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Abstract. Process compliance measurement is getting increasing atten-
tion in companies due to stricter legal requirements and market pressure
for operational excellence. On the other hand, the metrics to quantify pro-
cess compliance have only been defined recently. A major criticism points
to the fact that existing measures appear to be unintuitive. In this paper,
we trace back this problem to a more foundational question: which notion
of behavioural equivalence is appropriate for discussing compliance? We
present a quantification approach based on behavioural profiles, which is
a process abstraction mechanism. Behavioural profiles can be regarded
as weaker than existing equivalence notions like trace equivalence, and
they can be calculated efficiently. As a validation, we present a respective
implementation that measures compliance of logs against a normative
process model. This implementation is being evaluated in a case study
with an international service provider.

1 Introduction

Compliance management is becoming increasingly important. Companies seek for
a better control of their processes not only to satisfy new legal requirements but
also to leverage cost-saving opportunities through standardization of business
operations. Once non-compliant cases of operations are detected, the company
can either update its process model to cover the respective case or it can impose
new mechanisms to enforce best practice execution. In this way, compliance
management is a central piece in the puzzle of advancing a company towards a
higher degree of process maturity.

In order to make compliance management work in practice, it is required to
gather detailed information on the execution of particular business processes.
In recent years, process mining has emerged as a technique that automatically
reworks process logs data such that managerial decision making can be sup-
ported [1]. Most importantly, certain key measures of compliance management
can easily be quantified. Therefore, some compliance metrics have been proposed
in recent literature, e.g., by Medeiros et al. [2], and Rozinat and van der Aalst [3].
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These metrics check a set of logs against a normative process model to calculate
the degree of compliance.

The aforementioned metrics have a few drawbacks. On the one hand, they
rely on state-based techniques that involve replaying the logs. They are based
on the notion of trace equivalence, which is a weak notion in the linear time –
branching time spectrum [4]. As a consequence, these approaches have to cope
with the state explosion problem in order to achieve efficient computation [5].
That, in turn, leads to the application of heuristics that have to be tuned for
a certain setting. On the other hand, these metrics have been tested by Gerke
et al. [6] for their applicability in a case study with a German air carrier. As it
turned out, these metrics yielded non-compliance values that are significantly
smaller than the degree of non-compliance perceived by the business users. While
adaptations to the metrics have been proposed, the conceptual basis in terms
of trace equivalence remains unchanged. These results, along with the inherent
complexity of state-space based approaches, suggest to choose a different approach
for measuring compliance.

In this paper, we approach the problem from the perspective of relations
between pairs of activities or log events, respectively, instead of trying to replay
logs according to a rather strict notion of equivalence. Thus, our contribution is
a foundation of compliance measurement in a notion that is more relaxed than
trace equivalence. We utilize behavioural profiles as a base line to calculate novel
compliance metrics. As behavioural profiles can be calculated efficiently, we avoid
performance issues of existing state-based metrics. We implemented our approach
and validated it on an industry case study. In this context, our metrics showed a
good approximation of the compliance as perceived by the business users.

Against this background, the paper is structured as follows. Section 2 discusses
the challenge of measuring compliance by means of an example and elaborates on
existing compliance metrics. Subsequently, Section 3 presents preliminaries for
our investigations. Section 4 introduces compliance metrics based on behavioural
profiles. Based thereon, Section 5 presents findings from our validation, for which
we implemented a prototype and tested it on real-world logs. Section 6 discusses
our approach in the light of related work. Finally, Section 7 concludes the paper
and identifies topics for future research.

2 Background

In this section, we discuss the challenges of measuring behavioural compliance.
Fig. 1 shows the example of a BPMN process model that includes 11 activities,
all named with a capital letter. The diamonds define the routing behaviour of the
BPMN model. Once I and A have been executed, there is a choice being made
whether the branch including B is executed or as an exclusive alternative, the
branch leading to the diamond with the plus sign. The latter option leads to a
parallel execution of the sequences C, D, E and F , G, H. Finally, these branches
are synchronized and control is passed through the merge node (with the X in
the diamond) towards the completion of the process after execution of O.
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Fig. 1. Example of a BPMN process model

The challenge of compliance measurement is to quantify the degree to which a
certain set of logs matches a normative process model. Logs (or log files) represent
observed execution sequences of activities from the normative process model. In
the desirable case the logs completely comply with the behaviour defined by the
process model. In this case, the logs are valid execution sequences. In practice,
however, observed execution sequences often deviate from predefined behaviour.
This may be the case when the execution order is not explicitly enforced by the
information system that records the logs. In fact, it is also possible that people
deliberately work around the system [1]. This may result in logs such as the
following for the process model in Fig. 1.

◦ Log L1 = I, A,C,D, F,G,E,H,O
◦ Log L2 = I, A,C,B,E, F,H,O
◦ Log L3 = I, A,E,D,C,H,G,O, F
◦ Log L4 = I, C,D, F

From these four logs, only the first one is also a valid execution sequence, i.e.,
it can be completely replayed by the process model. Still, the other logs capture
a good share of the behaviour defined in the model. Such cases make it necessary
to measure compliance a posteriori.

Compliance measurement has recently been approached using state-based
concepts from the Petri nets theory. The idea of the fitness measure proposed
by Medeiros et al. [2] is to replay the log through the model. Activities that are
enabled in the model when they appear in the log are counted and related to the
overall number of activities. If an activity is not enabled, the respective Petri net
transition is forced to fire, which produces a token on each of its output places.
In this way, one can quantify compliance of the logs against the process model as
a ratio of enabled activities to the total number of activities. For example, in
Fig. 1, log L1 can be completely replayed and has therefore a compliance value of
1. Instead, log L2 can be replayed solely until B appears in the log. This activity
is then fired without being enabled. The same holds for E and H. Therefore,
three firings are non-compliant from the eight firings altogether, yielding a fitness
value of 0.63. In log L3, activities E, D, H, and G are forced to fire although
they are not enabled. Thus, altogether, only I, A, C, O, and F are fired correctly
from nine tasks. Therefore, the fitness is 0.56. Finally, for log L4, the absence of
activity A in the log implies a non-compliant firing of C and D, such that fitness
is two out of four, which is 0.5.
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As mentioned above, the metrics proposed by Medeiros et al. are based on
computationally hard state space exploration, which has to be addressed using
heuristics for the general case. In addition, other work reports on these metrics as
yielding compliance values which are significantly lower than what is considered
to be correct by domain experts [6]. Therefore, for our notion of log compliance,
we do not try to replay the log through the model. Instead, we identify different
types of constraints that a process model can impose for a pair of activities on the
execution order activities, such as exclusiveness (B and C in Fig. 1) and order (C
and E in Fig. 1). Based thereon, the preservation of these constraints is leveraged
to assess the compliance of a given log. Besides constraints in terms of execution
order, we also take the obligation to execute a single activity in a process model
into account. Evidently, activities that are defined as being mandatory in the
process model have to occur in a log, or can be expected to occur in future if
the process has not yet completed. An example for such a mandatory activity in
the model in Fig. 1 is activity A. A third group of constraints that we evaluate
relates to the causal coupling of executions for a pair of activities. That is, the
occurrence of one activity implies the occurrence of another activity. For instance,
both activities, C and E, are optional for the completion of the example process.
Still, the occurrence of C implies the occurrence of E, i.e., their execution is
causally coupled.

While these behavioural constraints are not addressed in existing compliance
metrics, we show how they can be leveraged in order to assess the compliance of
a log in the remainder of this paper.

3 Preliminaries

This section gives preliminaries for our work in terms of a formal framework.
For our investigations we use a notion of a process model that is based on a
graph containing activity nodes and control nodes, which, in turn, captures the
commonalities of process description languages. Thus, the subset of BPMN used
in our initial example can be traced back to the following definition of a process
model.

Definition 1. (Process Model) A process model is a tuple P = (A, ai, ao, C, F, T )
with
◦ A as a non-empty set of activity nodes, and C as a set of control nodes, A

and C are disjoint,
◦ ai ∈ A as an initial activity, ao ∈ A as a final activity,
◦ F ⊆ ((A \ {ao}) ∪ C)× ((A \ {ai}) ∪ C) as the flow relation, and
◦ T : C 7→ {and, or, xor} as a function that assigns a type to control nodes.

In the remainder of this paper, the identity relation for activities is denoted
by idA, i.e., (a, a) ∈ idA for all a ∈ A. Further on, we do not formalise the
execution semantics of a process model, but assume an interpretation of the
model following on common process description languages, such as BPMN, EPCs,
or UML activity diagrams. It is worth to mention that we do not assume a
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certain definition of semantics for the inclusive OR construct, which raises serious
issues in cyclic structures. We solely assume the existence of such a definition.
Under the assumption of a definition of execution semantics, the set of all valid
execution sequences, as well as the notion of a process log, can be defined as
follows.

Definition 2. (Execution Sequence, Execution Log) The set of execution se-
quences EP for a process model P = (A, ai, ao, C, F, T ) is the set of all lists of the
form {ai} ·A∗ · {ao}, that can be created following on the execution semantics of
P . An execution log LP that has been observed for P is a non-empty list of the
form A∗.

Note that we speak of an execution sequence of a process model, solely in case the
sequence is valid regarding the process model, i.e., it can be completely replayed
by the model. In contrast, a log is a non-empty sequence over the activities of a
process model. As a short-hand notation, we use AL ⊆ A to refer to the subset
of activities of a process model that is contained in log L.

In order to capture the constraints imposed by a process model on the order of
activity execution, we rely on the concept of a behavioural profile [7]. Behavioural
profile defines relations for all pairs of activities of a process model. These relations,
in turn, might be interpreted as the essential behavioural characteristics specified
by the models. All behavioural relations are based on the notion of weak order.
That is, two activities are in weak order, if there exists an execution sequence in
which one activity occurs after the other. Here, only the existence of an execution
sequence is required.

Definition 3 (Weak Order (Process Model)). Let P = (A, ai, ao, C, F, T )
be a process model and EP its set of execution sequences. The weak order relation
�P ⊆ (A×A) contains all pairs (x, y), such that there is an execution sequence
σ = n1, . . . , nm in EP with j ∈ {1, . . . ,m − 1} and j < k ≤ m for which holds
nj = x and nk = y.

Based thereon, we define the relations of the behavioural profile for pairs of
activities. Each pair can be related by weak order in three different ways.

Definition 4 (Behavioural Profile (Process Model)). Let P = (A, ai, ao,
C, F, T ) be a process model. A pair (x, y) ∈ (A × A) is in at most one of the
following relations:
◦ The strict order relation  P , iff x �P y and y 6�P x.
◦ The exclusiveness relation +P , iff x 6�P y and y 6�P x.
◦ The interleaving order relation ||P , iff x �P y and y �P x.

The set BP = { P ,+P , ||P } is the behavioural profile of P .

Note that we say that a pair (x, y) is in reverse strict order, denoted by x −1P y,
if and only if y  P x. Interleaving order is also referred to as observation
concurrency. Further on, the relations of the behavioural profile along with
reverse strict order partition the Cartesian product of activities [7]. We illustrate
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the relations of the behavioural profile by means of our example model in Fig. 1.
Here, for instance, it holds I  D. Evidently, strict order does not imply the
actual occurrence, i.e., activity D might not be executed. Further on, B + C
as both activities will never occur in a single valid execution sequence of the
model, and C||G as C might occur before G and vice versa. Note that it holds
B||J due to the control flow cycle. That is, an occurrence of J is followed by an
occurrence of B. Further on, an activity is either said to be exclusive to itself
(e.g., I + I) or in interleaving order to itself (e.g., B||B). The former holds, when
an activity cannot be repeated, whereas the latter implies that the activity is
part of a control flow cycle.

The concept of a behavioural profile relates pairs of activities according to
their order of potential occurrence, whereas further behavioural characteristics
are not considered. Both, the fact that an activity is mandatory for process
completion and causality between activities are not covered. Causality, in turn,
involves two orthogonal aspects, i.e., the order of activity occurrences and their
causal coupling (the occurrence of one activity enforces the occurrence of another
activity). While the former is already addressed by the behavioural profile in
terms of the (reverse) strict order relation, the latter is not captured. In order to
cope with these aspects, the behavioural profile is extended by a fourth relation,
yielding the causal behavioural profile.

Definition 5 (Causal Behavioural Profile (Process Model)).
Let P = (A, ai, ao, C, F, T ) be a process model.
◦ A pair (x, y) ∈ (A×A) is in the co-occurrence relation �P , iff for all execution

sequences σ = n1, . . . , nm in EP it holds ni = x with 1 ≤ i ≤ m implies that
there is an index j ∈ {1, . . . ,m}, such that nj = y.
◦ The set B+P = BP ∪ {�P } is the causal behavioural profile of P .

Given a process model P = (A, ai, ao, C, F, T ), the set of mandatory activities
AM ⊆ A is given by all activities that are co-occurring with the initial activity,
that is, AM = {a ∈ A | ai �P a}. Moreover, causality holds between two
activities a1, a2 ∈ A, if they are in strict order, a1  P a2 and the occurrence of
the first implies the occurrence of the second, a1 �P a2. Again, we refer to the
example in Fig. 1 for illustration purposes. In this model, there are only three
mandatory activity, namely AM = {I, A,O}. Moreover, it holds C � E and
E � C. Thus, all complete execution sequences of the process model that contain
activity C are required to also contain activity E, and vice versa. In addition,
the model specifies a strict order relation between both activities, C  E, such
that we speak of a causal dependency from C to E.

4 Measuring Compliance based on Behavioural Profiles

This section introduces compliance metrics based on behavioural profiles. First,
Section 4.1 shows how the concepts introduced in the previous section can be
lifted to logs. Second, we elaborate on a hierarchy between the relations of the
behavioural profile in Section 4.2. Based thereon, we introduce the compliance
metrics in Section 4.3.
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4.1 Causal Behavioural Profiles for Logs

In order to lift the concept of behavioural profiles to logs, first and foremost, we
have to clarify the notion of weak order for logs. Following on the definition given
for process models, two activities are in weak order in a log, if the first occurs
before the second.

Definition 6 (Weak Order (Log)). Let LP = n1, . . . , nm be a log of a process
model P = (A, ai, ao, C, F, T ). The weak order relation �L ⊆ (AL×AL) contains
all pairs (x, y), such that there exists two indices j, k ∈ {1, . . . ,m − 1} with
j < k ≤ m for which holds nj = x and nk = y.

Based thereon, we define the behavioural profile of a log.

Definition 7 (Behavioural Profile (Log)). Let LP = n1, . . . , nm be a log of
a process model P = (A, ai, ao, C, F, T ). A pair (x, y) ∈ (AL ×AL) is in at most
one of the following relations:
◦ The strict order relation  L, iff x �L y and y 6�L x.
◦ The interleaving order relation ||L, iff x �L y and y �L x.

The set BL = { L, ||L} is the behavioural profile of L.

Again, the pair (x, y) is in reverse strict order, denoted by x  −1L y, if and
only if y  L x. The relations of the behavioural profile along with reverse strict
order partition the Cartesian product of elements of a log. For the exemplary log
L3 = I, A,E,D,C,H,G,O, F , for instance, it holds C  F and D  −1 A.

It is worth to mention that there are fundamental differences when interpreting
the behavioural profile for a process model and a log. On the one hand, in contrast
to the profile of a process model, we cannot observe exclusiveness between two
activities in a single log. On the other hand, activities that might be enabled
concurrently in a process model (e.g., C and G in our example) are related by
interleaving order in the behavioural profile of the model (C||G). However, if
both activities are not part of a control-flow cycle, they might be related by strict
order or reverse strict order in the profile of a corresponding log. For instance,
for the log L3 = I, A,E,D,C,H,G,O, F , we observe C  G as the behavioural
relation for activities C and G.

Moreover, we can also lift the definition of a causal behavioural profile to
process logs. Obviously, all elements of a log are co-occurring.

Definition 8 (Causal Behavioural Profile (Log)). Let LP = n1, . . . , nm be
a log of a process model P = (A, ai, ao, C, F, T )
◦ The co-occurrence relation �L= (AL×AL) contains all pairs of log elements.
◦ The set B+L = BL ∪ {�L} is the causal behavioural profile of L.

4.2 A Hierarchy of Behavioural Relations

As mentioned above, there is a fundamental difference between behavioural
profiles of process models and of logs. The former defines relations based on
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the set of all possible execution sequences, whereas the latter considers only
one observed execution sequence as defined by the log. In order to cope with
this phenomenon, we introduce a hierarchy between the relations of behavioural
profiles (we neglect the co-occurrence relation at this stage). The idea is to order
the behavioural relations based on their strictness. We consider the exclusiveness
relation as the strongest relation, as it completely disallows two activities to occur
together in an execution sequence. In contrast, the interleaving order relation
can be seen as the weakest relation. It allows two activities to occur in any order
in an execution sequence. Consequently, the strict order and reverse strict order
relation are intermediate relations, as they disallow solely a certain order of
two activities. We formalize this hierarchy between behavioural relations as a
subsumption predicate. Given two behavioural relations between a pair of two
activities, this predicate is satisfied, if and only if the first relation is equal or
weaker than the second.

Definition 9 (Subsumption Predicate). Given two behavioural relations
R,R′ ∈ { , −1,+, ||} of the same or different behavioural profiles, the sub-
sumption predicate S(R,R′) is satisfied, iff (R ∈ { , −1} ∧ R′ = +) or R = R′

or R = ||.

Again, we illustrate this concept using the example model in Fig. 1 and the log
L3 = I, A,E,D,C,H,G,O, F . As mentioned above, for activities C and G, it
holds C||G in the profile of the process model and C  G in the profile of the
log. The former specifies that C and G might occur in any order in an execution
sequence, owing to the interleaving semantics of activities that are enabled
concurrently. The latter, in turn, captures the fact that the occurrences of C and
G in the log are ordered. However, we see that there is a subsumption relation
between both relations, as S(||, ) is satisfied. Evidently, this information has to
be taken into account when assessing compliance of logs. This stems from the
fact that logs do not hint at potential interleaving execution of activities.

4.3 Compliance Metrics

For our measurements of compliance between a process model and a log, we
consider three aspects separately, namely execution order, mandatory activities,
and casual coupling. While the last two aspects address the question what should
be contained in the log (activities that are mandatory in a global sense or that are
implied by the occurrence of other activities in the log), the first aspect clarifies
how these activities should be ordered in the log. While each of these aspects is
assessed by a separate compliance degree, their values may be aggregated into a
single compliance degree.

Execution order compliance is motivated by the fact that the order of execution
of activities as specified by the log should be in line with the ordering constraints
as imposed by the process model. Evidently, the question whether there is such a
difference is of limited usefulness. Instead, any deviation has to be quantified to
allow for thorough compliance analysis. We achieve such a quantification based
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on the notion of behavioural profiles and the hierarchy of behavioural relations.
That is, we analyse the Cartesian product of activities that are contained in a log
and determine, whether the behavioural relation for a pair of activities in the log
is subsumed by the relation specified in the process model. Based thereon, the
degree of behavioural compliance is defined as a ratio of consistent behavioural
relations relative to the number of activity pairings in the log. Note that for
the case of a behavioural relation that holds between an activity and itself, the
subsumption predicate cannot be applied. If an activity can occur at most once
in the process model (it is exclusive to itself), it is not allowed to occur multiple
times in the log (it cannot be in interleaving order to itself), whereas the opposite
case (exclusive in the log, in interleaving order in the model), as well as equal
relations, are considered to be compliant. Based thereon, we define execution
order compliance.

Definition 10 (Execution Order Compliance). Let LP = n1, . . . , nm be a
log of a process model P = (A, ai, ao, C, F, T ). Then, the set SR ⊆ (AL × AL)
contains all pairs of activities (x, y), for which the behavioural relation in LP

is subsumed by the relation in P , i.e., ∀ R ∈ (BP ∪ { −1P }), R′ ∈ (BL ∪ { −1L

}) [ (xRy ∧ xR′y)⇒ (S(R,R′) ∨ (x = y ∧ R = ||P ∧ R′ = +L)) ]. The degree
of execution order compliance of LP to P is defined as

ECLP
=

|SR|
|(AL ×AL)|

.

Note that the compliance degree ECLP
for a log is between zero, i.e., no execution

order compliance at all, and one indicating full execution order compliance. It is
worth to mention that this degree is independent of the size of the process model,
as solely the activity pairs found in the log are considered in the computation.
Given the log L3 = I, A,E,D,C,H,G,O, F and our initial example (cf., Fig.1),
we see that various order constraints imposed by the model are not satisfied.
For instance, D  E and G H are specified in the model, whereas we have
D  −1 E and G  −1 H in the profile of the log. That, in turn, leads to an
execution order compliance degree of EC = 67

81 ≈ 0.83 for this particular log.
Due to the fact that execution order compliance relates solely to the ordering

constraints, we embrace further process characteristics for compliance measure-
ments. In particular, we take the mandatory activities that are required for
completion of the process into account. The ratio of mandatory activities of the
process model that are contained in the log, and all mandatory activities would
be a straight-forward measure for this aspect. However, we want to consider also
logs that might not have completed yet, such that missing mandatory activities
might be added later on. In order to cope with this, not all mandatory activities
of the process model are required to occur in the log. Instead, we consider only
those mandatory activities, for which we can deduce from the log that they
should have been observed already. That is, a mandatory activity is considered,
if it is either in the log, or it is in strict order with one of the activities in the log.

Definition 11 (Mandatory Execution Compliance). Let LP = n1, . . . , nm

be a log of a process model P = (A, ai, ao, C, F, T ) and AM = {a ∈ A | ai �P a}
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the set of mandatory activities of P . Then, the set EAM ⊆ AM contains all
mandatory activities a1 that are in the log or can be expected to be in the log,
i.e., a1 ∈ AL or ∃ a2 ∈ AL [ a1 6= a2 ∧ a1  P a2 ]. The degree of mandatory
execution compliance of LP to P is defined as

MCLP
=

{
1 if EAM = ∅,
|AL∩AM |
|EAM | else.

Consider the log L4 = I, C,D, F of our initial example. The process model in
Fig. 1 specifies three mandatory activities, i.e., activities I, A, and O. While
activity I is in the log, activity A is not, although we know that it should have
been observed already owing to the strict order relation between A and C, D,
and E, respectively. The mandatory activity O is not required to occur in the log,
as the log does not contain any activity that is in strict order with O. Therefore,
the log contains one out of two expected mandatory activities, such that the
execution compliance degree is MC = 0.5. Note that the mandatory execution
compliance degree might be overestimated. That is, a mandatory activity might
be part of a control flow cycle, while the log does not contain any activity that is
in strict order with the mandatory activity. In this case, the mandatory activity
will not be considered in the mandatory execution compliance degree. This holds,
even though the log might already contain activities that can only be reached
after executing the mandatory activity in the process model.

The mandatory execution compliance relates to activities that should be
observed in each log as they are required for completion of the process. Still,
there might be dependencies between the occurrences of activities even though
they are not mandatory. In the model in Fig.1, for instance, neither activity C
nor E are mandatory for completion. However, there is a causal relation between
both, as the occurrence of C implies the occurrence of E. While the correctness
of the order of occurrence for both activities has already been incorporated in the
notion of execution order compliance, the causal coupling of their occurrences
has still to be taken into account. Therefore, for each activity a in the log, we
also check whether activities for which the occurrence is implied by a are also
in the log. Again, we have to consider the eventuality of incomplete logs, such
that this requirement must hold only in case there is sufficient evidence that the
implication is not satisfied. That is, there is another activity in the log for which
the model specifies strict order to the activity under investigation.

Definition 12 (Causal Coupling Compliance). Let LP = n1, . . . , nm be a
log of a process model P = (A, ai, ao, C, F, T ). Then, the set ECM ⊆ (�P \idA)
contains all pairs of co-occurring activities (a1, a2), such that the first activity is
in the log, while the second activity is in the log or can be expected to be in the
log, i.e., a1 ∈ AL and a2 ∈ AL ∨ ∃ a3 ∈ AL [ a2  P a3 ]. The degree of causal
coupling compliance of LP to P is defined as

CCLP
=

{
1 if ECM = ∅,
|(AL×AL)\idAL

∩�P |
|ECM | else.
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Table 1. Compliance results for the logs of the initial example (cf., Section 2)

EC MC CC C
Log Execution Mandatory Causal Overall

Order Execution Coupling Compliance

L1 = I, A,C,D, F,G,E,H,O 1.00 1.00 1.00 1.00
L2 = I, A,C,B,E, F,H,O 0.88 1.00 0.80 0.89
L3 = I, A,E,D,C,H,G,O, F 0.83 1.00 1.00 0.94
L4 = I, C,D, F 1.00 0.50 0.69 0.73

We illustrate causal coupling compliance using our initial example and the log
L2 = I, A,C,B,E, F,H,O. Although all mandatory activities are contained in
the log, we see that, for instance, C � D is not satisfied. This is penalised as
the log contains E and it holds D  E in the process model. In other words,
the occurrence of E in the log provides us with evidence that we should have
observed D, too. Thus, the absence of this activity impacts on the causal coupling
compliance. Note that the same holds true for all co-occurrence relations involving
activity G, such that the degree of causal coupling compliance is CC = 33

41 ≈ 0.80
for this particular log. It is worth to mention that the causal coupling compliance
degree might be overestimated. An example for this phenomenon would be the log
I, A, J for the model in Fig. 1. There is a causal coupling J � B in this model.
However, the absence of B would not be penalised as there is no activity in the
log that is in strict order for B and, therefore, would provide us with sufficient
evidence that B should have been observed already.

Given compliance degrees for the three aspects, execution order, mandatory
activities, and casual coupling, we can aggregate the compliance degree of a log.

Definition 13 (Log Compliance). Let LP = n1, . . . , nm be a log of a process
model P = (A, ai, ao, C, F, T ). The compliance of LP to P is defined as

CLP
=

1

3
(ECLP

+MCLP
+ CCLP

).

Applied to our example process model and the four exemplary logs introduced
in Section 2, our compliance metrics yield the results illustrated in Table 1. As
expected, the first log L1, which represents a valid execution sequence of the
process model satisfies all constraints, such that our metric indicates full overall
compliance. In contrast, the execution order constraints are not fully satisfied in
the second log L2 (e.g., the exclusiveness in the model between B and C is broken
in the log). In addition, the causal coupling is not completely respected in the
log either, as discussed above. Further on, for the log L3, the execution order is
not completely in line with the process model. Regarding the log L4, we already
discussed the absence of a mandatory activity that should have been observed,
leading to a mandatory execution compliance degree below one. Note that this
also impacts on the causal coupling compliance. Thus, a mandatory execution
compliance degree smaller than one, will also be reflected in the causal coupling
compliance degree. However, the opposite does not hold true, as illustrated for
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Fig. 2. BPMN model of the Security Incident Management Process (SIMP)

the log L2. Although this log shows full mandatory execution compliance, its
causal coupling compliance degree is below one.

5 Case Study: Security Incident Management Process

To demonstrate and evaluate our approach, we apply it to the Security Incident
Management Process (SIMP) — which is an issue management process used in
global service delivery centres. The process and the logs have been minimally
modified to remove confidential information. Fig. 2 shows the BPMN model of
SIMP solicited from domain experts.

SIMP is used in one of IBM’s global service delivery centres that provides
infrastructure management and technical support to customers. When a customer
reports a problem or requests a change, an issue is created, spawning a new
instance of the process. Details about the issue may be updated, a plan to resolve
the issue must be created, and change management related activities may be
performed if required. Then, target dates for issue resolution may be monitored
and relevant risks may be documented. A Customer Extension of target dates
may be processed during any of the above activities (parallel path). Once the
steps for resolution are taken and verified, the resolver must propose to close the
issue. Based on the evidence that the issue is indeed resolved, the issue creator
may close the issue. Otherwise, the proposal must be rejected.

For the SIMP process we analysed 852 logs, each consisting of a set of log
entries. Such a log entry has an activity name, activity description, and the
time-stamp marking the time of execution of the activity. Although the process
is standardized and documented, it is not orchestrated via workflow tools in the
IBM’s global service delivery centre under investigation. Instead, it is manually
carried out. Hence, the employees are free to deviate from the process. As a result,
the logs may or may not specify valid execution sequences of the process model.

For each log, we analysed its compliance using the metrics proposed in this
paper. Table 2 gives a summary of this analysis in terms of the average compliance
value of all logs, the observed minimal and maximal compliance values, and the
share of fully compliant logs. The compliance values were discussed with the
manager of the process. The average values reflect the manager’s perception that
SIMP is running satisfactory and most cases are handled in a compliant way. As
the minimum values show, it was also possible to identify cases of low compliance.
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Table 2. Compliance results for the SIMP process derived from 852 logs

EC MC CC C
Execution Mandatory Causal Overall

Order Execution Coupling Compliance

Average Value 0.99 0.96 0.95 0.96
Min Value 0.31 0.60 0.50 0.61
Max Value 1.00 1.00 1.00 1.00
Logs with Value of 1.00 78.64% 84.15% 84.15% 76.17%

We are not able to directly compare our results with the approach proposed
in [2]. This is mainly due to the inherent complexity of the state space exploration,
which is exponential in the general case. Even a maximally reduced Petri net of
our SIMP process contains a lot of silent steps owing to several activities, for
which execution is optional. That, in turn, leads to a significant increase of the
state space to investigate when trying to replay a log. While compliance values
might still be derived following the most greedy strategy, these results are of a
limited validity as they highly underestimate the degree of compliance. However,
it is worth to mention that even with the most greedy strategy, computation of
the compliance values for all logs took around 15 seconds. In contrast, computing
the compliance metrics proposed in this paper for all logs, in turn, could be done
within milliseconds. Moreover, an isolated analysis of a sample of 30 logs for
which computation of the fitness metric is possible with a 5-step-ahead strategy
revealed that the fitness compliance values are all lower than the values derived
by our metrics. This is in line with the criticism of [6] that the fitness concept
appears to be too strict. These differences probably stem from the different
normalisation of any behavioural deviation. The fitness metric relates tokens
additionally created (removed) to the number of all consumed (produced) tokens
when replaying a log. In contrast, our approach considers violations on the level
of relations between activities. Therefore, a single violation according to our
notion, can be reflected multiple times in the fitness metric.

The adaptations of [6] could not be compared either to our values since the
respective implementation is not publicly available. But as they are also defined
on state concepts, we can assume results similar to those obtained above.

6 Related Work

In this section we discuss the relation of our work to compliance measurement,
behavioural equivalence, and process similarity.

Compliance measures are at the core of process mining. Similar relations,
but not exactly those of behavioural profiles, are used in [8] to characterise
a process as a pre-processing step for deriving a model. As mentioned before,
the work in [2,3] proposes a fitness measure for process mining, while, based
thereon, adaptations are discussed in [6]. In this paper, we demonstrated that
our approach benefited from the efficient calculation of the behavioural profiles
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from free-choice process models as defined in [7]. In fact, behavioural profiles can
be derived in O(n3) time with n as the number of activities of a process model.
Therefore, in contrast to the fitness calculation, our metrics can be computed
within milliseconds. Further on, following on the criticism of [6], our case study
provided us with evidence that our metrics are close to managers’ perception
of compliance. The detection of differences between process models, not their
measurement, is also discussed in related work. The approaches presented in [9,10]
provides a systematic framework of diagnosis and resolution of such mismatches.

The concept of behavioural profile in general relates to different notions
of behavioural equivalence such as trace equivalence and bisimulation. These
notions build on state concepts and can often not be calculated as efficiently as
behavioural profiles. They also yield only a true or false answer and they are
not directly applicable to execution sequences [11,12]. Behaviour inheritance is
closely related to these notions. Basten et al. [13] define protocol inheritance
and projection inheritance based on labelled transition systems and branching
bisimulation. A model inherits the behaviour of a parent model, if it shows the
same external behaviour when all actions that are not part of the parent model are
either blocked (protocol inheritance) or hidden (projection inheritance). Similar
ideas have been presented in [14,15]. The boolean characteristics of these notions
have been criticized as inadequate for many process measurement scenarios [2].

The question of process similarity has been addressed from various angles.
Focussing on behavioural aspects, [16,17] introduce similarity measures based
on an edit distance between workflows. Such an edit distance might be based
on the language of the workflow, the underlying automaton, or based on the
n-gram representation of the language. A similar approach is also taken in [18],
in which the authors measure similarity based on high-level change operations
that are needed to transform one model into another. Close to our behavioural
abstraction of a behavioural profile are causal footprints as introduced in [19]. The
authors also show how the footprints can be leveraged to determine the similarity
between process models. All these similarity notions are either expensive in terms
of calculation, whereas behavioural profiles can be calculated efficiently.

7 Conclusion

In this paper, we have discussed the challenges of providing compliance measure-
ments in an appropriate and efficient way. Our contribution is a novel proposal
for metrics based on behavioural constraints on pairs of tasks for compliance
measurement. In this way, we avoided performance problems of state-based met-
rics by using behavioural profiles as the underlying equivalence notion. Our log
compliance metric covers three aspects including execution order, mandatory exe-
cution, and causal coupling, which can all be derived from the causal behavioural
profile. We implemented these metrics and tested them in a case study.

In future work, we aim to study the merits of our novel approach in further
industry collaborations. The performance gain of using behavioural profiles is of
serious importance for various use cases. Up until now, compliance measurement
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had to be conducted offline in a batch mode due to being very time consum-
ing. We aim to investigate those scenarios where an instantaneous compliance
measurement is valuable. In particular, compliance measurement in the financial
industry might eventually benefit from this innovation, e.g., to cancel running
transactions that exhibit non-compliant behaviour.
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