
Demo: Detecting Third-Party Library Problems with Combined
Program Analysis

Grigoris Ntousakis
TU Crete

gntousakis@isc.tuc.gr

Sotiris Ioannidis
TU Crete

sotiris@ece.tuc.gr

Nikos Vasilakis
CSAIL, MIT

nikos@vasilak.is

ABSTRACT
Third-party libraries ease the software development process and
thus have become an integral part of modern software engineering.
Unfortunately, they are not usually vetted by human developers
and thus are often responsible for introducing bugs, vulnerabilities,
or attacks to programs that will eventually reach end-users. In this
demonstration, we present a combined static and dynamic program
analysis for inferring and enforcing third-party library permissions
in server-side JavaScript. This analysis is centered around a RWX
permission system across library boundaries. We demonstrate that
our tools can detect zero-day vulnerabilities injected into popular
libraries and often missed by state-of-the-art tools such as snyk
test and npm audit.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Dynamic analysis; Scripting languages; • Security and privacy →
Software and application security.

KEYWORDS
Dynamic Program Analysis, Static Program Analysis
ACM Reference Format:
Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis. 2021. Demo: De-
tecting Third-Party Library Problems with Combined Program Analysis. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’21), November 15–19, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3460120.
3485351

1 INTRODUCTION
Modern software development relies heavily on third-party libraries.
Applications use several dozens or even hundreds of libraries, cre-
ated by many different authors and accessed via public repositories.
The heavy use of libraries is particularly common in JavaScript
applications [6, 8, 12, 13, 15], and especially in those running on
the Node.js platform [16, 19], where developers have millions of
libraries at their fingertips through the npm package manager.
Security Problems: Reliance on libraries introduces several se-
curity risks—ranging from dynamic compromise, the runtime ex-
ploitation of a benign library via its inputs, to full-fledged malicious

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3485351

library operation—affecting the security of the entire application
and its broader operating environment. For example, consider a
(de)serialization library that uses JavaScript’s built-in eval function
to parse a string into a runtime object. While the library itself is
benign, accessing no other external API apart from eval, an at-
tacker may pass a malicious serialized object to the deserialization
function, which in turn will pass it to eval. As a result, the library
may be subverted into malicious behavior, e.g., accessing the file
system or the network, that goes far beyond what a (de)serialization
library is supposed to do. The underlying problem is that every li-
brary running on Node.js has all privileges offered by the JavaScript
language and its runtime environment. In particular, each library is
allowed to access any built-in API, global variables, APIs of other
imported libraries, and even import additional libraries.
Overview: In this demo, we show how to leverage a combined
static and dynamic program analysis to understand program behav-
ior prior to the program’s production execution and enforce this be-
havior during the program’s production execution. Our techniques
form a sharp contrast to state-of-the-art vulnerability detection
tools such as npm audit [9] and snyk [11]: while these tools scan
a program’s dependencies to report on known attacks—collected
from vulnerability reports accessible publicly—our tools can detect
and notify developers of previously unseen, zero-day attacks, as
we show during the demonstration of our tools.
Demo Outline: The demonstration starts by exemplifying the use
of third-party libraries common in server-side Node.js development
today. It then shows the expected (normal and benign) behavior of
these libraries as part of larger applications, and then demonstrates
unexpected (abnormal and malicious) behavior of these libraries
when subverted by attackers—for example, an attacker can read and
exfiltrate the contents of /etc/passwd. It then applies state-of-the-
art vulnerability detection tools such as npm audit and snyk test,
which do not report any risks—due to the reason that both tools
report only known vulnerabilities. The demo finally demonstrates
the use of a combined program analysis designed to report on
the permissions used by third-party libraries—showing the set of
permissions required for the normal operation of a library, and thus
delineating between normal and malicious operation. All the tools
presented in this demonstration are open-source software.

2 RELATEDWORK
This section briefly outlines static and dynamic analysis techniques.
Static analysis: Static program analysis is a technique for extract-
ing information about the behavior of a program by inspecting its
source code. Static analysis tends to focus on invariants related to
all executions of the program, but often misses information related

https://doi.org/10.1145/3460120.3485351
https://doi.org/10.1145/3460120.3485351
https://doi.org/10.1145/3460120.3485351


dec: X

http.createServer
require("serial")
serial.dec(data)

eval

x

Combined Static/Dynamic Analysis

Malicious
Input Input

Static Analysis Permissions

eval: 
X

Dynamic Analysis Permissions

Test Input

Permissions

Output
Output

1 

2 
3 

Figure 1: A static analysis tool extracts the static permissions
from a Node.js third-party library. The dynamic analysis tool
then extracts the corresponding dynamic permissions using
the test cases. The combination of permissions are used as
input to the policy enforcement component.

to dynamic program behavior. Several static analysis systems have
been developed for Node.js [5, 7, 18].
Dynamic analysis: Dynamic program analysis is a technique
for extracting information about a program by instrumenting its
execution. Because of its nature, dynamic analysis can extract a
wealth of information about a single execution but (1) this infor-
mation might not generalize to other executions, and (2) it might
impose a significant runtime overhead to the program’s execution.
Several dynamic analysis frameworks have been developed for
JavaScript [2, 10, 14, 17].
Combined analysis: While both static and dynamic analysis are
necessarily imprecise approximations of program behavior, their rel-
ative trade-offs make them complementary tools in a programmer’s
tool arsenal [3, 4]. By combining these two synergistic approaches,
as our demo shows, we aim at providing improved analysis results
with minimal-to-zero developer effort.

3 TOOL OVERVIEW
Fig. 1 shows an overview of our proposed techniques and the way
they are applied on a real use case.

Our techniques start by running a static program analysis on the
source code of the target library to extract a first set of candidate
permissions (Fig. 1, (1)). This phase analyzes the source code of
the library and corresponding dependencies to extract the set of
interfaces—e.g., functions, global objects, language built-ins—used
by the library.

Our techniques then pair this static permission set with a second
set gathered via dynamic program analysis (Fig. 1, (2)). During this
phase, dynamic analysis is applied against the testing infrastructure
of the library, which encodes anticipated library behaviors envi-
sioned by the library’s developers. We augment these test inputs
with ones gathered via active learning [15]—a critical addition for
libraries that do not have test cases.

Finally, our techniques enforce the permission sets gathered by
both analysis phases by instrumenting program execution (Fig. 1,
(3)). When this enforcement instrumentation framework detects
an access outside of the generated permission set, it throws an
exception aborting the execution of the program.

4 A REAL EXAMPLE
This section exemplifies our techniques against dynamic library
subversion—a common attack vector in libraries that evaluate user
input.
A de-serialization library: Consider a Node.js application that
uses a third-party (de)serialization library for converting serialized
strings into in-memory objects. The (de)serialization library is fed
client-generated strings, which may lead to remote code execu-
tion (RCE) attacks. The code below shows the relevant application
fragment:
const serial = require('serialization');
http.createServer((req, res) => {

req.on('end', () => {
let val = serial.deserialization(data);
if (val.token == 'a1b2c33d4e5f6g7h8i9jakblc')

console.log('Api key:', val) });

The code above first imports the serialization library. It then
creates a web server that receives user-provided values arriving
from the network as strings, which get deserialized into in-memory
objects. Values containing a special token are printed in the console.

Unfortunately, this deserialization functionality is provided by
serial.dec which is implemented by a third-party library devel-
oped by programmers other than the application’s nominal devel-
opers. Internally, this function uses the unsafe eval primitive of
Node.js which evaluates any valid JavaScript code:
module.exports = {

dec: (str) => {
let obj;
obj = eval(str);
return obj; } }

Benign vs. malicious operation: Benign user requests work as
expected—e.g., , the following request will cause the value to be
printed:
let key = 'a1b2c33d4e5f6g7h8i9jakblc');
request.write(payload); // part of a request

However, adversaries can pass Turing-complete programs that
will execute on the host environment—e.g., , the following input
will create a file pwned.txt using the fs library of Node.js:
let payload = 'require("fs").

writeFileSync("./pwned.txt","uh-oh!\\n")');
request.write(payload);

Applying state-of-the-art tools: We attempt to detect this mali-
cious operation using two state-of-art tools, Snyk [11] and NPM
audit [9]. Running snyk test in the folder that contains the vul-
nerable library does not report any vulnerabilities:

Tested 1 dependencies for known issues,
no vulnerable paths found

The results are similar for npm audit:
found 0 vulnerabilities in 1 scanned packages

The reason these tools fail to report any risks is that the dependen-
cies of our program do not have any known vulnerabilities.
Applying Static Analysis: We first run perm.js -s, our static
permission inference analysis, to extract the first set of permissions
for serialization:



{ "~/libs/serialization/index.js":
{ "eval": "rx",

"module": "r",
"module.exports": "w" } }

The inferred permissions show the use of eval and module.export
for evaluating code and exporting library functionality.
Applying dynamic analysis: We then run perm.js -d, our
dynamic permission inference analysis, with the use of the provided
test cases in order to extract permissions from the third-party library
serialization. As all of the inputs are JSON objects, they only
additional permissions are related to a few built-in primitives such
as the Array constructor and the value null.
{ "~/libs/serialization/index.js":

{ "eval": "rx",
"module": "r",
"module.exports": "w",
"Array": "rx",
"null": "r", } }

Executing with permission enforcement: We launch the instru-
mented program enforcing the combined RWX permissions inferred
during the previous two phases. When the malicious input attempts
to access the fs library, the instrumented code throws an exception
that halts the execution of the program.

5 DISCUSSION & CONCLUSION
We hope that our demo will form the basis of a discussion around
the practices of third-party libraries. We outline a few potential
discussion threads below.

First, what is the best way for developers to incorporate specific
standards to the libraries they develop and make available to the
community? The goal here is to minimize supply-chain attacks
due to developer mistakes. A formalization could include language-
specific standards (e.g., minimizing the use of eval, or enforcing
the inclusion of test cases with adequate coverage) for ameliorating
security problems before the libraries are shared.

Second, what are the possible steps to be taken by library repos-
itories in order to shield the community against these problems?
The goal here is to identify a set of simple steps that repositories can
take in order to mitigate many of these problems—with minimal
overhead for the end user.

Finally, what is a good way to improve checks on program up-
dates? As the SolarWinds [1] attack has demonstrated, discovering
and mitigating vulnerabilities related to program updates is of para-
mount importance, and thus automating these checks to the extent
possible would provide significant security benefits.

We hope that our demonstration of a combined static and dy-
namic program analysis in the context of real Node.js applications,
will serve to kick off a targeted discussion around the problems of
third-party libraries and possible ways to mitigate them.

ACKNOWLEDGMENTS
This work was partly supported by DARPA contract no. HR0011202-
0013, HR001120C0191, and HR001120C0155. This work has also
received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 830927
(CONCORDIA) and under grant agreement No 952690 (CYRENE).

REFERENCES
[1] 2020. CVE-2020-10148. Available from NIST, CVE-ID CVE-2020-10148.. https:

//nvd.nist.gov/vuln/detail/CVE-2020-10148
[2] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,

Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. ACM Comput. Surv. 50, 5 (2017), 66:1–66:36.
https://doi.org/10.1145/3106739

[3] Michael D Ernst. 2003. Static and dynamic analysis: Synergy and duality.
[4] Chris Hawblitzel and Thorsten Von Eicken. 1998. A case for language-based

protection. Technical Report. Cornell University.
[5] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing

the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID} 2020).

[6] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. (2017).

[7] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static analysis of event-
driven Node. js JavaScript applications. ACM SIGPLAN Notices 50, 10 (2015),
505–519.

[8] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 736–747.

[9] npm. 2016. Run a security audit. https://docs.npmjs.com/cli/v7/commands/npm-
audit/. https://docs.npmjs.com/cli/v7/commands/npm-audit

[10] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 488–498. https:
//doi.org/10.1145/2491411.2491447

[11] Snyk. 2016. Find, fix and monitor for known vulnerabilities in Node.js and Ruby
packages. https://snyk.io/. https://snyk.io/

[12] Deian Stefan. 2015. Principled and Practical Web Application Security. Stanford
University.

[13] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazieres. 2014. Protecting Users by Confining JavaScript
with {COWL}. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14). 131–146.

[14] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Ef-
ficient Dynamic Analysis for Node.Js. In Proceedings of the 27th International
Conference on Compiler Construction (CC 2018). ACM, New York, NY, USA, 196–
206. https://doi.org/10.1145/3178372.3179527

[15] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 16. https://doi.org/10.1145/3460120.3484736

[16] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M. Smith. 2018. BreakApp: Automated, Flexible Application Com-
partmentalization. In Networked and Distributed Systems Security (NDSS’18).
https://doi.org/10.14722/ndss.2018.23131

[17] Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard. 2021.
Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module
Recontextualization. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2021). Association for Computing Machinery, New York,
NY, USA, 1202–1213. https://doi.org/10.1145/3468264.3468574

[18] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing Dynamic
Library Compromise on Node.js via RWX-Based Privilege Reduction. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21). Association for Computing Machinery, New York, NY, USA,
18. https://doi.org/10.1145/3460120.3484535

[19] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Smallworld with High Risks: A Study of Security Threats in the Npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC’19). USENIX Association, USA, 995–1010.

https://nvd.nist.gov/vuln/detail/CVE-2020-10148
https://nvd.nist.gov/vuln/detail/CVE-2020-10148
https://doi.org/10.1145/3106739
https://docs.npmjs.com/cli/v7/commands/npm-audit/
https://docs.npmjs.com/cli/v7/commands/npm-audit/
https://docs.npmjs.com/cli/v7/commands/npm-audit
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
https://snyk.io/
https://snyk.io/
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3460120.3484736
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.1145/3468264.3468574
https://doi.org/10.1145/3460120.3484535

	Abstract
	1 Introduction
	2 Related Work
	3 Tool Overview
	4 A Real Example
	5 Discussion & Conclusion
	Acknowledgments
	References

