
MILS Workshop 2017 at www.embedded-world.eu

Ease Standard Compliance by Technical Means via

MILS

Sven Nordhoff

Director Certification

SYSGO AG

Germany

Holger Blasum

Research & Development

SYSGO AG

Germany

Abstract—You have to develop an embedded system? You

need to show its conformance to a safety standard (e.g. IEC

61508, ISO 26262, DO-178) or a security standard (e.g. IEC

62443, Common Criteria)? How does your life get easier by using

a MILS design? Using an embedded operating system can help

with modularization. Moreover, a *MILS* embedded operating

system isolates processes and their resources from each other.

Resource management and information flow control enable

separation in time and separation in space. In this paper we show

standard compliance work units that MILS helps achieving by

technical means.

Keywords—MILS (Multiple Independent Levels of

Security/Safety) operating system, system using MILS,

separation kernel, safety, security, embedded system, IEC 61508,

ISO 26262, DO-178, IEC 62443, Common Criteria

I. INTRODUCTION

Our objective is practical: assume you develop an
embedded system and want to show its conformance to a
safety / security standard (e.g. IEC 61508, ISO 26262, DO-178
IEC 62443, or Common Criteria), how does your life get easier
by using a MILS design?

At first glance, in the above-mentioned standards, there is
no hard requirement like "you shall use a MILS design".
However, software developer common sense is that it is a good
idea to develop a system in a modular way. The same common
sense will be to reuse existing (COTS = common off-the-shelf)
components. In particular, it is a good idea to use an operating
system to abstract hardware. Unsurprisingly, this common
sense is reflected in the standards themselves. We will point to
those sections within the standards where this reasoning can be
found. Up to this point, the arguments are valid for using any
COTS operating system.

A MILS operating system (also called “separation
kernel” [1]) provides controlled resource management and
information flow, which are used for separation in time and

separation in space. Using a MILS operating system allows to
isolate processes and their resources from each other, allowing
to show that processes do not interfere with each other or their
resources. This means that the burden of proof for separation
properties is shifted away from the developer of a product
using a MILS operating system. Viewed from the perspective
of verification, a MILS operating system reduces the number of
possible states your embedded system may have. The adequate
qualification and verification of the MILS operating system has
been taken care of by the MILS operating system vendor.

We point to where and to which extent separation in time
and space can be found in the different safety and security
standards and how, in our eyes, the use of a MILS operating
system simplifies to get credit for the fulfillment of certain
requirements of standards, which, in some cases, would be
much harder to confidently fulfill without a MILS operating
system.

II. RELEVANT STANDARDS

In this paper we have analyzed standards that are very
common and in most cases official means of compliance in
different industries. All these standards strongly benefit from
using a MILS architecture:

IEC 61508 [2] is applicable for safety certification of a
broad range of cyber-physical systems, it covers software and
hardware. This standard is used in all industrial domains.

ISO 26262 [3] is an instantiation of IEC 61508, specifically
targeting the automotive sector. It covers software and
hardware.

DO-178 [4] is "the" standard for qualification of airborne
software. It mainly covers software, but also emphasizes the
relation of the software to the system (including hardware).

IEC 62443 [5] is directly targeting security for IEC 61508.
IEC 61508 Part 1, Section 7.5.2.2, states that “if security

threats have been identified, then a vulnerability analysis
should be undertaken in order to specify security requirements”
and points to IEC 62443. As of January 2017, some parts of
IEC 62443 still are under development (for which working
drafts are available). It covers software and hardware.

Lastly, the Common Criteria for Information Technology
Security Evaluation [6] (abbreviated as “CC”) is a standard for
security, targeting software and hardware.

III. MILS CONCEPTS AND TECHNICAL MEANS IN THE

STANDARDS

MILS is an architecture to build highly reliable systems
with a high degree of assurance. MILS achieves modularity
and well-defined flows by using partitioning, access control,
resource management and control of information flow [7].

A. Modularity and well-defined flows

All standards mentioned above emphasize that a simple,
understandable, and verifiable design is helpful to achieve the
desired security and safety properties.

One of the most widely accepted techniques to ensure a
simple, understandable, and verifiable design is to partition the
design into different subsystems. This concept occurs in all
standards. Of course, it is usually not possible nor desirable to
break down a design into completely isolated components;
rather components probably will interact via well-defined
control and data flow. Modularity and flow control is one of
the tasks that MILS operating systems support well.

B. Space partitioning, time partitioning

Modularity can only be achieved when resources are
allocated clearly and non-bypassably. A MILS operating
system is a partitioned embedded operating system, and this is
one point where MILS operating systems are stronger than
other embedded operating systems. Space partitioning is the
static allocation of resources (such as memory). Time
partitioning comprises handling of interrupts, and scheduling,
so that time quotas are always ensured. IEC 61508 explicitly
distinguishes between separation in space and separation in
time. If separation in space is assumed to comprise “memory
access control” and separation in time to comprise “cyclic
scheduling”, then a similar distinction, albeit with different
wording, is found in DO-178, ISO 26262, IEC 62443 and the
CC. Table 1 gives examples where to find space partitioning
and time partitioning in the standards.

Stan-
dard

Space Time

IEC

61508,

Part 3,
Annex

F (F2,

F4,
F5)

“Spatial: the data used by one

element shall not be changed by

another element. In particular, it
shall not be changed by a non-

safety related element.

a) Use of hardware memory
protection between different

elements, including elements of

differing systematic capability.
b) Use of an operating system

which permits each element to

“Temporal: one element shall not

cause another element to function

incorrectly by taking too high a share
of the available processor execution

time, or by blocking execution of the

other element by locking a shared
resource of some kind.

a) Deterministic scheduling methods.

For example, a cyclic scheduling
algorithm which gives each element a

defined time slice supported by worst

execute in its own process with

its own virtual memory space,
supported by hardware memory

protection.

c) Use of rigorous design,
source code and possibly object

code analysis to demonstrate

that no explicit or implicit
memory references are made

from between software

elements which can result in
data belonging to another

element being overwritten (for

the case where hardware
memory protection is not

available).

d) Software protection of the
data of a higher integrity

element from illegal

modification by a lower

integrity element.”

case execution time analysis of each

element to demonstrate statically that
the timing requirements for each

element are met; time triggered

architectures.
b) Strict priority based scheduling

implemented by a real-time executive

with a means of avoiding priority
inversion.

c) Time fences which will terminate

the execution of an element if it over-
runs its allotted execution time or

deadline (in such a case, hazard

analysis shall be undertaken to show
that termination of an element will not

result in a dangerous failure, so this

technique may be best employed for a
non-safety related element).

d) An operating system which

guarantees that no process can be

starved of processor time, for example

by means of time slicing. Such an

approach may only be applicable
where there are no hard real time

requirements to be met by the safety

related elements, and it is shown that
the scheduling algorithm will not

result in undue delays to any

element.”

ISO

26262,

Part 6,
Annex

D

“Memory: With respect to

memory, the effects of faults

such as those listed below can
be considered for software

elements executed in each

software partition:

 corruption of content;

 read or write access to
memory allocated to

another software element.

EXAMPLE Mechanisms such
as memory protection, parity

bits, error-correcting code

(ECC), cyclic redundancy
check (CRC), redundant

storage, restricted access to

memory, static analysis of
memory accessing software and

static allocation can be used.”

(Note: SIL D needs hardware
support, see Part 6, 7.4.11.)

“Timing and execution: With respect

to timing constraints, the effects of

faults such as those listed below can
be considered for the software

elements executed in each software

partition:

 blocking of execution;

 deadlocks;

 livelocks;

 incorrect allocation of execution
time;

 incorrect synchronization
between software elements.

EXAMPLE Mechanisms such as

cyclic execution scheduling, fixed
priority based scheduling, time

triggered scheduling, monitoring of

processor execution time, program
sequence monitoring and arrival rate

monitoring can be considered.”

DO-

178,
Sec-

tion

2.4.1

“A partitioned software

component should not be
allowed to contaminate another

partitioned software com-

ponent's code, input/output
(I/O), or data storage areas.”

(Note: A more explicit

distinction between space and
time can be found in ARINC-

653 [8].)

“A partitioned software component

should be allowed to consume shared
processor resources only during its

scheduled period of execution.”

IEC

62443,
Part

3.3

Space partitioning not explicitly

mentioned, but implied by
partitioning functional

requirements.

Time partitioning not explicitly

mentioned, but implied by resource
management functional requirements.

CC,
Part 2

Space partitioning not explicitly
mentioned, but implied by

access control (FDP_ACC,

FDP_ACF).

Time partitioning not explicitly
mentioned, but implied by resource

management (FRU_RSA).

Table 1: Space and time partitioning in different standards

MILS Workshop 2017 at www.embedded-world.eu

C. Partitioning, freedom from interference, non-interference,

information flow

DO-178 Section 2.4.1 explicitly describes partitioning and

IEC 61508 Part 3, Annex F, describes a similar concept:

“independence of execution” and also “non-interference”. ISO

26262 Part 6, Annex D, uses the term “freedom from

interference”. In DO-178 and IEC 61508, non-interference is

geared towards availability and integrity. That is, the integrity

of each application and the availability of the resources it uses

are not hindered by other applications. ISO 26262 Part 6,

Annex D also stresses integrity and availability, but

additionally includes to freedom from interference the absence

of accesses to memory allocated to another software element

(i.e. not only covering write access, but also read access). No

such explicit descriptions have been found in IEC 62443, but

related functionality in 62443 is application (or device)

partitioning, denial of service protection and resource

management (SR 5.4, CR 5.4, SR 7.1, CR 7.1, SR 7.2,

CR 7.2). The CC Part 2 provides support to cover

functionality giving non-interference by access control

(FDP_ACC, FDP_ACF) information flow (FDP_IFC,

FDP_IFF), and/or resource management (FRU_RSA).

IV. STANDARD COMPLIANCE WORK UNITS THAT MILS

HELPS ACHIEVING BY TECHNICAL MEANS

In this section, we assume that a system will be built that uses

a MILS operating system, and the software is encapsulated

into different, possibly communicating partitions. For an

avionic example of such a system see e.g. [9], for an

automotive example see e.g. [10]. The focus of the analysis in

this section is on requirements, architecture and design, it is

not on verification/testing.

A. ISO 61508 [2]

Within ISO 61508 our focus is Part 3, which deals with

software. We begin with Part 3 Section 7.2.2 that is on

software safety requirements specification. Here MILS

particularly eases the specification of “any safety-related or

relevant constraints between the hardware and the software”

(7.2.2.7), to “clearly identify the non-safety functions”

(7.2.2.9), identify “functions related to the detection,

annunciation and management of faults in the software itself

(software self-monitoring)” (7.2.2.10, by use of MILS health

monitoring provided by the MILS operating system), to fulfill

“independence requirements between functions” (7.2.2.10),

and to analyze “best case and worst case execution time”

(7.2.2.12, the analysis is simplified by using time partitioning).

Part 3 Section 7.4.3 (requirements for software architecture

design) gives “operating systems” as example of “major

software elements” that can be element of a software

architecture design. Part 3 section 7.4.3.2.b states that a

software architecture shall “be based on a partitioning into

elements/subsystems”, moreover a focus of software

architecture (7.4.3.2.c) is to “determine all software/hardware

interactions and evaluate and detail their significance”. The

use of a MILS operating system by design gives a technical

separation into partitions and all software/hardware

interactions can be traced to the level of partitions.

Part 3 Section 7.4.2 is dealing with software design

requirements, here MILS is particularly useful for

“abstraction, modularity and other features which control

complexity”, “the expression of ... information flow between

elements, ... timing constraints” (7.4.2.2). MILS is a feature

that “facilitates software modification” (7.4.2.4, by puzzle

composition [11]), and it allows to “keep the safety-related

part of the software simple” (7.4.2.6, by factoring out the

safety-related part of software into a high-criticality partition),

and provides “adequate design measures ensure that the

failures of non-safety functions cannot adversely affect safety

functions” (7.4.2.8), “unless adequate independence between

the safety functions of the different safety integrity levels can

be shown in the design” (7.4.2.9, use a MILS platform to

justify independence).

B. ISO 26262 [3]

Here it is Part 6 that focuses on software. For the specification

one has to show “compliance and consistency with the

technical safety requirements; compliance with the system

design; and consistency with the hardware-software interface”

(Section 6.4.8) which, again is much easier when the system

design consists of independent partitions.

Part 6 Section 7.4 is on software architecture. It is required to

take into account “the testability of the software architecture

during software integration testing; and the maintainability of

the software architectural design” (Section 7.4.2), which are

simplified by MILS design (thanks to puzzle composition), the

design shall exhibit “modularity; encapsulation; and

simplicity” (Section 7.4.3), the software architectural design

shall describe “the functionality and behavior; the control flow

and concurrency of processes; the data flow between the

software components; the data flow at external interfaces; and

the temporal constraints” (Section 7.4.5) which again is much

easier if you have a partitioned system to begin with. Section

7.4.11 explicitly deals with software partitioning, requiring

(amongst other) “that shared resources are used in such a way

that freedom from interference of software partitions is

ensured” (provided by MILS resource separation). Lastly,

MILS time and space partitioning greatly helps to ensure the

requirements of 7.4.17: “An upper estimation of required

resources for the embedded software shall be made, including:

the execution time; the storage space; and the communication

resources.”

C. DO-178 [4]

Section 2.3 states that “only partitioned software components

can be assigned individual software levels by the system

safety assessment process.” Section 2.4.1 clarifies that “a

partitioned software component should not be allowed to

contaminate another partitioned software component's code,

input/output (I/O), or data storage areas”, that it “should be

allowed to consume shared processor resources only during its

scheduled period of execution” and “failures of hardware

unique to a partitioned software component should not cause

adverse effects on other partitioned software components”,

which are a strong separation properties again provided by

MILS systems.

On software architecture DO-178 Section 6.3.3.a (referenced

from Table A-4, item 8) states that functions that provide

(logical) partitioning do not conflict with high-level

requirements, one way of doing this is to use a MILS

operating system. Section 6.3.3.b (referenced from Table A-4,

item 9) describes that “the objective is to ensure that a correct

relationship exists between the components of the software

architecture. This relationship exists via data flow and control

flow.” MILS provides a good control of data flow and control

flow. Further objectives comprise “initialization,

asynchronous operation, synchronization, and interrupts”

(Section 6.3.3.c, referenced from Table A-4, item 10, which a

MILS system can well control), “software architecture is

verifiable” (Section 6.3.3.d, referenced from Table A-4,

item 11, MILS system break down complexity to partitions

and ease verifiability) and that “software partitioning integrity

is confirmed” (Section 6.3.3.f, referenced from Table A-4,

item 13, MILS systems allow to ensure adequate partitioning

integrity by choice of a MILS operating systems).

D. IEC 62443 [5]

As mentioned before, IEC 62443 is not yet fully finalized. Our

discussion mainly builds on Part 4.1 (Draft 3, Edit 10) for the

requirements for secure product development lifecycle

requirements.

Part 4.1 Section 7.3 SR-2 and higher demands that “all

products shall have an up-to-date threat model with the

following characteristics: correct flow of categorized

information throughout the system,” including “trust

boundaries”. Use of a MILS system provides partitions as

natural application containers with “trust boundaries”.

Part 4.1 Section 8.3 SD-2 (defense in depth in design

enhancement level 2) demands that “a process shall be

employed for including multiple layers of defense where each

layer provides additional defense mechanisms. Each layer

should assume that the layer in front of it may be

compromised. Secure design principles are applied to each

layer.” A MILS operating system naturally lends itself be used

to add one layer of a defense. For SD-6 (Part 4.1 Section 8.7),

MILS covers “least privilege”, “using proven secure

components/designs where possible”, “economy of

mechanism (striving for simple designs),”, “using secure

design patterns”, “attack surface reduction”, “all trust

boundaries are documented as part of the design”.

In terms of functional requirements (Part 3.3 and Part 4.2 of

IEC 62443), MILS very well addresses application (or device)

partitioning (Part 3.3 SR 5.4 / Part 4.2 CR 5.4), denial of

service protection (Part 3.3 SR 7.1 / Part 4.2 CR 7.1) and

resource management (Part 3.3 SR 7.2 / Part 4.2 CR 7.2).

E. Common Criteria (CC) [6]

In terms of product security functional requirements (CC

Part 2), MILS systems make it easy to show access control

(FDP_ACC, FPD_ACF), information flow control (FDP_IFC,

FPD_IFF), and resource management (FRU_RSA), for an

example see [12].

For methodology, we base our discussion on CEM (Common

Evaluation Methodology), which directly addresses CC

evaluators. For the product design, ADV_TDS.3-1 demands

that “the structure of the entire” product “is described in terms

of subsystems” and ADV_TDS.3-6 demands that the product

documentation shall ensure that “interactions between the

subsystems” of the product are described. In a MILS-based

system, partitions are natural candidates for subsystems.

For the product architecture, ADV_ARC.1-2 demands that the

evaluator looks at the “security domains”. If you use a

partitioned system, then partitions are building blocks for

security domains (see e.g. [9]). ADV_ARC.1-4 demands to

check how the product protects “itself from tampering by

untrusted active entities” and ADV_ARC.1-5 demands that

the security architecture adequately describes how the

security-enforcing functionality “cannot be bypassed”. Here

again, it comes handy to delegate the responsibility to an

underlying MILS operating system.

V. DISCUSSION

We have shown, for each standard, where we see significant

potential by using a MILS design. In effect, the standard

sections we quoted are a list of assurance activities to be

achieved where the burden of proof of tricky architectural

properties such as separation, information flow control can be

shifted in a concrete embedded system deployment to a MILS

operating system. As a benefit, the MILS operating system

vendor can provide this assurance for the MILS operating

system as a product. Of course, we do not claim that the above

list is complete, e.g. testing has been largely omitted from the

analysis. That omission is mainly because we feel that the

benefits for testing are more indirectly resulting from the

simplified architecture rather than direct requirements in the

standards themselves that a partitioned architecture needs to

be used for testing.

For each standard, here, so far, for simplicity we have focused

on the software design itself. Often, other parts of the

standards than the above-mentioned software-centric parts

deal with software-hardware interactions and more arguments

for the use of MILS systems can be found. E.g. the automotive

ISO 26262 Part 4 (“Product development at the system level”)

Section 7.4.6 states that for hardware-software interaction one

has to specify “the hardware features that ensure the

independence between elements and that support software

partitioning; shared and exclusive use of hardware resources;

the access mechanism to hardware devices; and the timing

constraints defined for each service involved in the technical

safety concept”, all which is made much simpler when the

hardware interaction can be confined either to the MILS

operating system or single driver partitions.

All standards require the common sense that if partitioning is

used for separation of critical from non-critical components,

then the software implementing the partitioning shall be as

trustworthy (in terms of assurance level) as is the most critical

component that is being partitioned. That is if you have, an

application with criticality X, then the MILS operating system

at least shall have assurance level X.

MILS Workshop 2017 at www.embedded-world.eu

Compositional certification is the reuse of artifacts for a

lower-level component for a higher-level component (e.g. a

system based on a MILS operating system reuses assurance of

the MILS operating system), and it is established practice e.g.

for DO-178, where MILS systems are frequently deployed.

However, each DO-178 certification only targets a specific

deployment, and, for software, is usually done fully white-

box. The CC as well as IEC 61508, ISO 26262, and IEC

62443 are product-centric, thus they offer reuse and

compositional certification (see e.g. [13], [14]).

VI. ACKNOWLEDGMENT

Work by one of the authors has received partial funding from

EU Horizon 2020 project certMILS http://www.certmils.eu/,

project number: 731456.

VII. BIBLIOGRAPHY

[1] S. Tverdyshev, "Security by Design: Introduction to

MILS," in this workshop, 2017.

[2] International Electrotechnical Commission, Technical

Committee 65: Industrial-process measurement and

control, IEC 61508: Functional safety of

electrical/electronic/programmable electronic safety-

related systems, 2.0 ed., 3, rue de Varembé, CH-1211

Geneva 20: IEC Central Office, 2010.

[3] ISO/TC 22, Road vehicles, Subcommittee SC 3,

Electrical and electronic equipment, ISO 26262 Road

vehicles - Functional safety, Case Postale 56, Geneva,

Switzerland: International Standards Organization, 2011.

[4] RTCA SC-205 / EUROCAE WG-71, DO-178C:

Software Considerations in Airborne Systems and

Equipment Certification, Radio Technical Commission

for Aeronautics (RTCA), Inc., 1150 18th NW, Suite 910,

Washington, D.C. 20036, 2011.

[5] International Electrotechnical Commission, Technical

Committee 65: Industrial-process measurement and

control, IEC 62443: Security for industrial automation

and control systems, 3, rue de Varembé, CH-1211

Geneva 20: IEC Central Office, 2008.

[6] Common Criteria Sponsoring Organizations, Common

Criteria for Information Technology Security Evaluation.

Version 3.1, revision 4, 2012.

[7] S. Tverdyshev, H. Blasum, B. Langenstein, J. Maebe, B.

De Sutter, B. Leconte, B. Triquet, K. Mueller, M.

Paulitsch, A. Soeding-Freiherr von Blomberg and A.

Tillequin, “MILS Architecture,” 2013. [Online].

Available: http://dx.doi.org/10.5281/zenodo.45164.

[8] Airlines Electronic Engineering Committee (ARINC),

Avionics application software standard interface: ARINC

specification 653, Annapolis, MD 21401: Aeronautical

Radio, Inc., 1997.

[9] K. Müller, M. Paulitsch, S. Tverdyshev and H. Blasum,

"MILS-Related Information Flow Control in the Avionic

Domain: A View on Security-Enhancing Software

Architectures," 2012. [Online].

[10] I. Furgel, V. Saftig, T. Wagner, K. Müller and R. S. von

Blomberg, “Non-Interfering Composed Evaluation,” Jan

2016. [Online]. Available:

http://dx.doi.org/10.5281/zenodo.47979.

[11] S. Tverdyshev, "EURO-MILS: Building and certifying

modular secure systems," 2016. [Online]. Available:

https://doi.org/10.5281/zenodo.47972.

[12] K. Müller, M. Paulitsch, R. Schwarz, S. Tverdyshev and

H. Blasum, "MILS-Based Information Flow Control in

the Avionic Domain: A Case Study on Compositional

Architecture and Verification," 2012. [Online].

[13] A. D. Sinnhofer, W. Raschke, C. Steger and C. Kreiner,

“Evaluation paradigm selection according to Common

Criteria for an incremental product development,” 2015.

[Online]. Available:

http://dx.doi.org/10.5281/zenodo.47986.

[14] EURO-MILS, “Euromils deliverable - D33.1: Addendum

to CEM,” [Online]. Available:

https://doi.org/10.5281/zenodo.47298.

http://www.certmils.eu/

	I. Introduction
	II. Relevant standards
	III. MILS concepts and technical means in the standards
	A. Modularity and well-defined flows
	B. Space partitioning, time partitioning
	C. Partitioning, freedom from interference, non-interference, information flow

	IV. Standard compliance work units that MILS helps achieving by technical means
	A. ISO 61508 [2]
	B. ISO 26262 [3]
	C. DO-178 [4]
	D. IEC 62443 [5]
	E. Common Criteria (CC) [6]

	V. Discussion
	VI. Acknowledgment
	VII. Bibliography

