
D5.3 Virtual Computing Laboratories - SIGMA2 Report Public (M24 = September 2021)

Author(s) Andrey Kutuzov (AK), Sabry Razick (SR), Stephan
Oepen (SO), Abdulrahman Azab (AA)

Status Final

Version 1.0

Date 3 September 2021

Document identifier:

Deliverable lead AK (till the end of April 2021)

Related work package

Author(s) AK,SR,SO,AA

Contributor(s) AK,SR,SO,AA

Due date 3 September 2021

Actual submission date

Reviewed by Ilja Livenson (WP3), Adil Hasan (WP5)

Approved by

Dissemination level Public

Website https://source.coderefinery.org/nlpl/easybuild

Call

Project Number

Start date of Project

Duration

License CC-BY-4.0

Keywords

https://source.coderefinery.org/nlpl/easybuild

Abstract:

This deliverable presents a method to provide the researchers with a consistent software environment
across multiple computing facilities. The consistency is achieved by constructing a set of build scripts that
will install the software tools with the same configurations and versions with the same set of dependencies.
EasyBuild was selected as the framework to install and configure the software from source code, optimised
for the underlying system and expose them as software-modules with uniform naming across systems. This
way the researchers can bring their analysis pipelines and run on any of the systems just by loading the
same set of modules.

Copyright notice: This work is licensed under the Creative Commons CC-BY 4.0 licence. To view a copy of this licence, visit
https://creativecommons.org/licenses/by/4.0.
Disclaimer: The content of the document herein is the sole responsibility of the publishers and it does not necessarily represent the views
expressed by the European Commission or its services.
While the information contained in the document is believed to be accurate, the author(s) or any other participant in the EOSC-Nordic
Consortium make no warranty of any kind with regard to this material including, but not limited to the implied warranties of merchantability and
fitness for a particular purpose.
Neither the EOSC-Nordic Consortium nor any of its members, their officers, employees or agents shall be responsible or liable in negligence or
otherwise however in respect of any inaccuracy or omission herein.
Without derogating from the generality of the foregoing neither the EOSC-Nordic Consortium nor any of its members, their officers, employees or
agents shall be liable for any direct or indirect or consequential loss or damage caused by or arising from any information advice or inaccuracy or
omission herein.

Introduction

The Nordic Language Processing Laboratory (NLPL) is a collaboration of university research groups in Natural

Language Processing (NLP) in Northern Europe with a vision to implement a virtual laboratory for

large-scale NLP research. In this project a number of software packages and software pipelines are used. As

the participants come from different institutes and use different computational services, the possibility to

install these pieces of software in a uniform way has been a requirement. The aim of this sub-task as part of

the NLPL use case in EOSC-Nordic is to investigate the suitability of the EasyBuild1 build system.

We would like to organize provisioning of software for NLP research in a manner that makes it possible and

cost-efficient to maintain the exact same software stack on multiple systems. Here, systems initially mean

different High Performance Computer (HPC) systems, e.g. Puhti in Finland and Saga in Norway; in 2021, we

anticipate to additionally support the LUMI2 environment.

Description of the platform components

EasyBuild

EasyBuild is a software build and installation framework that allows you to manage (scientific) software on

HPC systems in an efficient way. Our experience shows its suitability for the deployment of reproducible

software environments for complex NLP tasks across different HPC systems, including multi-GPU and

multi-node setups. It has also been successfully used in teaching deep learning for NLP in 2021 by the

Language Technology Group at the University of Oslo3

Toolchains (compiler toolchains)
A typical toolchain consists of one or more compilers, usually put together with some libraries for specific

functionality, e.g., for using an MPI stack for distributed computing, or which provide optimized routines for

commonly used math operations, e.g., the well-known BLAS/LAPACK/MKL APIs for linear algebra routines.

We have selected the following tool chains:

3 "IN5550 – Neural Methods in Natural Language Processing ... - UiO."
https://www.uio.no/studier/emner/matnat/ifi/IN5550/. Accessed 3 Jun. 2021.

2 "LUMI consortium - LUMI - LUMI supercomputer." https://www.lumi-supercomputer.eu/lumi-consortium/. Accessed
3 Jun. 2021.

1 "EasyBuild." https://easybuild.io/. Accessed 3 Jun. 2021.

https://www.uio.no/studier/emner/matnat/ifi/IN5550/
https://www.lumi-supercomputer.eu/lumi-consortium/
https://easybuild.io/

Tool chain Components

gomkl
GCC, OpenMPI, Intel Math Kernel Library (IMKL) 2019.1.144 and Intel FFTW

wrappers

foss GCC, OpenMPI, OpenBLAS 0.3.7

Deliverables and Procedures

Overall description
The NLPL virtual lab is technically a set of so called easyconfigs: description files (with the *.eb extension)
which EasyBuild uses to actually build and deploy the corresponding software pieces as loadable modules.
Modules are dependent on each other and accompanied by a set of convenience scripts and instructions.
All the files related to this project are available as a git repository at:

https://source.coderefinery.org/nlpl/easybuild

Modules which are directly NLP-related are named with the “nlpl-” prefix, for example:

nlpl-nvidia-bert-tf-20.06.08-gomkl-2019b-Python3.7.4.

All the modules are provided in two mutually exclusive versions: for the foss toolchain and the gomkl
toolchain (these strings are always in the name of the module). If a system is equipped with AMD CPUs,
foss is the only option; if a system is equipped with Intel CPUs, one can try both toolchains. As a rule, gomkl
is somewhat faster than foss for typical NLP loads.

Rationale

In the approach described here, software pieces with their dependencies are compiled from source code
on the system it will be running. This is in contrast to using pre-compiled binary installations (including
standard Python wheels and conda packages). This allows fully enabling architecture-specific optimizations
and a broad choice of optimized libraries (e.g. Intel MKL). As a result, one observes better performance in
comparison. However, this process is cumbersome due to:

1. The need to locate the source code of the software components;
2. The need to discover all the dependencies so the software can be compiled and run on any system,

regardless of its current configuration.
3. Steps 1 and 2 need to be performed recursively for all the dependencies;
4. The need to figure out the configuration options and compilation flags;
5. The need to test the installation;
6. The need to deploy the software in a consistent manner and need to construct a method for

different versions of the software to live side-by-side;
7. The need for a way to present the available software components and versions to users so that the

correct software package could be selected;
8. Once selected set the users runtime environment in an automatic and consistent way so that all

https://source.coderefinery.org/nlpl/easybuild

expected components are at users disposal without additional steps; The need for a method to
avoid conflicting components being loaded at the same time.

The EasyBuild system addresses all the above issues by providing a method to create an automated build
process with configuration files with block scripts that handle them. Once the configuration files and
easyblocks are created, the end user needs only to invoke install command, EasyBuild will take care of the
rest.

The following benefit can be seen in this approach to other solutions, like providing a prebuilt container
image or a precompiled binary distribution.

1. This allows to fully enable architecture-specific optimizations;
2. Possibility for the users to make changes or try with different versions of dependencies without

rebuilding everything as an image.
3. . Install dependencies in userspace instead of systemwide, preventing the need for root access and

changes that might affect other users.
4. If distributing a container image or a container build file, someone needs to install the software at

least once at some point. Thus EasyBuild can be a part of this containerization process, while the
opposite is not true. Which means that when started by creating a method to properly install the
software, it makes it possible to move to a distribution method like Docker or Conda later on. .It is
difficult to build the process flow from a patched up container image, but if the process flow is
created first then you can build a container using it.

5. The analysis environment, more often than not, involves multiple software packages. EasyBuild
allows users to use multiple software packages at the same time and make sure that only
compatible versions are loaded.

6. Solutions like Docker or Singularity depend heavily on those software being provided by the
hostsystem. Even when they are provided, modifying a container image may not be possible on the
system due to permission policies. Which means the user needs to do any modifications on a
personal laptop and bring in the images only for runtime.

7. Container only solutions would require some knowledge on for example, how to access data from
within a container and mount the home directory etc.

At the same time EasyBuild has the following disadvantages compared to Container based solutions.

1. When compiling on some systems there might be unexpected issues which never appear in the
system where the process was designed. When using a container there is no need to compile it on
the host system so this issue never arises.

2. Container images are easily disseminated. If there is an update to EasyBuild installed software, this
needs to be compiled on all the systems it is installed on.

3. EasyBuild build system assumes that the host system has some module system installed and
configured (e.g. Lmod)

4. Long term reproducibility on all systems not guaranteed when using the EasyBuild approach. For
example many easybuild procedures do not work on ARM processor,

NLPL Virtual Laboratory is packaged to meet the needs of a typical NLP user as much as possible. We also
separate different packages from each other: for example, TensorFlow 1.15.2 is not dependent on any
particular SciPy version. This means that one can seamlessly upgrade SciPy without having to rebuild
TensorFlow. In most cases, the installation of a particular piece of software is completely straightforward
and automated. For example, the following command will install TensorFlow 2.3.2 for the gomkl toolchain
and all its required dependencies:

eb --robot easyconfigs/nlpl-tensorflow-2.3.2-gomkl-2019b-cuda-10.1.243-Python-3.7.4.eb

All the necessary source archives will be downloaded automatically. Note that some software packages
require manually downloading binary blobs from their websites after registration. Virtual Laboratory cannot
do this, so the user is responsible for putting the required archives in the blobs subdirectory.

Containers
So far, NLPL has shied away from using containers as the sole solution, in part simply because of
lacking support on some of the target systems (notably Puhti and Mahti4), in part because of a concern
for reduced transparency from the user point of view. Also, containerizing individual software modules
severely challenges modularization: there is no straightforward way to ‘mix and match’ multiple
containers into a uniform process environment, due to the fact that each container has its own file
system. NLPL has dependency trees between modules
However, provisioning the full NLPL software (and possibly data) environment inside a container may
offer some benefits, for example compatibility with cloud environments, increased uniformity across
different systems, and potentially longer-term reproducibility. In this view, modularization would be
obtained within the container, just as it does in the current environments on, for example, Puhti5, Saga6.
At the same time, the current solution where the software environment is setup using the EasyBuild
framework can be used as part of the container image generation process.

Storage requirements
NLPL Virtual Laboratory is essentially a set of lightweight easyconfigs, a set of modules created from them,
and a set of software packages built according to these easyconfigs. Fully compiled laboratory (with versions
of software for both foss and gomkl toolchains) takes up approximately 20 Gigabytes of disk space.

Testing recipe
We have prepared a step-by-step guide to deploy the NLPL Virtual Laboratory on any HPC cluster. After all
the steps are done, the user has a system which is able to train a toy BERT7 model on a small Norwegian
dataset using GPUs at hand.

The full recipe is available at http://wiki.nlpl.eu/index.php/Eosc/pretraining/nvidia.

Author contributions

The following table summarises the specific contributions by each author.

7 https://github.com/google-research/bert

6 https://documentation.sigma2.no/hpc_machines/saga.html

5 https://research.csc.fi/-/puhti

4 https://docs.csc.fi/computing/overview/

http://wiki.nlpl.eu/index.php/Eosc/pretraining/nvidia
https://github.com/google-research/bert
https://docs.csc.fi/computing/overview/

Participants Activity Description

AA Strategic planning Long term plan and integration with other work packages

SO
Create Git

repository

For collaborative development and issue tracking.

https://source.coderefinery.org/nlpl/easybuild

SR

Investigate a tool

chain to be used

used

Selecting an appropriate tool chain upfront is important for the

following reasons.

1. Make sure all dependencies explicitly use the same

compiler tool chain, so the tool chain can be replaced

without ambiguity.

2. The compilers used should be available to all participants

without any restriction like license and vendor locking.

3. Should include optimizations routines for math

operations.

4. Should support parallel executions in shared and

distributed memory setups.

SR, AK, SO

Create EasyBuild

procedure for

selected software

EasyBuild procedure was developed for Tensorflow 2.3.2 and

Tensorflow 1.15.2 with all dependencies, using foss and gomkl

tool chains

AK

Create test cases

and performance

comparison

Make sure the intended performance enhancements are active

and performance can be compared across systems. The results of

our benchmark tests are available at

http://wiki.nlpl.eu/index.php/Eosc/easybuild/benchmark

AK

A common stack

of NLP modules

in a fully

automated

EasyBuild

configuration

http://wiki.nlpl.eu/index.php/Eosc/pretraining/nvidia

AK
Installing on Saga

and Puhti
http://wiki.nlpl.eu/Infrastructure/software/easybuild

http://wiki.nlpl.eu/index.php/Eosc/easybuild/benchmark
http://wiki.nlpl.eu/index.php/Eosc/pretraining/nvidia

NLPL Virtual Laboratory modules
Following table lists the modules built during this deliverable. dules (except toolchains) exist in two
versions: for the foss and gomkl toolchains. The module name is in accordance with the EasyBuild naming
convention and shows the name of the software, version and the tool chain used. All modules would use
the CPUs present in the system in an optimal way, where the module is installed. Some modules as
indicated would use the GPUs if the GPUs are present on the system and would fall back to using CPUs if
absent. Modules compiled with OPenMPI would use the message passing interface to use distributed
memory, which means it can utilize multiple computer nodes during runtime

Module name Uses CPU Uses GPU Uses OpenMPI Role

imkl-2019.1.144-gompi-2019b ˅ ˅ Intel Math Kernel Library
required for the gomkl
toolchain

gomkl-2019b ˅ ˅ gomkl toolchain itself

cuDNN-7.6.4.38-CUDA-10.1.243 ˅ ˅ GPU library for deep
learning

NCCL-2.6.4-CUDA-10.1 ˅ ˅ ˅ Multi-device GPU
training drivers

nlpl-cython-0.29.21 ˅ ˅ Required for Numpy

nlpl-numpy-1.18.1 ˅ ˅ Central array-processing
library for Python

nlpl-scipy-ecosystem-2021.01 ˅ ˅ A collection of
mathematical software8

typically used in NLP:
scipy, matplotlib, etc

nlpl-python-candy-2021.01 ˅ Various small Python
packages required for
other modules

nlpl-nlptools-2021.01 ˅ Growing collection of
small NLP tools without
many dependencies.
Currently includes conllu
and seqeval.

nlpl-gensim-3.8.3 ˅ ˅ Popular Python library
for operations with word
embeddings and topic

8 https://scipy.org/

https://scipy.org/

modeling

nlpl-nltk-3.5 ˅ Popular Python library
for NLP operations.
Includes data repository
with corpora, datasets,
treebanks and lexical
databases.

nlpl-bazel-0.26.1 ˅ Building system,
required for TensorFlow

nlpl-bazel-3.4.1 ˅ Building system,
required for TensorFlow

nlpl-h5py-2.10.0 ˅ ˅ Python interface for
HDF5

nlpl-h5py-3.1.0 ˅ ˅ Python interface for
HDF5

nlpl-horovod-0.20.3 ˅ ˅ ˅ Distributed training
framework for
TensorFlow and PyTorch

nlpl-tensorflow-1.15.2 ˅ ˅ ˅ TensorFlow 1

nlpl-dllogger-0.1.0 ˅ Logging tool, required
for NVIDIA BERT
implementation

nlpl-nvidia-bert-tf-20.06.08 ˅ ˅ ˅ NVIDIA BERT
implementation

nlpl-tensorflow-2.3.2 ˅ ˅ ˅ TensorFlow 2

nlpl-pytorch-1.6.0 ˅ ˅ ˅ PyTorch

nlpl-tokenizers-0.10.2 ˅ Fast tokenization library,
required for
Transformers

nlpl-transformers-4.5.1 ˅ ˅ ˅ HuggingFace
Transformers, current
tool of choice for NLP
practitioners.

Summary
In the research software world, it is natural that prototype software and software pipelines
developed and used are sometimes tightly coupled to local systems, without much planning on
distributing them. This was the case with The Nordic Language Processing Laboratory (NLPL) group
as well. For example, they had pipelines setup on the Abel compute cluster at University of Oslo,

which they needed to migrate away after it was decommissioned. During this project we have
investigated methods to make these pipelines portable. Initial suggestion was to focus on
container technology like Docker. The three main issues with that approach were identified. First,
when creating a container, the software still needs to be installed and configured, this involves
locating, downloading the software, preprocessing, locating and acquiring dependencies,
configuring the correct compilation environment and compilation. Secondt, to avoid the first
caveat, if a static container image is composed from a combination of precompiled binaries, system
packages and manual tweakings that can not be reproduced, we will endup with a static image
that would take a tremendous effort, even to make a very slight change. Third, we do not have a
consistent container policy across HPC systems, which makes it difficult to create one recipe for all.

Therefore, the strategy described here to create a set of EasyBuild recipes to commision the
pipelines was followed. . This involved creating or adaptingEasyBuild recipes that describe the
requirements mentioned above as the first reason for not using container strategy as the only
solution. The recipes are distributed as a deliverable hosted on CodeRefinery GitLab service9. If
EasyBuild is configured on the target system, these recipes will automatically perform all steps
from locating the software to creating a module file, when loaded sets the users path correctly to
point to the installation. In addition as compatible dependency trees created for different
pipelines users can mix them as it suits. At the same time, different versions of the same software
can be installed alongside and the users can select which one is active at a given instance. The
installed software would be optimized for the underlying system as well, which makes the shared
resource usage optimal, especially on HPC systems.

If the EasyBuild is not configured on the target system, it is possible to fabricate a container recipe
with EasyBuild as a component and then use the EasyBuild recipes to take care of the rest of the
process. Another option is to maintain a conda repository with precompiled platform specific
binaries, that are created using the EasyBuild recipes developed during this deliverable.

At the end we have demonstrated a portable pipeline distribution strategy, without restricting
ourselves to one technology. This deliverable thus solves the portability issue of the pipelines
used by The Nordic Language Processing Laboratory (NLPL) and facilitates realizing their vision to
implement a virtual laboratory for large-scale NLP research.

We would like to organize provisioning of software for NLP research in a manner that makes it
possible and cost-efficient to maintain the exact same software stack on multiple systems. Here,
systems initially mean different High Performance Computer (HPC) systems, e.g. Puhti in Finland
and Saga in Norway; in 2021, we anticipate to additionally support the LUMI10 environment.

10 "LUMI consortium - LUMI - LUMI supercomputer." https://www.lumi-supercomputer.eu/lumi-consortium/. Accessed
3 Jun. 2021.

9 https://source.coderefinery.org/

https://www.lumi-supercomputer.eu/lumi-consortium/
https://source.coderefinery.org/nlpl/easybuild/-/issues/1

