface or pial PVSs) or along blood vessels
within the brain parenchyma (parenchymal PVSs). While their shape and structure, and to some extent existence,
remain disputed4–8, PVSs are typically represented as (elliptic) annular structures or pipes surrounding the blood
vessels. As such, surface and parenchymal PVSs form structural networks, dual to and in close interaction with the
vascular network, and the surrounding brain tissue and/or subarachnoid space.

Mathematical and computational models are playing an increasingly important role in understanding and
predicting PVS flow characteristics9. Theoretical models have quantified the resistance in PVS networks10, while
detailed numerical simulations can predict perivascular fluid velocities and pressures in idealized11–17 and image-based
geometries18. However, computational fluid dynamics simulations rapidly become prohibitively expensive for large,
three-dimensional PVS networks. A natural question is therefore whether reduced models can accurately capture PVS
flow and transport characteristics and magnitudes. Of particular interest and relevance are geometrically-reduced
models for which the computational domain is reduced from an initial three-dimensional representation to a network
of topologically one-dimensional branches. Such models have been subject to active research over the last decades in
the context of the vasculature, arterial blood flow, and tissue perfusion19–27. For the one-dimensional arterial blood
flow models, see e.g. the seminal work of Olufsen19, the vasculature is typically represented by a branching network
of centerlines, and the model variables are the time-varying cross-section flux and vascular area. The corresponding
PVS flow setting has received less attention from the mathematical and numerical community on the other hand.

In this work, we introduce a geometrically-reduced mathematical model and numerical solution techniques for
the time-dependent flow of an incompressible viscous fluid such as CSF in surface PVS networks. The cross-section
flux and average pressure are the primary model variables. We consider different computational scenarios including
PVS flow induced by a systemic pressure gradient, by cardiac pulse wave-induced movement of the inner vascular
wall and by vasomotion in idealized or image-based model geometries. We evaluate the accuracy and efficiency of
the reduced models by qualitative and quantitative comparison with the full three-dimensional model analogues.
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Domain ! (mm) �0 (mm) �pvs (mm) Mesh (Full) Mesh (Reduced)
cells vertices ℎmin (mm) vertices ℎmin (mm)

A 1 0.04 0.06 1920 1053 1.3×10−2 65 1.6×10−2

B ≈1 0.036–0.047 0.035–0.044 63144 12404 9.4×10−3 356 2.8×10−4

C ≈1 0.024–0.046 0.023–0.044 88074 17318 6.4×10−3 249 9.9×10−5

Table 1. Geometrical or numerical PVS domain characteristics for domains A, B, C. ! denotes an approximate
domain length, �0 = 2'1 is the range of the arterial diameters, �pvs indicates the range of widths of the perivascular
space (�pvs = '2−'1, so that '2 = 2.95'1) cells and vertices indicate the number of mesh cells and mesh vertices
respectively for the full (2D or 3D) model and reduced models, and ℎmax denotes the maximal mesh cell size for each
mesh. The vertices for the one-dimensional geometries are uniformly spaced in the interior of the domain.

The reduced models provide accurate approximations of the cross-section average pressure, cross-section flux
and net flow in all geometries considered with relative model discrepancies in the peak flux between 0 and 35% and
in the peak pressure between 00=352%. For realistic three-dimensional geometries, the reduced model reduces the
computational costs (memory and runtime) by factors of 50−200× with higher factors expected for larger scale
networks.

2 Methods

2.1 PVS geometries (3D and 1D)
In general, we consider a perivascular tree-like domain Ω consisting of a network of branching generalized annular
cylindersΩ8 , withΩ ⊆ ∪8∈�Ω8 , spatial coordinates G ∈Ω and time C ≥ 0. The boundary is denoted mΩ, with boundary
normal =. We assume that each generalized annular cylinder Ω8 has a well-defined and oriented, topologically
one-dimensional centerline Λ8 with coordinate B. We set Λ = ∪8∈�Λ8. Along B, we define the cross-sections
�8 = �8 (B, C) of Λ8 with area �8 = �8 (B, C). We denote the inner radius of Ω8 by '81 and the outer radius of Ω8 by '82;
these radii will in practice vary with B, C and the angular coordinate \. We denote the set of bifurcation points i.e. the
points at which the centerlines of branches meet by B.

We introduce three specific geometries of increasing complexity: from an axisymmetric cylinder (A) to an
image-based perivascular geometry without any bifurcations (B) and one with a bifurcation (C) (Figure 1 and
Table 1). Three-dimensional PVS flow in geometries A and C have been studied previously18 and will be used for
comparison. In each of these geometries, the PVS domain is defined by creating a generalized annular cylinder
surrounding the vascular segment with the vascular wall as the inner surface of the PVS. The width of the PVS is set
proportional to the blood vessel diameter (by factor of 0.95) and scaled (to a mouse scale)18,28. We define as PVS
inlets and outlets (mΩin and mΩout) the PVS ends surrounding the vascular inlets and outlets, respectively, noting
however that fluid may flow both in and out of both the inlet and outlets. We denote the inner PVS wall (boundary)
by mΩinner and outer wall by mΩouter.

The 3D PVS construction and the 1D centerline extraction are performed using PVS-meshing-tools29, largely
based on VMTK30. The extracted centerline comes with underlying data including the branch lengths and vessel radii.
The centerline radius refers to the radius of the maximal inscribed circle of the vessel cross-sections. The meshing
of both 3D and 1D PVS domains is performed within PVS-meshing-tools29 using meshio31 and GMSH32. The
centerline meshes consist of topologically one-dimensional intervals embedded in three dimensions. The bifurcation
points 1 ∈ B ⊂ Ω are explicitly labeled within each centerline mesh. Each branch is also separately tagged and given
a consistent orientation. This procedure allows for the identification of bifurcation points as the outlet of one (parent)
centerline and the inlet of other (daughter) centerlines, and a split of the full perivascular network into oriented mesh
branches.
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Figure 1. Overview of the full three-dimensional and topologically one-dimensional reduced model domains. The
idealized geometry A (the axisymmetric PVS) is a single 1 mm long axisymmetric annular cylinder represented by
its two-dimensional angular cross-section. Geometry B (the image-based PVS) is generated from a cerebral artery
segment (Aneurisk dataset repository, case id C0092) and represents a realistic perivascular space without bifurcation.
Geometry C (the bifurcating image-based PVS) is generated from a middle cerebral artery (MCA M1–M2) segment
(Aneurisk dataset repository, case id C0075) and represents a realistic perivascular space including a bifurcation.
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2.2 Stokes flow in a deforming perivascular domain
Flow of CSF in surface PVSs is reported to be laminar, with low Reynolds numbers (10−4−10−2) and moderate Péclet
numbers (102−104), a mean flow speed of up to 60 `m/s, and parabolic flow profiles28. We therefore model the flow
of an incompressible, viscous fluid flowing at low Reynolds and Womersley numbers via the time-dependent Stokes
equations over a time-dependent domain Ω = Ω(C) representing the PVS. The fluid velocity E = E(G, C) for G ∈ Ω(C)
at time C and the CSF pressure ? = ?(G, C) then solve the following system of time-dependent partial differential
equations (PDEs)18,33:

dmCE− `∇2E +∇? = 0 in Ω(C), (1a)
∇ · E = 0 in Ω(C), (1b)

where d is the fluid density and ` is the dynamic fluid viscosity. To model CSF at body temperature, we set the fluid
density to d = 103 kg/m3 and the dynamic viscosity to ` = 0.697×10−3 Pa s. As in our previous full models of
perivascular flow18, the initial PVS mesh defines the reference domain Ω(0), and we assume that Ω(C) at time C > 0
is given by a deformation 3 of the reference domain: Ω(0) ↦→Ω(C) with G = 3 (-, C), - ∈ Ω(0), G ∈ Ω(C). We denote
the domain velocity associated with 3 by F (thus ¤3 = F).

2.3 Boundary conditions, initial conditions and periodicity
At the PVS ends, we prescribe a traction condition corresponding to a known, applied pressure ?̃ = ?̃(G, C):

f= ≡ (`∇D− ?�) · = = −?̃= on mΩin and mΩout. (2)

We either prescribe (i) zero pressure at both ends ?̃ = 0, or (ii) a constant-in-time pressure gradient Δ?̃ > 0 by setting
?̃in = !outΔ?̃ at the inlet, letting ?̃out = 0 at the outlet furthest from the inlet with distance !out, and setting ?̃out at
any other outlets such that the average pressure gradient over each branch path ( ?̃8 − ?̃out)/!out is constant and equal
to the prescribed pressure gradient Δ?̃ mmHg/m. This static pressure difference can represent e.g. a hydrostatic
pressure difference, a venous pressure differential, or some other systemic pressure difference.

On the inner and outer PVS walls (along the length of the PVS), we set the fluid velocity E to match a known,
prescribed domain velocity F = F(G, C). For the inner PVS wall, we either (i) consider a rigid wall and set E = F = 0,
or (ii) impose a pulsating wall displacement:

3 |mΩinner (-, C) = �(-, C) =, (3)

with reference to the initial (fixed) mesh with coordinates - and prescribe E = F = ¤3. To representwall motion induced
by the cardiac pulse wave, we let the amplitude � be defined by the juxtaposition of an experimentally-observed wall
motion time series28 either applied uniformly along the length of the PVS or as a travelling wave along the PVS
length with wave speed 2 = 1 m/s and frequency 10 Hz. We refer to18 for the detailed description. To represent wall
motion due to vasomotion, we consider a similar set-up but with a travelling sinusoidal wave in time with a frequency
of 0.1 Hz and wave length _ 8 mm34, and an amplitude � of 7.5% of the initial inner radius '1. We note that for all
models, the wall moves in the normal (radial) direction only. For the outer PVS wall mΩouter, we set E = F = 0.

The system starts at rest with E = F = 0 at C = 0. The system reaches the periodic steady state nearly immediately,
and we report results starting from the first cycle.

2.4 Model reduction assumptions
We define a reduced, topologically one-dimensional, model approximation of the full PVS flow model ((1) with the
given boundary and initial conditions) under the following stipulations35. For each branch Ω8 (C) with centerline
Λ8 and local coordinate system (B,A, \), where B represents the path length (or axial coordinate), A is the radial
coordinate and \ is the angular coordinate, we suppose that:

(I) Axial symmetry. Fields and input parameters are independent of the angular coordinate \;

(II) Radial displacements. Boundaries displace in the radial direction only;
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(III) Fixed centerline. The centerline Λ is fixed in time and defines the axial direction;

(IV) Constant cross-section pressure. The pressure field is independent of the angular and radial coordinates
i.e. ? = ?(B, C);

(V) Axial velocity profile The axial velocity EB, i.e. the velocity component in the axial direction can be decomposed
in the form

E · B = EB = EB (B,A, C) = Ê(B, C)Evp(A), (4)

where Evp is a given velocity profile varying radially only, Ê is to be determined.

For the velocity profile Evp, we here choose a normalized annular Poiseuille flow:

Evp(A) =
Epoise(A)

Epoise( '1+'2
2 )

, Epoise(A) =
(
1− A

2

'2
1
+

'2
2 −'

2
1

'2
1 ln ('2/'1)

ln(A/'1)
)
. (5)

This velocity profile is parabolic in A (as for Poiseuille flow in a cylinder) with a logarithmic correction that accounts
for the annulus.

In particular, the domain velocity F is assumed independent of the angular coordinate \. Note that we do not
assume other velocity components (than the axial) to necessarily be zero. We emphasize that these assumptions will
in general not be satisfied by realistic geometries and flows. Thus, the reduced model defines a model approximation
associated with a certain modelling error.

2.5 Reduced model equations
Under the assumptions (I)-(V), the full PVS flow model can be reduced to the following system of time-dependent
differential equations35: find the cross-section flux @̂ = @̂(B, C) and the cross-section average pressure ?̂ = ?̂(B, C) such
that for each centerline Λ8 (denoting @̂ |Λ8 = @̂8 and ?̂ |Λ8 = ?̂8):

d

�8
mC @̂

8 − `

�8
mBB @̂

8 + ` U
8

�8
@̂8 + mB ?̂8 = 0 on Λ8 , (6a)

mB @̂
8 = 5̂ 8 on Λ8 , (6b)

hold.

5̂ 8 (B) ≡ 2c'81(B, C)F('1, B, C) · =|mΩinner +2c'82(B, C)F('2, B, C) · =|mΩouter . (7)

Moreover, �8 = �8 (B, C) denotes the cross-section area, while Û8 = Û8 (B, C) is a lumped flow parameter that depends
on the domain geometry and the choice of velocity profile Evp:

U8 (B, C) ≡ 1
� ¯̄Evp(B)

(
2c'81(B, C) mAEvp('81(B, C)) −2c'82(B, C) mAEvp('82(B, C))

)
, (8)

and where ¯̄Evp is the velocity profile integrated over each cross-section:

¯̄Evp ≡
∫
� (B)

Evp A dA d\. (9)

We also define the (one-dimensional) normal stress induced by @̂ and ?̂:

f̂ ≡ `
�
mB @̂− ?̂, (10)

which corresponds to an average of the axial (B-)component of the normal stress in (2) over each cross-section.
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At the bifurcation points 1 ∈ B ⊂ Ω, we impose the following two conditions representing conservation of flux
and continuity of normal stress, respectively:

@̂? (B?) = @̂31 (B31) + @̂32 (B32), (11)
f̂? (B?) = f̂31 (B31) = f̂32 (B32), (12)

where Λ? and Λ31 , Λ32 represent the centerlines of the parent and two daughter branches, respectively, associated
with the bifurcation point 1 and B · = ]· (1) where ]· denotes the map from three-dimensional bifurcation point to the
one-dimensional centerline coordinate for each branch Ω·.

The system (6) defines a set of equations for each branch centerline Λ8 and is closed by the bifurcation
conditions (11)–(12), together with boundary conditions at the PVS inlet and outlets, as well as initial conditions for
the cross-section flux. Specifically, in place of the traction condition (2), we prescribe the corresponding pressure
difference for the (average) normal stress f̂ cf. (10). In this manner, the (one-dimensional) solutions @̂8 and ?̂8 of the
reduced model (6) define approximations of the (three-dimensional) axial flux and pressure solving (1) integrated or
averaged over each cross-section:

@̂8 (B) ≈
∫
�8 (B)

EB (B,A, C) A dA d\ ≡ �8 (B) ¯̄@8 (B),

?̂8 (B) ≈ 1
�8 (B)

∫
�8 (B)

?(B,A, C) A dA d\.

The factor A originates from integrating in cylindrical coordinates. We note that the wall velocity F, which defines a
boundary condition for the full PVS model (1), enters as a body force in the reduced model (6).

2.6 Numerical solution and software
We solve the full PVS equations (1) via a previously developed and verified arbitrary Lagrangian-Eulerian (ALE)
formulation and finite element discretization18. This solver builds on the standard FEniCS finite element software
suite36, and is openly available37.

To compute numerical solutions to the reduced model (6), we consider a first-order implicit Euler scheme in time
and a higher-order finite element method in space35. The finite element mesh T of the centerline Λ is composed
of mesh segments T 8, one for each centerline branch Λ8. Each mesh segment is a mesh consisting of intervals
embedded in R3. We label the set of bifurcation points B, inlet points I and outlet points O, and define the following
finite element spaces:

• The flux space +ℎ is the space of continuous piecewise quadratics over T 8 for each 8.

• The (average) pressure space &ℎ is the space of continuous piecewise linears on T .

• The Lagrange multiplier space 'ℎ = R� where � is the number of bifurcation points.

The flux is thus solved on each mesh segment representing the PVS network branches and may be discontinuous
across bifurcations. We impose the flux conservation condition (11) weakly using a Lagrange multiplier formulation.
The pressure is solved on the whole mesh and is continuous at bifurcations by construction.

For each discrete time C: , given @̂:−1
ℎ

at the previous time C:−1 and time step ΔC = C: − C:−1, we solve for the
approximate cross-section flux @̂:

ℎ
∈ +ℎ, average pressure ?̂:ℎ ∈ &ℎ and a Lagrange multiplier (corresponding to the

normal stress (10) at the bifurcation points) _:
ℎ
∈ 'ℎ solving

0((@̂:ℎ, ?̂
:
ℎ,_

:
ℎ), (k,q, b)) = !

: ((k,q, b)), (13)

for all finite element test functions k ∈ +ℎ, q ∈ &ℎ, and b ∈ 'ℎ. The left-hand side bilinear form 0 is defined by:

0((@, ?,_), (k,q, b)) =∑
8∈�

∫
Λ8

1
�8

(
d +ΔC`U8

)
@8k8 + ΔC`

�8
mB@

8mBk
8 + mB@8q8 −ΔCmBk8?8 dB+

∑
1∈B

_1 [k]1 + b1 [@]1, (14)
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where _1 (or b1) is simply the entry of the vector _ (or b) corresponding to bifurcation point 1, and we define the
natural jump:

[k]1 = k? (1) −k31 (1) −k32 (1). (15)

The right-hand side linear form ! is:

!: (k,q, b) =
∑
8∈�

∫
Λ8

d

�8
@̂
:−1,8
ℎ

k8 + 5 8q8 dB−
∑
G∈I

ΔC ?̃in(G)k8� (G) +
∑
G∈O

ΔC ?̃out(G)k8$ (G), (16)

where the superscript 8� (8$) in the inlet (outlet) terms above refers to the unique centerline branch associated with
the inlet (outlet) points.

The numerical solver for the reduced model was implemented in the well-established FEniCS Project finite
element software36. The solver, and in particular the definition of the partially continuous flux space, builds on
mixed-domain features38 and relies on the latest development version of FEniCS.

2.7 Overview of computational models, output functionals and model error measures
An overview of the six computational models considered is given in Table 2. Each model is labeled with reference to
its domain (A, B, or C) followed by a number indicating the driving forces included: (1) a given pressure drop, (2)
wall movement due to cardiac pulsations and (3) wall movement due to vasomotion. For each model, we consider the
full three-dimensional version as well as the reduced model.

To compare the solutions from the full and reduced models, we consider the following quantities of interest. For
each domain, we define a set of cross-sections as follows. For domain A, we define the left-most end as the inlet
(B = 0) and define an upper cross-section. For domain B, we consider the inlet and outlet ends of the PVS, as well as
upper and lower cross-sections. For domain C, we consider the inlet at B = 0, and the two outlets, as well as three
additional cross sections near the inlet, on the largest daughter branch relatively close to the bifurcation, and near the
outlet of the other daughter branch.

For each cross section �, we compare a numerical approximation ¯̄?ℎ of the average of the full pressure solution:

¯̄?ℎ (C) =
1
|� |

∑
:

F: ?ℎ (G: , C) (17)

for a quadrature scheme with points G: and weights F: defined over � and an approximation |� | of the cross-section
area35. Similarly, we compute a numerical flux approximation ¯̄@ℎ by the same numerical integration of the axial
velocity over the cross-section �. We define the total relative model discrepancy �@ in the flux by

�@ ()) = ‖ ¯̄?ℎ ()) − ?̂ℎ ())‖!2 (Λ)/‖ ¯̄?ℎ ())‖!2 (Λ) (18)

and similarly for the pressure �? (C).
Finally, we define the net flux & associated with the velocity E = E(G, C) as:

& =

∫ )

0

∫
mΩin

E · =dG dC, (19)

and the corresponding quantity associated with the flux @̂ = @̂(B):

& =

∫ )

0

∑
G∈I

@̂(G) dC (20)

where the integration in time is over one period [0,)].
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Figure 2. PVS flux and pressure in an axisymmetric annular cylinder induced by a constant pressure difference or
cardiac wall motion (Models A1, A2). (a) Model A1: A constant pressure gradient induces annular Poiseuille flow
in both the full axisymmetric model (upper panel) and the reduced model (lower panel): snapshot of steady solution
at ) = 0.1. (b-e) Model A2: Inner wall pulsations induce bidirectional and oscillatory flow. (b) Snapshot of the full
model solutions at peak outflux (C = 0.05). Different cross-sections are marked in green (at the inlet) and blue (in the
interior). (c) Pressure (upper panel) and cross-section flux ¯̄@ℎ (lower panel). (d) Cross-section flux predicted by
the full model (dotted line) and the reduced model (solid line) at inlet versus time. (d) As for (c) but at the interior
cross-section marked in (b).
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Domain Pressure gradient
Δ?̃ [Pa/mm] Wall motion pattern Model assumptions

(I) (II) (III) (IV) (V)

Model A1 A 0.1995 None 3 3 3 3 3

Model A2 A 0.0 Cardiac pulsations
(uniform) 3 3 3 7 7

Model B1 B 0.1995 None 7 3 3 7 7

Model B2 B 0.0 Cardiac pulsations
(travelling) 7 3 3 7 7

Model B3 B 0.0 Vasomotion (travelling) 7 3 3 7 7

Model C12 C 0.1995 Cardiac pulsations
(travelling) 7 3 3 7 7

Table 2. Overview of computational models parameterized by domain, prescribed pressure gradient Δ?̃ and wall
motion pattern (see Methods). Wall pulsations are applied uniformly in space (uniform) or as a travelling wave in
space (travelling). Each of the models satisfy some of the reduced model assumptions (I)-(V), but only Model A1
satisfies all.

3 Results
The prescribed pressure gradient and the pulsating PVS walls each induce pressure gradients and fluid flow in
the different PVS geometries. For each of the models (Table 2), we compare the simulation results from the full
PVS equations (1) defined over the three-dimensional model domains and the reduced system (6) defined over the
topologically one-dimensional domains, quantify the discrepancies between the models and the computational costs.

3.1 Reduced model exactly predicts pressure-driven axisymmetric flow characteristics
Flow in an axisymmetric annular cylinder of length ℓ driven by a constant pressure difference Δ? (Model A1) is
described by the analytic expression:

@̂(B, C) = � Δ?
`Uℓ

(
1− exp

(
−`UC
d

))
,

?̂(B, C) = Δ?
ℓ
B+ ?̂(0),

where U is the lumped flow parameter given by (8) and which is constant in time and space in this case. For the velocity
profile (5) defined over geometry A (cf. Table 1), U = 7325.3/m2 , and `U/d = 5105.7/s. Thus, the time-dependency
is negligible after only a few milliseconds, and the flow develops near-instantaneously to steady-state Poiseuille flow.

Both the full and reduced models reproduce the exact annular Poiseuille flow characteristics of this case
(Figure 2a). The numerical difference between the analytic and computed reduced solutions for the cross-section flux
@̂ and average pressure ?̂ is at machine precision (‖@̂()) − @̂ℎ ())‖ = 1.7×10−14 and ‖ ?̂()) − ?̂ℎ ())‖ = 2.6×10−17)
() = 1 s). In general, the total error is the sum of the model error and the numerical error associated with the
space-time discrete approximation (13). For Model A1, the model error is zero as the model reduction assumptions
(I–V) are exactly fulfilled by the geometry and flow pattern. As the total error also vanishes, we note that the
numerical error is also negligible for this case.

3.2 Reduced model accurately captures axisymmetric PVS wall pulsations
Next, we examine the PVS flow and pressure generated by uniform axisymmetric pulsations of the inner PVS wall
(Model A2, Figure 2b-Figure 2e). The inner wall movement changes the inner domain radius '1 in time. The
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(a) (b)

Figure 3. In an image-based perivascular segment with varying radii, a pressure difference between inlet and outlet
induces a pressure field that is nearly constant on each cross-section, but a velocity field that varies with the radial,
angular and axial coordinates. (a) Full pressure and velocity approximations in the domain (left) along with close-up
views of the pressure (middle) and velocity magnitude (right) at two cross-sections; (b) Reduced average cross-section
pressure (left) and cross-section flux approximations (right).

fluid is pushed out at the both ends as the PVS width decreases, and flows back in at both ends as the PVS width
returns to baseline. This behaviour is reproduced by both the full (Figure 2b,18) and reduced models (Figure 2c). We
note that the reduced model assumptions (IV-V) do not hold in this scenario as the PVS axial velocity profile is no
longer identical to the Poiseuille velocity profile, and the pressure is not perfectly constant on each cross-section.
Comparing the full and reduced cross-section fluxes ¯̄@ℎ and @̂ℎ, we observe however that the two models still agree
closely (Figure 2d, Figure 2e), both at the inlet and at an interior cross-section. Moreover, the time-profile of the
reduced and full cross-section flux approximations are very similar (both at the inlet and at the interior cross-section,
Figure 2d-Figure 2e), though with small (ΔC s) shifts in time. The peak outflux for the full model is 1.54×10−3

`m3/s, and 1.47×10−3 `m3/s for the reduced model, respectively (Figure 2d). The peak pressure for the full model is
0.20 Pa, and 0.19 Pa for the reduced model. The relative model discrepancy in the peak cross-section flux (difference
between the full and reduced peak flux) at the inlet is 4.1% and in the peak cross-section (average) pressure is
5.3%. There is thus a small discrepancy between the two models, as expected by the violation of the reduced model
assumptions.

3.3 Radial geometry variations induce small model errors
In contrast to the axisymmetric geometry A, the image-based geometries B and C express angular and axial variations
in radius. The inner and outer radii of these geometries vary along the length of the domain (with B) and depend on
the angular coordinate \, with the latter violating model assumption I. To study the resulting model error in isolation,
we again examine the pressure-driven flow predicted in full and reduced models but now of geometry B (Model B1,
Figure 3). The full numerical approximation of the pressure is nearly constant over each cross-section . On the other
hand, the velocity profile varies between cross-sections and with the angular coordinate within each cross-section
(Figure 3a). Therefore, we expect a larger model error in the reduced model compared to the previous case(s). At
steady state (C = 0.5), the reduced pressure approximation ?̂ varies nearly linearly along the length of the domain as
expected, and the reduced flux approximation @̂ is essentially constant along the centerline with value @̂ = 4.28×10−4

`L/s. Computing the corresponding cross-section flux from the full model, we find values ranging from 3.5×10−4 to
5.31×10−4 `L/s. The total relative model discrepancy (18) in the pressure �? = 2.6% and for the flux �@ = 12.6%.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4. Cardiac wall motion induce substantial pulsatile pressures and velocities in an image-based perivascular
space segment, with the reduced model accurately capturing flow, pressure and transport characteristics. (a) Snapshot
of the pressure and velocity at time of peak pressure (C = 0.05s); (b) Velocity at upper and lower cross-section (zoom
of (a)); (c) Pressure at upper and lower cross-sections (zoom of (a)); (d) Cross-section flux from reduced model (left)
and full model (right); (e) cross-section average pressure from reduced model (left) and full model (right); (f) full
and reduced model cross-section fluxes at the lower cross-section over time; (g) full and reduced model pressures at
the lower cross-section over time.
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3.4 Reduced model is robust with respect to wall motion amplitude and frequency
Cardiac wall motion and vasomotion may drive pulsatile perivascular flow with different flow characteristics. To
evaluate the model discrepancy induced by different physiological drivers, we compare the full and reduced models
over an image-based PVS segment driven by wall motion induced by the cardiac pulse wave (Model B2) and by
vasomotion (Model B3). The cardiac pulse wave induces wall motion at a higher frequency (10 Hz) travelling at a
higher wave speed (1000 mm/s), while vasomotion creates pulsations at lower frequencies (0.1 Hz) and at a lower
wave speed (0.8 mm/s). Both models include angularly, axially and temporally varying radii, and we expect model
assumptions I, IV-V to not hold.

Both pairs of models induce pulsatile bidirectional flow in and out of the PVS segment in synchrony with the
pulsating wall (Figure 4, Supplementary Video S1) with peak pressure magnitude in the middle of the segment, and
conversely, low velocities in the middle of the domain and higher velocities near the PVS ends. Both model scenarios
lead to pressure fields that are nearly constant on each cross-section (Figure 4c, Figure 5), but with angularly varying
velocity profiles (Figure 4b, Figure 5).

For the cardiac wall motion, the cross-section average of the full pressure ¯̄?ℎ ranges from −0.05 to 0.26 Pa,
while the full cross-section flux ¯̄Eℎ ranges from −1.54×10−3 to 1.95×10−3 `L/s. The reduced model accurately
captures the temporal and spatial characteristics of the full model (Figure 4d–Figure 4g). For the reduced model, the
cross-section pressure ?̂ℎ ranges from −0.06 to 0.29 Pa, while the cross-section flux @̂ℎ is between −1.61×10−3 and
2.23×10−3 `L/s. Comparing the full and reduced pressure and flux over time at an interior, lower cross-section, we
observe that the reduced model slightly overestimates the peak pressure and flux when compared to the full model
(Figure 4e, Figure 4f). The relative difference in peak positive pressure between the two models at this cross-section
is 19% and 30% in peak negative pressure. For the flux, the corresponding model discrepancies are 1.2% and 11%.

For the vasomotion scenario, the domain movement is larger compared to the cardiac wall motion, but the
wall velocity is lower (peak wall speed of 0.001m/s vs 0.005 mm/s). The resulting peak (in terms of magnitude)
cross-section pressure is −0.012 Pa and peak cross-section flux is 9.14×10−5 `L/s (Figure 5). These are one-to-two
orders of magnitude lower than for the cardiac wall motion scenario. Comparing the full and reduced models in two
interior (upper and lower) cross-sections, we observe that the cross-section pressure @̂ℎ matches pulsatile behaviour
of the average cross-section pressure in the full model ¯̄@ℎ (Figure 5b) but that the peak amplitude is higher. The
largest model differences in pressure at lower cross-section is at the peak pressure; there the relative difference in
peak pressure is 52%. The similar observations hold for the flux, but the model discrepancies are lower: the relative
difference in peak flux is 15%. Moreover, the full and reduced models agree on a pressure phase shift of 0.5s. In
agreement with our previous findings, the reduced pressure approximation displays a greater model discrepancy with
higher predicted pressure variations in the reduced model (Figure 5b).

3.5 Reduced model captures flow and transport characteristics through bifurcations
Now, we turn to compare the full and reduced model predictions of physiologically realistic perivascular flow
in an image-based PVS surrounding a vascular bifurcation (Model C12). The prescribed pressure difference
between inlet and outlets as well as the cardiac wall motion induces pulsatile flow with a net flow component18
(Figure 6a, Supplementary video S2). We note that the domain radii varies both angularly and axially, also
for the initial domain, and also that the presence of a bifurcation region induces non-Poiseuille/non-Womersley-
type velocity profiles. Comparing the full and reduced average pressure and flux at the time of peak velocity
(Figure 6f, Figure 6j), we note that the reduced model captures the qualitative and quantitative flow and pressure
characteristics. The bifurcation conditions are satisfied at the bifurcation point 1 (Figure 6c, Figure 6g) with
a parent branch flux @̂(1) |Λ% = −5.0× 10−4`L/s and daughter branch fluxes @̂(1) |Λ31 = −6.08× 10−5`L/s and
@̂(1) |Λ32 = −4.39×10−4`L/s. The uneven flux distribution is induced by the smaller average width of one of the
daughter vessels. The predicted stress f̂ is continuous (data not shown).

The reduced peak cross-section flux (over time) at the inlet is −1.4× 10−3`L/s, and 1.2× 10−3`L/s and
7.5×10−4`L/s at the outlets (Figure 6b). Comparing the peak flux model discrepancies at the inlet and outlets, we
note that the discrepancy is largest at smaller daughter outlet with a relative difference of 10%. Comparing the full
and reduced peak pressures at the upper, middle and lower cross-sections, we find relative model differences of 4%,
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t=6s t=7.5s t=11s t=13s

(a)

(b)

Figure 5. Vasomotion induces higher domain deformations but lower wall velocities, pressure differences and
cross-section fluxes. (a) Snapshots of the full model pressure and velocity at different time points with cross-section
velocities (top). (b) Average pressure (upper panel) and flux (lower panel) for the full and reduced models at upper
and lower cross-sections over time. The values at the different cross-sections are slightly shifted in time due to the
travelling vasomotion. The pressure model discrepancy dominates the flux differences.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 6. Flow through a bifurcating PVS (Model C12) (a) Snapshot of pressure and velocity from full model at
peak velocity (C = 0.05). (b) Full versus reduced cross-section flux at inlet (in) and outlets (out1 and out2) over time.
(c) Snapshot of reduced cross-section pressure at peak velocity. (d) Snapshot of average cross-section pressure at the
same time. (e) Pressure at upper, middle and lower cross-sections (zoom of (a)). (f) Full versus reduced cross-section
average pressure at cross-sections. (g) Snapshot of reduced cross-section flux at peak velocity (C = 0.05). (h) Snapshot
of cross-section flux from the full model at the same time. (i) Flux at upper, middle and lower cross-sections (zoom
of (a)). (j) Full versus reduced cross-section flux at cross-sections.

14/19



d.o.fs time (s) memory (MB)
Model Full Reduced Full Reduced Full Reduced

A2 9 103 194 0.16 0.35 180 146
B2 287 432 1067 42.33 0.83 6261 133
C12 401 156 749 130.57 0.76 8874 176

Table 3. The geometrically-reduced models reduce computational cost by orders of magnitude. Number of degrees
of freedom 3.>. 5 .B, computational time (average time for a single time step) and memory usage (peak memory usage
throughout the simulation) for the full models (2D/3D) and reduced models (1D).

15%, 7%. The analogous numbers for the fluxes are 2%, 35%, 10%. Thus, the model discrepancies are larger near
the bifurcation region (Figure 6f, Figure 6j).

The net flow is a key quantity of interest for the physiological relevance of perivascular flow and transport. The
net flow per cycle in the full model is 3.5×10−5`L, and 3×10−5`L for the reduced model, corresponding to a
relative difference of 14%.

3.6 Reduced models offer orders of magnitude saving in computational resources
Accurate direct three-dimensional simulations of pulsatile perivascular fluid flow in large, deforming vascular
networks involve a significant computational cost. The expense is dominated by solving large linear systems of
equations at each time step. For instance, even the moderate-resolution single-bifurcation model considered here
(model C12) includes more than 17 000 vertices, 88 000 mesh cells and 400 000 degrees of freedom. For a
small-scale idealized model such as axisymmetric Model A2, the reduced model uses 2.1% of the number of degrees
of freedom but approximately the same amount of memory and longer runtime (0.16 vs 0.35 s per time step, Table 3).
However, the one-dimensional models reduce computational cost substantially for the image-based geometries
(Table 3). For the image-based perivascular segment (Model B2), the reduced model uses 0.4% of the number of
degrees of freedom, 2.0% of the runtime, and 2.1% of the memory of the full model. For the image-based bifurcating
PVS (Model C12), the reduced model uses 0.18% of the number of degrees of freedom, 0.6% of the runtime and
2.0% of the memory of the full model. Overall, the reduced model reduces the computational expense, both in terms
of computational time and memory, by several orders of magnitude for image-based PVS segments.

Discussion
We have proposed a new mathematical and numerical framework based on topological and geometrical model
reduction for computational modelling and simulation of steady and pulsatile fluid flow in deformable perivascular
space networks. The reduced model is defined over a perivascular centerline network and predicts the fluid flux and
average pressure in each cross-section of each network branch. By numerically comparing direct three-dimensional
simulations of the fluid flow with the reduced model results for a range of physiological scenarios, we find that the
reduced model accurately captures the important flow characteristics with cross-section peak pressure discrepancies
ranging from 0% to 52% and peak flux discrepancies ranging from 0% to 35%. Our findings indicate that reduced
model is robust with respect to physiologically relevant spatial and temporal variations in the vascular radius
Moreover and importantly, the computational cost of the reduced model is several orders of magnitude lower than
that of the corresponding full model.

While geometrically-reduced network models of pulsatile blood flow have become a standard computational
tool19,23, 39, network models of perivascular fluid flow have mainly focused either on quantifying flow resistance7,10
or predicting steady flow40. In the latter, Tithof et al present the results of a network model of glymphatic flow under
different parameters, using resistance models to compute flow in idealized domains. For the open channel flow, they
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compute the flow therein via Darcy’s law E = −(^�/a)∇? with permeability

^ =
1
8
('2

2 +'
2
1 −

'2
2 −'

2
1

ln('2/'1)
). (21)

This relationship holds under the assumption of Poiseuille flow in the open, annular channel (for which there is
an analytic solution) and corresponds to the permeability required for this solution to satisfy Darcy’s law. For
steady-state flow (mCE = mBBE = 0) driven by a constant pressure difference, the reduced model equations (6) simplify
to the Darcy flow equation with permeability

^ =
1
U
. (22)

In the idealized Model A1 scenario, the two definitions of ^ ((21) and (22)) agree, with ^ = 1.36×10−4 mm2, and
thus the models coincide within this regime.

Rey and Sarntinoranont13 also introduced two hydraulic models to predict fluid flow induced by blood pressure
wave pulsations, and in particular net flow and transport. Their models also capture the pulsatile flow generated by
the volume changes induced by a pulsating inner boundary, but under other modelling assumptions and without
considering bifurcations, and thus differ from the one considered here. However, their peak fluid velocities of the
order tens of `m/s is of the same order as the fluid velocities predicted in single branches here (Models A2, B2, B3),
as are the pressures on the order of up to 0.3 Pa.

Several different bifurcation conditions have been proposed in the literature. In one-dimensional blood flow
models, the most common conditions are conservation of flux combined with continuity of pressure39,41. These
conditions may be imposed directly on the pressure and flux solution variables39, or weakly in the variational
formulation41. Here, we also enforce conservation of flux, but in place of the strong pressure continuity condition,
we weakly impose the continuity of the normal stress. This approach gives a natural setting for Stokes flow and
allows for a compatible variational formulation using a Lagrange multiplier space.

In terms of limitations, we here focus on models of perivascular flow and the effect of vascular pulsations on
perivascular flow, and not on the full interplay between vascular, perivascular and interstitial flow and deformation, nor
on the transfer across the blood-brain barrier or the glial limitans. For healthy arterial and venous regions, in which the
blood flow dynamics dominate the perivascular flow and pressure, we expect this one-way (vascular-to-perivascular)
coupling to capture the leading order dynamics. Moreover, in light of the expected high resistance of the interstitial
space13,40, 42, 43, we expect the perivascular-interstitial transfer and interstitial flow to be relatively small under
physiological conditions. However, in light of the importance of quantifying and characterizing the different potential
pathways, coupled fluid dynamics in vascular, perivascular and interstitial spaces will be considered in subsequent
work.

We here consider open (in contrast to porous) domains. This is an appropriate modelling choice for surface
perivascular spaces surrounding arteries or veins6,8. For parenchymal perivascular spaces, within the pial-glial
interface or within the smooth muscle cell basement membranes44, however, a porous media representation may be
more appropriate. In such a case, the Stokes flow equations (1) are naturally replaced by a Darcy or Brinkman flow
model with an additional permeability ^45. The analogous reduced model (corresponding to (6)) would include an
additional lower order term for the flux @̂ weighted by this permeability. For parenchymal and capillary perivascular
spaces, we would also expect the coupled interplay between vascular, perivascular and interstitial spaces to be
non-negligible.

Furthermore, we have approximated the PVS as an (elliptic) annular structure, while surface PVSs may be of
different shapes6,7, 46. An interesting point is the quantification of the model error introduced by approximating
these non-regular structures by elliptic annular cylinders with a fixed centerline. Gjerde et al35 addresses this
point numerically and via theoretical analysis, including the balance between numerical and model errors. Finally,
we also note that we have considered simplified (prescribed traction) boundary conditions at the PVS inlet and
outlets. Compliance or resistance-based boundary conditions could of course also be considered, e.g. as in previous
work18. We have focused on cardiac pulse wave-induced wall motion and vasomotion, two physiological factors that
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generate changes in vascular radius of up to 15%28,34 and only moderate wall velocities. However, the vascular and
perivascular diameters may change more dramatically. For instance, Enger et al47 report of a nearly 40% increase
and 50% decrease in arteriole diameter during cortical spreading depression, and intriguingly the vascular and
perivascular wall motions may differ between e.g. sleep states48. If these changes lead to significantly higher wall
velocities than those considered here, we would expect a further breakdown of the reduced model assumptions,
specifically assumption V, which in turn would be expected to impact the accuracy of the reduced models.

While many aspects of brain influx and clearance remain enigmatic, perivascular fluid flow along the cerebral
vasculature is recognized as a key transport mechanism. The computationally inexpensive yet accurate reduced
models presented here give an efficient and flexible framework for computational modelling and simulation of
pulsatile flow in idealized or realistic networks including complete representations of e.g. the cerebral arteries
or veins and many generations of arterioles/capillaries. This framework thus establishes a foundation for future
computational studies of perivascular flow to improve our understanding of brain transport.
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