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Abstract 

Perovskites as a semiconductor are of profound interest and arguably, the investigation on the 

distinctive perovskite composition is paramount to fabricate efficient devices and solar cells. 

We probed the role of anion and cations and their impact on optoelectronic and photovoltaic 

properties. We report a machine learning approach to predict the bandgap and power conversion 

efficiency by employing eight different perovskites compositions. The predicted solar cell 

parameters validate the experimental data. The adopted Random forest model presented a good 

match with high R2 scores of >0.99 and >0.82 for predicted absorption and J-V data sets 

respectively and showed minimal error rates with precise prediction of bandgap and power 

conversion efficiencies. Our results suggest that the machine learning technique is an innovative 

approach to aid the preparation of perovskite and can accelerate the commercial aspects of 

perovskite solar cells without fabricating working devices and minimizes the fabrication steps 

and save cost. 
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1. Introduction 

Perovskites as semiconductors have gained enormous interest in diverse scientific fields, due 

to their ease of processing, tuneability, and unparalleled semiconducting features1. Hybrid 

perovskite is widely being used in a variety of applications including solar cells, light-emitting 

diodes, lasers, and photodetectors due to its longer electron and hole diffusion lengths and 

higher carrier mobility, and wide tunable bandgap (Eg).[1] The perovskite structure is 

represented by ABX3
[2,3], where A is an organic cation, B is metal, and X is a halogen anion 

(Figure 1a). The rapid astonishing advances in the power conversion efficiency (PCE) of 

perovskite solar cells (PSCs) led to a rise in the PCE from 3.8 to 25.5% and currently occupies 

the center stage for photovoltaic research and development.[4,5] In the current decade, the 

perovskites-based semiconductors have witnessed a surge of increment in terms of scientific 

publications and are being intensively investigated.[1].  

Routinely, photo-active perovskites are developed through a trial-and-error method, where the 

target properties are achieved by continual synthesis and characterizations. To accelerate the 

materials discovery path and overcome the laborious and expensive effort, computational 

approaches like Monte Carlo simulation,[6] molecular dynamics[7], and Density functional 

theory[8] (DFT) are being used to compute the materials that can deliver promising 

optoelectronic properties. Nevertheless, such simulation methods are designed for specific 

systems and their employment in a wide variety of materials makes the task demanding along 

with its high cost and tedious process. In this context, machine learning (ML) has played a 

substantial role to discover high-performance materials.[9,10] ML is a data-driven approach that 

combines with experimental datasets to predict concealed information and trends2. ML 

approaches established as influential for properties and performance prediction of materials, 

which in turn can expedite the material exploration by minimizing the tasks for proposing 

potentially promising structures.[11] The accuracy of the ML approach is comparable with the 

DFT calculations and arguably viable to design the materials even from small data sets, while 

the small and uneven distributions are insufficient for DFT calculations.[12,13] The bandgap 

tuning and prediction are of significance for perovskite applications in light emission and 

harvesting. The bandgap of the perovskites can be varied from 1.5 − 3.2 eV with the anions 

selection, varying composition, and the A-site cations (Cs, formamidinium (FA), 

methylammonium (MA)[3], etc. A random forest (RF) model has been used to predict the 

bandgap of Li and Na-based perovskite using 18 physical descriptors, and 9328 types of 

materials with ideal bandgaps to capture solar light were estimated.[14] Similarly, a linear 

regression model was developed to predict the bandgap of the mixed halide hybrid perovskite 
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with higher accuracy (RMSE of 0.05 eV)3. Zheng and co-workers compared different ML 

models, ie, RF, Ridge regression (RR), and support vector regression (SVR), to predict four 

target variables including perovskite bandgap from seven descriptors, and the authors noted the 

high accuracy of the RF model.[15] Compositional engineering of the perovskite is an effective 

approach to fabricate efficient PSCs. It is imperative to track how the cationic and anionic 

engineering of perovskite will influence the optical bandgap and impact device performance. 

Unraveling such, information will be crucial for understanding and is paramount to predict or 

design materials with added merits. To our knowledge, most of the ML approaches for PSCs 

have been carried out using the literature data as the input variables. Arguably, the data from 

different laboratory conditions will increase the error factor and may end up with less accuracy 

in the prediction. Here we use the descriptor data sets obtained from a single (our) laboratory 

conditions which could improve the performance of the ML model.   

Here, we applied the ML approach in two different steps: (i) to predict the bandgap and 

(ii) PSCs performance by employing eight different perovskites. Firstly, we derived the 

bandgap of perovskites from Tauc plots (UV-Vis spectroscopy) using both the experimental 

and ML approaches. Secondly, we built the model for J-V spectra prediction to evaluate the 

PSCs performance. Our work suggests solar cells performance prediction and eliminates the 

need to fabricate working devices, which in turn save costs and avoid environmental hazards.  

2. Experimental 

Materials: All chemicals were purchased from Sigma Aldrich unless and otherwise stated and 

were used as received without any further purification. CsI, MA, FA, PbI2 was procured from 

TCI, while Chlorobenzene (CB), isopropanol (IPA, 99.9 %), anhydrous dimethyl sulfoxide 

(DMSO, 99.8 %), and N, N-dimethylformamide (DMF. 99.8%) were purchased from Acros 

Organics. Perovskite precursors were purchased from Dyesol, while PbI2 and CsI2 were 

procured from Tokyo Chemical Industry (TCI). [60]PCBM >99.5 % and Bathocuproine (BCP) 

were purchased from Solenne BV and TCI respectively.   

Perovskites: Eight different types of perovskites layers were deposited as follows 

RbCsFAMAPI: The quadruple-cation perovskite precursor solution was prepared using FAI 

(1 M), PbI2 (1.1 M), MABr (0.2 M), and PbBr2 (0.22 M) in 1 mL of anhydrous solvents mixture 

of DMF and DMSO with 4:1 (v/v) ratio. 42 μL of 1.5 M CsI solution and 42 μL of 1.5 M RbI 

solutions in DMSO and DMSO: DMF (1:4 v/v) solvents were added to the above solution and 
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stirred for 1 h. The precursor solution was spin-coated in a two-step spin-coating program (1000 

rpm and 6000 rpm for 10 and 30 s, respectively). 112 μL of chlorobenzene was dripped at 10 s 

before ending the second spin step followed by annealing at 100 °C for 1 h. 

CsFAMAPI: The triple-cation perovskite [Cs0.1(FAPbI3)0.81(MAPbBr3)0.09] precursor solution 

was prepared containing CsI (0.10M), FAI (1.05 M), PbI2 (1.24 M), MABr (0.12 M) and PbBr2 

(0.12 M) in 1mL of anhydrous solvents mixture of N,N-dimethylformamide (DMF) and 

dimethylsulfoxide (DMSO) with 4:1 (v/v) ratio. The precursor solution was spin-coated in a 

two-step spin-coating program (1000 rpm and 6000 rpm for 10 and 30 s, respectively). 112 μL 

of chlorobenzene was dripped at 10 s before ending the second spin step followed by annealing 

at 100 °C for 1 h. 

FAPI+MAPBr: Precursor solution was prepared by mixing FAI (1 M), PbI2 (1.2 M), MABr 

(0.2 M), and PbBr2 (0.2 M) in 1mL of anhydrous solvents mixture of N, N-dimethylformamide 

(DMF), and dimethylsulfoxide (DMSO) with 4:1 (v/v) ratio. The precursor solution was spin-

coated in a two-step spin-coating program (1000 rpm and 6000 rpm for 10 and 30 s, 

respectively). 112 μL of chlorobenzene was dripped at 10 s before ending the second spin step 

followed by annealing at 100 °C for 1 h. 

MAPI: The MAPbI3 precursor solution was realized by dissolving an equimolecular amount 

of MAI and PbI2 (1.2M) in DMSO solvent. The precursor solution was spin-coated in a two-

step spin-coating program (1000 rpm and 4000 rpm for 10 and 30 s, respectively). 112 μL of 

chlorobenzene was dripped at 10 s before ending the second spin step followed by annealing at 

100 °C for 1 h. 

FAPI and CsFAPI: Instead of conventional precursor materials, pre-synthesized non-

perovskite yellow powders were employed as the precursor materials for FAPI and CsFAPI 

precursor solution, and the powder precursor synthesis was reported in our previous work4.1.25 

M precursor solutions were prepared by dissolving 791.25 mg of -FAPbI3 and 800 mg of δ-

CsFAPbI3 powders in a 1 mL anhydrous solvent mixture of DMF and DMSO with a 4:1 (v/v) 

ratio. The FAPI and CsFAPI perovskites were fabricated by spin coating the precursor solutions 

at 1000 for 5 s and 5000 rpm for 20 s. 100 μL chlorobenzene was dripped at the final 5 s of 

spinning and the FAPI and CsFAPI thin films were annealed at 150 °C for and 80 °C 

respectively. 
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MAPI-Cl: The MAPbI3-xClx perovskite films were fabricated by a two-step deposition 

method16. The PbI2 solution was prepared by the dissolution of PbI2 in DMF and stirred at 70 

°C for 12 h. The mixed cation solution was prepared by dissolving MAI and MACl with the 

concentrations of 50 mg and 5 mg/mL in 2-propanol (IPA), respectively. The PbI2 films were 

spun at 4,500 rpm for 20 s using warm PbI2 solution at 70 °C, and then a drop of mixed cation 

solution was dropped on the center of spin-coated film for 30 s. The as-prepared samples were 

annealed at 100 °C for 3 min. 

FAMAPI-Br: The FAMAPbI3-xBrx films were also fabricated by a two-step deposition 

method. Firstly, 1.3 M PbI2 dissolved in a mixed solvent (DMF/DMSO = 9.5/0.5) was dissolved 

at 70 °C for overnight. The warm PbI2 was spin-coated at 4000 rpm for 20 s, then a drop of the 

mixed organic solution with FAI/ MABr/ MACl =60 mg/ 6 mg/ 6 mg) in 1 mL isopropanol was 

added on the spinning substrate for 30 s. The as-prepared samples were annealed at 150 °C for 

15 min under ambient conditions with 30-40% RH. 

Device fabrications: Both types of architects were adopted for device fabrication n-i-p type: 

The solar cells were fabricated on commercial laser-etched FTO glass electrodes (10 Ω/sq, 

NSG). All of the electrodes were cleaned by sonication in sequence with Hellmanex II solution, 

Milli-Q water, acetone, and 2-propanol for 20 min each (pre-cleaning). The cleaned substrates 

were dried with a stream of compressed air and were further treated by UV-ozone for 15 min 

before device fabrication. For the n-i-p (1) PSC, The SnO2 electron transporting layer is 

prepared by spin-coating the 3% wt% SnO2 nanoparticles (Alfa Aesar) at 5, 000 rpm for 30 s, 

and then post-heated at 150 °C for 15 min. For the n-i-p (2), compact TiO2 (c-TiO2) layer was 

deposited using spray pyrolysis at 500 °C employing 1 mL of titanium diisopropoxide 

bis(acetylacetonate) precursor solution (75% in IPA) in 19 mL of pure ethanol using oxygen as 

the carrier gas, followed by annealing for another 30 min at 500 °C to acquire the anatase phase. 

SnO2 quantum dots (SnO2-QD) synthesized by a previously reported method17was spun coated 

on FTO:c-TiO2 substrate followed by annealing at 150 °C for 45 minutes. On the other hand, 

for the n-i-p (3), the TiO2 mesoporous (mp-TiO2) layer (1:8 w/v in ethanol) was spin-coated 

over FTO:c-TiO2 substrate at 4000 rpm with 2000 rpm/s acceleration for 30 s, followed by 

progressive heating steps until 500 °C for 30 min. Then the substrates were treated with UV-

ozone for 30 min and transferred immediately to the argon-filled glove box at the room and the 

different perovskite layers were deposited as discussed above. 
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For the HTM layer, 70- and 60-mM Spiro-OMeTAD was prepared by dissolving the desired 

amount of material in 1mL chlorobenzene. Doping was achieved by the addition of 4-tert-

butylpyridine (38.4 and 28.8 µL for 70 and 60 mM, respectively) and 

bis(trifluoromethylsulfonyl)imide lithium salt solution with a concentration of 520 mg/mL 

(21.1 and 17.5 µL for 70 and 60 mM respectively). 60 mM Spiro-OMeTAD solution was used 

as HTM for FAPI and CsFAPI perovskites and 70 mM solution was employed for all other 

perovskites. 35μL of HTM solution was dropped on the perovskite layer and were spin-coated 

at 4000 rpm for 20 s. Au electrode (80 nm) was thermally evaporated under a pressure of 2 × 

10-6 Pa to complete the device fabrication. 

p-i-n type: The PEDOT-PSS film was spin-coated on the pre-cleaned and UV-Ozone treated 

ITO substrates at 5,000 rpm for 30 s in air, and post-heating at 150 °C for 15 min.  ITO/PEDOT-

PSS substrates were transferred to the glove box for the perovskite layer deposition. The 

electron transporting layer (10 mg/mL PC61BM in chloroform) was spin-coated on the 

perovskite layer at 1,200 rpm for 30 s, then the thin BCP film was spin-coated on the samples 

at 5,000 rpm for 30 s using 0.5 mg/mL isopropanol. Finally, the 100 nm thick Ag electrode was 

deposited by thermal evaporation.  

 
Prediction Models 

ML can unravel conceal patterns and generate representative models from the data without 

assigning specific instructions to the machines.[18] ML focuses on prediction by employing 

general-purpose learning algorithms to uncover patterns in occasionally complex and 

cumbersome data sets. Even when data is collected without a tightly controlled experimental 

design and in the context of complex nonlinear interactions, it returns effective results. On the 

other hand, statistical approaches emphasis on inferences that are performed through the design 

and fitting of a project-specific probability model.[19] In the chemical processes, typically each 

experiment builds data to explore and the task of revealing the patterns become demanding 

when the number of experiments and data set increases. Arguably, ML develop as an efficient 

means to monitor the data in the chemical processes. Numerous ML-based approaches can be 

used for processing different data sets from simple to complex. Random Forest consists of 

several individual tree structures is a collective method that could be run for different tasks such 

as classification and regression. When the workload is to classify, the random forest interprets 

each individual tree and makes decisions based on majority voting while the mean or average 

of the individual trees is returned for the regression task. The basic principle behind random 

forest is the wisdom of crowds which is a simple yet effective approach. Any of the individual 
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constituent models would be outperformed by a large number of reasonably uncorrelated trees 

working as a committee. The key point is to have low correlation between the trees in order to 

have a more generalizable model. Therefore, the RF is an attractive model that validates its 

performance with a flexible structure. In this method, we constructed randomly more than one 

decision tree (Figure 1b), to allow robust prediction and the default hyperparameter 

configuration employed is already defined by sklearn library. For instance, number of trees, 

min_samples_split and min_samples_leaf was selected as 100, 2, and 1 accordingly while 

fixing the seed of random_state to have reproducible model. Combining multiple randomly 

structured decision trees into one model results in enhanced predictions.[20] 

 

Figure 1. a) Crystal structure of hybrid organic-inorganic perovskite, b) illustration of the 
Random Forest Model, and c) schematic representation of PSCs employed in the study. 
 

 

To accurately evaluate model performance we adopted both k-fold cross-validation and the 

typical train test split. The presented datasets (Table 1) were firstly split into 80% train set and 

20% test set and k-fold cross-validation were applied on the train set to note the overfitting. The 

final evaluation measure was obtained on a 20% test set. For this, we split the data into k = 5 
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pieces and, at each iteration, k-1 number of sets are employed to train the model while the 

remaining piece is utilized for the evaluation.[21].  

 

Table 1. Train/test size for UV and J-V datasets   

Material 
UV (# of samples) J-V (# of samples) 

Train Set Test Set Train Set Test Set 

FAPI 180 46 56 15 

CsFAPI 183 46 74 19 

RbCsFAMAPI 183 16 76 20 

CsFAMAPI 187 47 76 19 

FAPIMABr 183 46 76 19 

MAPI 186 47 76 19 

MAPICI 152 39 40 10 

FAMAPIBr 183 46 77 20 

 

 

To measure the success of the regression models certain performance metrics are required such 

as R2 and root mean squared error (RMSE). When computing the prediction error, RMSE 

assigns equal weight to each data point, whereas R2 is more sensitive to outliers. R2 score in 

equation 1 was chosen as a performance indicator in this study to also consider outliers in the 

data. 

𝑅ଶ = 1 −
∑ (𝑦௜ − 𝑦௣௥௘ௗ)

ଶ௡
௜ୀଵ

∑ (𝑦௜ − 𝑦௠௘௔௡)
ଶ௡

௜ୀଵ

 Equation 1 
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Figure 2: The schematic diagram and inputs, outputs, and processing parameters. 

 

2. Results and Discussions 

The functional relationship between descriptors (UV-Vis absorption, J-V, and EQE curves) and 

the target variables (optical bandgap and photovoltaic parameters) has been decoded with the 

RF regression method. To probe the influence of A and X site variations in the lead halide 

perovskites, we selected eight different perovskites (Figure 1a) including the typical and most 

studied MAPbI3, mixed perovskites, and the FAPbI3 for analysis. Hereafter we have named the 

different perovskite structures as RbCsFAMAPI [Rb0.5Cs0.5(FAPbI3)0.83(MAPbBr3)0.17], 

CsFAMAPI [Cs0.1(FAPbI3)0.81(MAPbBr3)0.09], CsFAPI [Cs0.1FA0.9PbI3], FAPI [FAPbI3], 

MAPI [MAPbI3], MAPI-Cl [MAPbI3-xClx], FAPI+MAPBr [(MAPbBr3)0.15(FAPbI3)0.85] and  

FAMAPI-Br [FAMAPbI3-xBrx]. 

 

Optical properties prediction  

We evaluated the influence of stoichiometric alterations on the optical properties through 

absorption spectroscopy. The experimental and predicted UV-Vis absorption spectra of eight 

different perovskites are shown (Figure 3). From the experimental data, the absorption onsets 
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of RbCsFAMAPI, CsFAMAPI, CsFAPI, FAPI, MAPI, MAPI-Cl, FAPI+MAPBr, and  

FAMAPI-Br were calculated as ~777 nm, ~790 nm, ~812 nm, ~848 nm, ~ 804 nm, ~784 nm, 

~778 nm, ~835 nm, respectively. The absorption onset of perovskites has a strong negative 

correlation with the electronegativities of the halide components, i.e., the higher electronegative 

component shows lower absorption onset. The blue-shifted absorption onset of MAPI-Cl 

compared to the MAPI suggests the Cl inclusion. On the other hand, the A site substitutions 

were evaluated with their lattice constants and represent a positive correlation with the 

absorption onset. [22]. The extended absorption onset of FAPI than MAPI has been attributed to 

the higher lattice constant of FA over MA and expectedly, the other mixed perovskites showed 

the absorption onset within the range. However, in the case of quadruple-cation, with the 

addition of Rb cation (higher lattice constant), the absorption onset of the CsFAMAPI layers is 

shifted to a lower wavelength (~13 nm), suggesting a higher bandgap. We ascribed this blue 

shift related to the surface of perovskite due to band filling and/or reduced surface traps.[23] The 

performance of the RF model is indicated with a high R2 score (Table 2), all the studied 

perovskites showed an exceptional R2 value of >0.99 indicating the strong correlation between 

predicted and experimental curves. After evaluating the R2 scores of each material, to 

demonstrate the model’s generalization performance, the average R2 score and standard 

deviation based on the eight perovskites were calculated as 0.9979 and 0.0021 respectively. 

The high average R2 score and low standard deviation suggest the remarkable efficacy of the 

RF model over various material types. Further, the Tauc plots were used on experimental and 

predicted datasets to estimate the optical bandgap of perovskites, by plotting the (αhν) 2 vs hν[24], 

(Figure S1-S8) and the resultant Eg values are tabulated (Table 2).  
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Figure 3. Measured (blue) and RF model simulated (red) UV-Vis spectra of perovskites layers 

for (a) RbCsFAMAPI, b) CsFAMAPI, c) FAPI+MAPBr, d) MAPI, e) FAPI, f) CsFAPI g) 

MAPI-Cl, and h) FAMAPI-Br. 

 

The predicted bandgap derived from the UV, and the RF model, were consistent and displayed 

a low deviation of <1.4 % from the experimental results. In our case, MAPI-Cl was predicted 
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with the higher success (0.00062 deviations) while FAMAPI-Br prediction yields the 

comparatively least success with a 0.01321 error rate from all the samples. Notably, MAPI 

yielded a top R2 score, however, it also showed comparatively higher deviation on bandgap 

prediction since the RF model was obtained by the random selection of data points in the UV-

Vis dataset. Bandgap calculations from the absorption data set can deviate if the randomly 

selected data points are not typically on the linear region. Investigating eight different 

perovskites with A and X sites variation, we suggest the RF model can be an appropriate model 

to accurately predict the optical bandgaps of lead halide perovskite. These findings signal the 

rational designing of the perovskite structure to push the performance.  

 

Table 2. Performance and optical bandgap (Eg) values derived from measured and RF model-

simulated data set for different perovskites.  

Perovskites types R2 Thickness 

(nm) 

Predicted 

Eg (eV) 

Eg (eV) Deviation 

(%)(a) 

RbCsFAMAPI 0.9990 536.25 1.608 1.621 0.802 

CsFAMAPI 0.9933 429.52 1.575 1.582 0.442 

CsFAPI 0.9993 313.67 1.535 1.541 0.389 

FAPI 0.9966 280.67 1.487 1.494 0.468 

MAPI 0.9995 413.67 1.554 1.570 1.019 

MAPI-Cl 0.9985 398 1.608 1.607 0.062 

FAPI-MAPBr 0.9990 438.25 1.599 1.602 0.187 

FAMAPI-Br 0.9983 322.4 1.494 1.514 1.321 

AVG_R2 0.9979     

STD_R2 0.0021     

(a) Deviation=((predicted value-measured value)/measured value)*100 

 

Photovoltaic parameters prediction 

The goal of this work is to predict the performance of PSCs from the predicted current density-

voltage (J-V) and the power-voltage characteristics. The J-V data from the fabricated PSCs 

employing the eight different perovskites as absorber layers were modeled using RF regression 

to test the PCE predictability. Figure 4 depicts the experimental and predicted J-V curves and 

the corresponding PCE from experimental data and the RF model are tabulated (Table 3). We 

employed R2 scores to evaluate the RF efficacy for J-V models (Table 3), and the average R2 

score and standard deviation based on the eight perovskites were measured as 0.9010 and 
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0.0534, respectively. This highlight the model's generalization performance. Rational fitting of 

the RF regression model is achieved for all the PSCs, i.e, 0.82 < R2 <0.97. 

 

Figure 4. A comparison between the machine learning simulation and measured J-V graph of 

PSCs based on a) RbCsFAMAPI, b) CsFAMAPI, c) FAPI+MAPBr, d) MAPI, e) FAPI, f) 

CsFAPI, g) MAPI-Cl, and h) FAMAPI-Br. 
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To minimize the error factors, all the PSCs have been fabricated under the same laboratory 

conditions in a single laboratory, and notably, this allowed us to reach a good R2 value. The 

PCEs calculated from the experimental J-V curves show that the FAPI based PSCs displayed 

the lowest PCE value of 15% and the FAMAPI-Br measured the maximum value of 19.3%. 

While the other fabricated PSCs fall in between, which is in agreement with the predicted PCEs 

by our RF regression model. It is worthy to note that MAPI and MAPI-Cl displayed maximum 

deviations of 0.290 and 3.176% respectively, between the measured and predicted PCEs while 

the other PSCs showed deviation near to ~1%. As depicted in Figure 1c, MAPI-Cl based PSC 

was fabricated in a p-i-n fashion, while the rest of the PSCs was in n-i-p configuration. This 

factor was not taken into consideration during ML. We have also not taken into account the 

effects of the charge transporting layers and the interfaces on the device performances to avoid 

complexity and this work is mainly focused on the light-harvesting layer. In comparison to the 

bandgap prediction, the RF regression model displayed a reduced accuracy in PCE predictions 

and we attribute this to the influences of charge transport layers, device architecture, interface 

properties, halide segregations, and induced losses. Further, we have calculated the power-

voltage curves from both the experimental and RF simulated J-V data sets (Figure S9). The 

observed correlation between the experimentally calculated P-V curves with the RF simulated 

curve supports the commendable performance of our ML approach. 

 

Table 3. Performance and photovoltaic parameters derived from experimental RF simulated 
data for different perovskite absorbers. 

Perovskites 
types 

R2 Thickness 
(nm) 

Predicted PCE 
(%)  

Measured PCE  
(%) 

Deviation 
(%)(a) 

RbCsFAMAPI 0.8207 536.25 18.68 18.9 1.164 

CsFAMAPI 0.8920 429.52 17.84 18.1 1.436 

CsFAPI 0.8257 313.67 18.95 18.7 1.136 
FAPI 0.9126 280.67 15.17 15 1.133 
MAPI 0.9201 413.67 17.25 17.2 0.290 

MAPI-Cl  0.9236 398 16.46 17 3.176 

FAPI+MAPBr 0.9395 438.25 17.33 17.6 1.534 

FAMAPI-Br 0.9741 322.4 19.47 19.3 0.880 

AVG_R2 0.9010     

STD_R2 0.0534     

(a)Deviation = ((predicted value-measured value)/measured value)*100 
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 The external quantum efficiency (EQE) measures the ratio of the number of charge 

carriers collected to the number of photons of given energy on light illumination. We further, 

assessed the performance of the proposed RF model for the EQE data set (Figure S10), it can 

be deduced that the overall EQE response of PSCs is in agreement with the RF simulation. This 

validates our findings and demonstrates the suitability of the adopted simulation model. We 

adopted R2 values (Table S1) to track the performance of the RF-based EQE models and to 

validate the performance, the average R2 score and standard deviation based on the eight 

perovskites were measured as 0.9717 and 0.0239, respectively. 

 Here, we have assessed the suitability of the RF regression model to predict the optical 

and photovoltaic properties of lead halide perovskites with A and X sites variations. The 

predicted and experimental PCE as a function of the predicted and calculated bandgap are 

plotted (Figure 5), suggesting the efficacy of our RF regression model. Though the FAPI 

perovskite showed the lowest bandgap of ~1.49 eV in both the experimental and RF simulation 

methods, it yielded the lowest PCE of 15% here, due to the method adopted for perovskite 

preparation. However, the FAMAPI-Br with a lower bandgap of 1.514 eV gave the highest PCE 

of >19%. Expectedly, CsFAPI and CsFAMAPI with a comparatively lower bandgap of <1.6 

eV showed a slight decrement in PCE. In contrast the RbCsFAMAPI with a bandgap of >1.6 

eV measured >18.6% PCE. Analyzing the outputs of our RF regression model, we noted that 

the RF model is reliable to predict optical bandgaps of lead halide perovskites. The predicted 

optical bandgap was not directly correlated with the performance of corresponding devices, due 

to factors limiting the electrical properties and interfacial phenomena. In this context, we 

anticipate the widening of the descriptor pool with more inputs on the charge transport layers, 

device architecture, interface properties, crystal size, halide segregations, ion migration, phase 

stability, and induced losses is detrimental to the success of the ML in predicting the solar 

energy conversions and this could be further extended to other energy devices such as light-

emitting diodes, batteries, photodetectors, etc. 
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Figure 5. Efficiency vs bandgap energy of various perovskite from the machine learning 

simulation and experimental data.  

 

4. Conclusions 

We developed a random forest model to predict the bandgap of different halide perovskite and 

their performance evaluation in perovskite solar cells. We investigated the influence of different 

perovskite compositions on optoelectronic features and photovoltaic performance and validated 

using the RF model. Our model showed exceptional performance in predicting the optical 

bandgaps with a high R2 value of >0.99 and demonstrated that this knowledge can be used to 

design new lead halide perovskites through accurate bandgap predictions. Further, our random 

forest model showed judicious fitting of J-V curves and predicted the PCEs which is in 

agreement with the experimental data. This signals the suitability of the employed prediction 

approach in this work as an effective, reliable, and fast that can be implemented to the variety 

of materials for solar cell applications, to allow the acceleration of materials discovery and 

renaissance for rapid screening. 

 

Supplementary Information  

Supplemental information includes Figure S1-S10 and Table S1 and can be found with this 

article online. 
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