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UAV human teleoperation using event-based and frame-based cameras
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Abstract— Teleoperation is a crucial aspect for human-robot
interaction with unmanned aerial vehicles (UAVs) applications.
Fast perception processing is required to ensure robustness,
precision, and safety. Event cameras are neuromorphic sensors
that provide low latency response, high dynamic range and low
power consumption. Although classical image-based methods
have been extensively used for human-robot interaction tasks,
responsiveness is limited by their processing rates. This paper
presents a human-robot teleoperation scheme for UAVs that
exploits the advantages of both traditional and event cameras.
The proposed scheme was tested in teleoperation missions where
the pose of a multirotor robot is controlled in real time using
human gestures detected from events.

Index Terms— Robotic perception, teleoperation, UAS, UAYV,
event-based vision, human detection.

I. INTRODUCTION

In a near future, robots are expected to interact with
humans in many collaborative activities. Robots can perform
dangerous tasks, execute actions that require very high ac-
curacy, and provide real-time information that might not be
available for a human operator. For instance, aerial robots
can manipulate objects, provide additional information, or
transport assets and tools [1]. However, state-of-the-art aerial
robots are potentially dangerous for humans, specially mul-
tirotor platforms. Endowing aerial robots with very reactive
teleoperation systems is required to guarantee safe human-
robot interaction.

Although significant research effort has been devoted over
decades to endow robots with the skills required for physical
collaboration with humans [2], there is still a need for reliable
systems capable of reacting to unexpected events during the
human-robot interaction. Event cameras are neuromorphic
sensors that capture illumination changes at p-second time
resolution. They are very fast, robust against different illumi-
nation conditions, and do not suffer from motion blur. The
advent of event cameras occurred during the last decade and
the developments of perception systems that fully exploit the
sequential and asynchronous nature of event-based vision are
still far from those implemented with conventional cameras.
However, the potential of event cameras and their application
in robotics is very high and can help to develop reactive
and reliable perception systems that endow robots with the
required capabilities to perceive the environment and interact
with humans.
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This work presents a hybrid scheme for Unmanned Aerial
Vehicle (UAV) teleoperation using event-based and con-
ventional vision. The proposed method detects the human
operator and reacts to predefined gestures, which are used to
teleoperate the robot. To the knowledge of the authors, this
is the first robot teleoperation method relying on event-based
vision.

The paper is structured as follows. Section [lI| reviews the
existing literature in event-based vision for robotic applica-
tions. The proposed method for UAV teleoperation is detailed
in Section[ITl} Section[[V]presents an experimental evaluation
of the proposed method using a real multirotor robot. Finally,
Section V| concludes the paper and presents future directions.

II. RELATED WORK

In the last years event-based vision has attracted increas-
ing research interest in the robotics and computer vision
communities [3]. Most of the existing works have focused
on the development of event-based methods for well known
fundamental problems such as feature detection and tracking
[4], optical flow estimation [S5], depth estimation [6], robot
localisation [7], motion and object segmentation [8], object
detection [9], feedback control [10], and visual servoing [11],
among others.

Although, these works have developed novel methods that
cope with the intrinsic nature of event cameras, few of them
have focused on real robotics use cases. Some of the existing
application-oriented research works have used event-based
vision for surveillance tasks [12], pedestrian detection [13],
gesture detection [14], autonomous driving [15], and object
manipulation [16].

In particular, we are interested in those works that ex-
plored the advantages of event cameras on aerial robots. The
work in [17] presents a method for detecting and tracking
moving objects onboard a Micro Aerial Vehicle (MAV). The
global motion is compensated using a model of the affine
transformation between two consecutive event images and
the moving objects are assumed to be represented by the
resulting events. An autonomous landing approach for MAVs
is presented in [18] relying on the optical flow from a top-
down perspective. The authors perform a comparative study
with other landing approaches that use conventional cameras,
and their results show their method being the most accurate
at high speed. A system for high-speed dodging using a
UAV is proposed in [19]. Event images are fed to a Deep
Learning method that detects and estimates the 3D motion
of moving objects and avoids collisions. Another system to
perform evasive manuevers is presented in [20], where the
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spatio-temporal continuity of events is used to detect and
track the moving objects. Then, a potential field method is
used to execute the dodging maneuver by the UAV. Recently,
[21] uses event images in a Visual-Inertial Odometry (VIO)
approach in order to perform closed loop autonomous flight
subject to failures.

Although the output of event cameras are asynchronous
event streams, most of the techniques used onboard robots
group the temporally-close received events in frames, i.e.
event images. The use of event images reduces the required
computation cost w.r.t. to event-by-event processing and,
thus, allows more sophisticated processing schemes and real
time computation. However, these approaches do not fully
exploit the advantages of event cameras. For instance, group-
ing events generate trails of events similar to the motion blur
effect [19], which implicitly reduce the temporal resolution
of the camera.

A variety of event-by-event processing methods exists in
the literature for feature detection [4], feature tracking [22],
clustering [23], and pose tracking [24], among others. How-
ever, few of them have approached event-by-event processing
onboard UAVs or considered computational constraints like
those on board aerial robots. A tracking method of a UAV
6-DoF pose during high-speed maneuvers is performed in
[24] by looking at a black square on a wall. Inspired by
how pigeons approacch perching, the work in [11] presents
a time-to-contact based visual servoing method using a
multirotor UAV. In [25], robot state estimation and attitude
tracking are reached using a dualcopter at speeds of 1600
deg/s.

All of the works detailed in this section provide results
that contribute to the use of event-based vision onboard
UAV for robotic applications. However, to the knowledge
of the authors, none of them have approached the human
teleoperation of a robot using event-based vision, which is
a critical task to allow human-robot interaction for aerial
vehicles. This paper presents an event-by-event scheme to
allow humans to teleoperate a UAV. The event stream and
conventional images provided by a DAVIS 346 camera are
combined to detect the human and identify the moving
command gestures, which are online executed by the UAV.

III. UAV TELEOPERATION USING MULTIMODAL VISION

Teleoperation onboard UAVs requires a low latency re-
sponse to improve precision, robustness, and safety. Human
gesture detection have been widely studied using traditional
cameras. Despite several methods have been reported in
the literature [26], their response is limited to the cam-
era frame rate (typically 30 Hz). Event cameras offer us
resolution and high dynamic range (>120dB), which are
critical specifications in teleoperation tasks onboard mobile
robots. Event cameras return asynchronous events triggered
by changes of illumination in the scene. However, since the
event representation differs from traditional image format,
additional processing is required to use the event stream with
classic computer vision algorithms. Thus, hybrid methods

using events and frames report a suitable approach to exploit
the advantages offered by both sensors.

The proposed method fuses information gathered from
both conventional framed images and events. The DAVIS346
sensor provides frames from the Active Pixel Sensor (APS)
and asynchronous events from the Dynamic Vision Sensor
(DVS). Our scheme uses an image-based object detector
configured for people detection in order to provide the
location of a human operator in the image plane. Gestures
are detected by analyzing the evolution of events in the
region reported by the people detector. Gesture information
is updated using the event packages provided at high
frequency by ASAP [27], which adapts the event packaging
to transmit events efficiently. Detected gestures are used to
define the new position of the aerial platform in the scenario
using a state machine. Each state describes a hovering
position for the UAV. The state machine sends the new
waypoint position to the robot using the UAL abstraction
layer [28], an abstract interface developed to simplify the
interaction with aerial robots enabling UAV pose control
from different references such a waypoints or velocity
commands. Fig. |1| shows the block diagram of the proposed
vision-based gesture teleoperation scheme.
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Fig. 1: Block diagram of the event-based gesture teleopera-
tion system.

A. Event-based vision

Event cameras capture illumination changes in the form
of events. They respond to the pixel level changes of the log
photocurrent I(x,t) [3]. An event e = (x,t,p) with polarity
p is triggered at time ¢ in the pixel coordinates x = (u,v)
when the brightness variation in a pixel reaches a threshold
c

[logI(x,t) —logl(x,t — At)| > ¢, (1)

where At is the time since the last event was triggered,
i.e. at the pixel coordinates x. The events triggered by
the DAVIS346 camera are packaged using ASAP, which is
adopted to provide event packages at high frequency (>200
Hz).



This paper has been accepted for publication at the Workshop on Aerial Robotic Systems
Physically Interacting with the Environment (AIRPHARO), Biograd na Moru, 2021. ©IEEE 2021

B. People detection using frames

The proposed gesture detector relies in the YOLO [29]
object detector. Despite some event-based methods for peo-
ple detection have been reported, they still require additional
development to overcome frame-based methods in terms of
accuracy and real-time processing. YOLO returns a bounding
box of the detected object location and its detection prob-
ability. Bounding box information is preferred as it enables
enclosing the region occupied by the detected object instead
of a fixed area around the object. The method is configured
to use the last layer of the YOLO neural network to perform
only people detection. Fig. [2}a shows an example of a person
detected using frames from the APS sensor of the DAVIS346.

C. Event-based vision for gesture commands detection

The proposed method detects gestures using event infor-
mation and the reference bounding box provided by the
object detector. Our approach focuses on detecting gestures
from events triggered by the movement of the user limbs in
specific regions of the image. The set of detection regions
Z = |Zy, ...Z;) is defined using the bounding box coordinates
provided by the person detector. An event belongs to a
region Z; € R? if it lies inside its boundaries i.e., x €
Zi & Umin < U < Umazs Vmin < U < Umae. The influence
of events is determined by the event occurrence in each
region Z; by:

N
mi=> Y d(xk—x), ©)

k=0x€Z;

where xj, is the pixel coordinate of event k, N is the number
of events analyzed, § is the Dirac delta, and 7); is the event
accumulator of Z;. Thus, n; is the sum of all occurrences in
region Z;.

A total of four detection regions around the user body
define the locations on the image where the gestures are
expected to occur. Fig. 2}b shows an event-image by accu-
mulating events (white) during 25 ms within each of the
detection regions Z;, highlighted by squares of different
colors: Zj (orange), Z1 (green), Zo (pink), and Z3 (purple).

Gesture commands are defined using the event occurrence
in each region. Four types of commands are defined:

(@ (b)

Fig. 2: YOLO person detection and candidate gesture areas
during a teloperation mission: (a) person detected using
YOLOV3; and (b) candidate zones for gesture recognition.
Events are triggered due to the motion of the quadrotor while
flying in front of the user.

ngh’t lf 77A0 Z K, Mo Z A7
Left if M > K, > A,
Up if o+ > kKMot > A,
Down if 12+13 2> K,m2+n3 = A,

where A is the threshold of event occurrence, 7j; = n;/nr is
the normalized occurrence, 1 is the number of events in all
regions, and x € [0, 1] is the occurrence priority w.r.t. 7r.

IV. EXPERIMENTAL RESULTS

The proposed method was experimentally validated using
a real multirotor platform. In the experiments, a human
operator executed different gestures to teleoperate the robot
while flying autonomously. The experimental scenario was
the GRVC Robotics Lab indoor flight arena of the University
of Seville, which equips a motion capture system with
24 OptiTrack Prime®13 cameras that provided millimeter-
accuracy robot pose estimations.

The experimental platform consisted of a DJI Flamewheel
F450 frame with a PixRacer autopilot (see Fig. [3) that
equiped an on-board DAVIS346 event camera. A low-cost
Waveshare NVIDIA Jetson Nano 2GB Developer Kit board
was used for running the different modules of the proposed
scheme and for logging the results. ASAP was used on top of
the UAL abstraction layer using ROS Melodic and the PX4
low-level controller.

A total of 9 locations were selected to move the robot in
the flight arena. The robot performed autonomously during
the experiments while reacting to the human operator com-
mands. Fig. ] shows the experimental scenario with the 9
different locations in the scene. Each location describes a
state of the state machine along with the UAV position. Fig.
[5] shows the state machine used in the experiments. Tele-
operation gestures were used to command the robot among
the different states. The proposed method was extensively
validated by moving the UAV in different positions of the
scenario using the input gestures. Parameters x and A were
set to 0.65 and 250 by empirical testing. Fig. [f] displays

Fig. 3: Aerial robot based on DJI Flamewheel F450 equipped
with a DAVIS 346 event camera and a low-cost Waveshare
NVIDIA Jetson Nano 2GB Developer Kit used for on-board
computation.
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Fig. 4: Positions of the scenario to move the UAV given
the input detected gesture. States are laterally-inverted to
coincide with the operator perspective.

the trajectory followed by the UAV during an experiment in
which the robot was guided between waypoints E, B, D, F,
and H using the state machine along with the input gestures.
The UAV was capable of reaching each state after correctly
identifying the human operator gesture commands.

Fig.[7] shows some event images with the detected gesture
commands. It is worth noting that the proposed method
relies on event-by-event processing and, therefore, event
images are shown only for visualization purposes. In all
the performed experiments, the proposed method provided
gesture detections at an average frequency of 200H z, which
is 7 times higher than the typical rates obtained with frame-
based methods. Although the location of the human operator
in the image plane varied due to the pose configurations
at the different states, the proposed method was capable
of detecting the correct gesture even when the human was
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Fig. 5: Diagram of the state machine used during the
experiments.
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Fig. 6: Drone trajectory during a teleoperation task in the
X-Z plane. Red points represent the goal position at each
state while the blue line depicts the drone trajectory. The
waypoints are shown in black, and the set of commands that
led to those poses, in purple.

partially out of the field of view of the camera (as in Fig.
[7tc). During the experiments, we observed that the gesture
commands were identified in a reliable manner allowing
the human operator to effectively guide the multirotor UAV
between the different states. Hence, the experimental results
suggest the proposed approach is a valid solution for UAV
teleoperation and could be integrated in complex systems to
enhance human-robot collaboration.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a method for identifying gestures that
can be used to teleoperate a multirotor UAV. The method
relies on an hybrid approach combining event and conven-
tional cameras. While conventional cameras provide high
reliability at human detection, event-based vision provides
fast response at gesture recognition. The proposed method
has been evaluated on a real multirotor platform being cor-
rectly teleoperated and showing reliable gesture identification
accuracy.

This research has been conducted in the context of the
H2020 AERIALCORE project, which aims at developing
integrated cognitive robotic system for aerial co-working
with applications in the inspection and maintenance of large
linear infrastructures. Our future work will integrate the
proposed approach in an integral robotic solution to perform
human-robot collaboration activities at complex tasks such
as, for instance, inspecting electrical lines.
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