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Abstract—Information flow policies are widely used for spec-
ifying confidentiality and integrity requirements of security-
critical systems. In contrast to access control policies and security
protocols, they impose global constraints on the information flow
and thus provide end-to-end security guarantees. The information
flow policy that is usually adopted is non-interference. It postu-
lates that confidential data must not affect the publicly visible
behaviour of a system. However, this requirement is usually
broken in the presence of cryptographic operations.

In this paper, we propose a formal approach to distinguish
between breaking non-interference because of legitimate use
of sufficiently strong encryption on the one side, and due to
unintended information leaks on the other side. It employs the
well-known technique of program slicing to identify (potential)
information flows between the data elements of a specification
given in a MILS variant of the Architecture Analysis and Design
Language (AADL). Moreover, we investigate the relation between
our method and an extended notion of non-interference known
as possibilistic non-interference, and demonstrate its applicability
on a concrete example system.

I. INTRODUCTION

Whenever the architecture of a software system allows
untrusted application programs to access sensitive information,
a technique must be provided to prevent such information from
being ”leaked” and becoming available to unauthorised enti-
ties. For this purpose, information flow control mechanisms are
introduced, which allow to check the design of programs for
security leaks and illegal influences of critical computations
based on the system description. However, many information
flow control mechanisms are either imprecise, which results
in many false alarms, or are unable to handle cryptographic
operations.

The aim of our work is to develop a formal method for
analysing information flow in systems that are specified in a
MILS variant of the Architecture Analysis and Design Lan-
guage (AADL). The underlying semantic notion is that of non-
interference, which requires that changing secret input values
of a system must not affect its publicly observable output.
Although this concept is adequate for many applications, it
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is often violated in the presence of cryptographic operations.
In this setting, the main challenge is to distinguish between
legitimate “violations” caused by using (sufficiently strong)
encryption mechanisms and unintended information leaks that
expose information which should be kept secret.

To address this problem, we employ a well-known method
for static analysis, program slicing. The latter aims to iden-
tify (potential) dependencies between program elements, and
has manifold applications in debugging, optimisation, main-
tenance, and model checking of software. Starting with the
basic version of a slicing algorithm for MILS-AADL specifica-
tions, we develop an extension that handles cryptographically-
masked information flows by taking both the “declassifying”
effect of encryption operations and the restoration of de-
pendencies by decryption into account. This is accomplished
by analysing for each system component which encryption
keys are accessible, and which data is (possibly) subject to
cryptographic operations.

In order to establish the correctness of our slicing ap-
proach, we investigate its relation to an extended notion
of non-interference known as possibilistic non-interference.
The latter allows low outputs to depend on low inputs and,
additionally, ciphertexts, but requires that no observation about
possible low outputs may reveal information about changes
in high inputs, which turns out to provide a natural model
for cryptographically-masked information flows. Moreover,
we demonstrate the applicability of our method on concrete
example systems.

II. THE MILS-AADL LANGUAGE

The specification language MILS-AADL [2], based on the
Architecture Analysis and Design Language (AADL) [10], has
been developed within the D-MILS project [3] and is intended
to serve as the user-facing representation for model-based
design of D-MILS systems. Essential features are component
definitions in terms of interfaces and implementations, their
architecture and interaction through data and event ports, their
internal behaviour, and security-related mechanisms such as
encryption and authentication.
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Category Production rules

Type τ ::= int | bool | key | enc τ | (τ . . . , τ)
Expression e ::= n | x | e⊕ e | (e, . . . , e) | e[n]
System S ::= system s(S∗ P ∗ C∗ V ∗ M∗ T ∗)
Port P ::= p : {in | out} {event | data τ}
Port connection C ::= connection ([s.]p, [s.]p)
Variable V ::= x : τ [e]
Mode M ::= m : [initial] mode
Transition T ::= m−[ [p] [when e] [then ~x := ~e] ]−>m′

TABLE I
SYNTAX OF MILS-AADL

We analyse models described in a simplified version of
MILS-AADL, whose syntax is given in Table I. Here, “{. . .}”
represents a grouping of syntactical elements, “|” stands for
alternatives, and “[...]” denote optional elements.

MILS-AADL combines an architectural and a behavioural
description of a system s, as follows: one describes a hier-
archy of components, each possibly containing subsystems,
input and output ports, and port connections. The highest
or outermost system in this hierarchy is called the root
system. This describes the architecture. We distinguish event
ports and data ports. Event ports can trigger changes in
behaviour. Data ports are used to communicate data values
to or from the environment. The behaviour is defined by a
finite automaton with modes and transitions between them.
The latter are labelled with an event (port) p (input/output
events are consumed/produced when the transition is taken,
respectively), a guard expression (the transition is enabled
only when the guard evaluates to true), and a list of effects
~x := ~e (expressions are evaluated in the current state and
simultaneously assigned to the left-hand side variables). The
event, guard and effects are all optional. If the event is omitted,
no port’s event will be consumed or produced. If the guard is
omitted, it equals true. If the effect is omitted, the system’s
variables remain unchanged.

Specifically with respect to security, MILS-AADL pro-
vides security primitives in its expression language. Most
importantly for this paper, there is encrypt(m, k), taking a
message m of some type τ and a public key k and producing
a ciphertext of type enc τ . The original message can be
decrypted from the ciphertext using the decrypt function:
decrypt(c, k′) : τ takes a ciphertext c : enc τ and a private
key k′ to reproduce the message. If k′ is the matching private
key to the public key k used for encryption, this message is
the original message m. Otherwise, decryption fails and the
statement containing the decryption expression deadlocks.

Example 1: The running example of this paper is taken
from [8]. A cryptographic controller is placed between a
secure computer and an untrusted network, encrypting all data
going from the secure computer to the untrusted network.
However, only the payloads of the messages are considered
confidential, not their headers. For this reason, the split

subcomponent is first employed to split up incoming frames
into a header (“hdr”) and a payload (“load”) part. The
former are forwarded without any modification through the

system cryptocontroller(
inframe: in data (int, int)
outframe: out data (int, enc int)
mykey: key
system split(
frame: in data (int, int)
hdr: out data int
load: out data int
m0: initial mode
m0 -[then hdr := frame[0];

load := frame[1]]-> m0
)
system bypass(
inhdr: in data int
outhdr: out data int
m0: initial mode
m0 -[then outhdr := inhdr]-> m0

)
system crypto(
inload: in data int
outload: out data (enc int)
u: public(mykey)
m0: initial mode
m0 -[then outload :=

encrypt(inload, u)]-> m0
)
system merge(
hdr: in data int
load: in data (enc int)
frame: out data (int, enc int)
m0: initial mode
m0 -[then frame := (hdr, load)]-> m0

)
connection (inframe, split.frame)
connection (split.hdr, bypass.inhdr)
connection (split.load, crypto.inload)
connection (bypass.outhdr, merge.hdr)
connection (crypto.outload, merge.load)
connection (merge.frame, outframe)
)

Fig. 1. MILS-AADL specification of crypto controller

bypass subcomponent, while the confidentiality of the latter
is ensured by encryption in the crypto subcomponent. For
this purpose, it uses the public part of key mykey, which is
declared on the top level of the specification. Finally, using
the merge subcomponent header and (encrypted) payload are
re-assembled to outgoing frames which can be sent over an
untrusted network. The MILS-AADL code of this system and
a visual representation of its architecture are respectively given
in Figures 1 and 2. In the latter, solid/dashed lines respectively
represent public/confidential information flows.
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crypto controller
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Fig. 2. Architecture of crypto controller

III. INFORMATION FLOW SECURITY

This section introduces the relevant security concepts. First,
we make precise what we mean by security or confidentiality
levels. This allows us to further clarify non-interference and
to introduce the concept of possibilistic non-interference.

A security level describes what data is confidential (secret,
private) and what is public. Without loss of generality, we
assume that there are two security levels, H (high) and L (low).
Intuitively, the high level means that information is to be kept
secret and not be made visible to the outside world. No such
restriction is placed on data with a low security level.

Standard non-interference [4] requires that low confidential-
ity outputs may not change when high confidentiality inputs
are changed. In a system such as the crypto controller given
in Example 1, this is clearly violated as the value of the
(low) outframe depends on the value of the (high) inframe.
However, this system has to be considered safe because
encryption masks the information from any attackers. Thus,
standard non-interference rejects arguably secure and intended
uses of encryption.

An extended variant of non-interference aims to repair this
defect. In possibilistic non-interference [6], [1], we look at the
set of possible values after encryption instead of the actual
value. We assume that the result of encryption is possibly any
value in the ciphertext domain. Varying the contents now does
not change the possible outcomes of encryption: any ciphertext
is still a possible public output. Encryption is an instance of
declassification [9], where an expression which depends on
secret values is not itself secret.

IV. SLICING AND NON-INTERFERENCE

Program slicing refers a form of static analysis that can
be used to determine (potential) dependencies between the
inputs and outputs of system components. Amongst others,
this approach has been employed for analysing information
flow [5] and for improving the efficiency of model checking
[7]. For a given system specification s and a subset R ⊆ Dat
of the data elements of s (the so-called slicing criterion), the
algorithm developed in [7], as shown in Figure 3, identifies

% Slicing of system s with modes Mod , data elements Dat ,
% transitions Trn and connections Con w.r.t. criterion R
procedure slice(R) :
D := R;E := ∅;M := ∅;
% (1)
repeat

% Add source modes of transitions
% that affect interesting data elements
% or have interesting triggers

for all m
e,g,f−→ m′ ∈ Trn with

∃d ∈ D : f updates d or
∃d ∈ D : d inactive in m but active in m′ or
e ∈ E do

M :=M ∪ {m};
% Add data elements, events and source modes
% of transitions from/to interesting modes

for all m
e,g,f−→ m′ ∈ Trn with m ∈M or m′ ∈M do

D := D ∪ {d ∈ Dat | g reads d};
E := E ∪ {e};
M :=M ∪ {m};
for all d′ := a in f with d′ ∈ D do
D := D ∪ {d | a reads d}; % (2)

% Add sources and modes
% of connections to interesting data ports
for all a; d′ ∈ Con with d′ ∈ D do
D := D ∪ {d ∈ Dat | a reads d};
M :=M ∪ {m ∈ Mod | a; d′ active in m};

% Add sources and targets of connections
% involving interesting event ports
for all e; e′ ∈ Con with e ∈ E or e′ ∈ E do
E := E ∪ {e, e′};
M :=M ∪ {m ∈ Mod | e; e′ active in m};

until nothing changes;
return (D,E,M); % (3)

Fig. 3. Slicing algorithm (labels refer to extensions defined later)

those parts of s which (possibly) have an influence on the
slicing criterion by iteratively analysing all data and control
dependencies in backward direction. Thus, the information
flow to the output ports can be analysed by slicing the system
specification s with respect to the output ports. In the resulting
system, all maintaining parts of the system description have
a direct or indirect influence on the interesting port and thus
can be used for a further analysis with regard to security levels
or non-interference. This consideration is important as outputs
with a low security level should not depend on inputs having
a higher security level.

More concretely, it is possible to show [11]: if none of
the security levels of the elements of the backward slice of a
slicing criterion R exceeds the minimal security level in R,
then the system ensures (standard) non-interference.

Example 2: The non-interference property is clearly violated
for the crypto controller shown in Figure 1 as the (high)
incoming data port inframe is in the backward slice of
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the (low) outgoing data port outframe. This observation is
justified by the following chain of dependencies induced by
port connections (←c) or variable assignments occurring in
transitions (←t):

outframe ←c merge.frame
←t merge.load
←c crypto.outload
←t crypto.inload
←c split.load
←t split.frame
←c inframe

V. HANDLING CRYPTOGRAPHIC OPERATIONS

As described in Section II, MILS-AADL provides security
operations encrypt and decrypt that respectively require a
public and a private key as second argument. These key pairs
have to be declared as global constants on the top level of
the specification (“mykey : key”). Their public/private subkeys
can be assigned to variables (such as “u : public(mykey)” in
crypto) and forwarded via data ports. Thus, we are dealing
with a static pool of keys with dynamic distribution. As
pointed out earlier, we assume that a message encrypted with
a public key can only be decrypted when the corresponding
private key is used.

With respect to security analysis, this raises two challenges:
we must be able to detect “illegal” releases of keys, and we
have to properly evaluate the security level of encrypted and
decrypted information. The first problem is already covered
by the slicing technique presented in Section IV: if a (high)
private key is forwarded to a data port that is only expected
to hold a (low) public key, this clearly constitutes a violation
of a security policy that can be checked by slicing.

In order to handle the masking effect of cryptographic
operations, we employ a declassification approach [9]: the
information flow policy is relaxed by downgrading encrypted
sensitive information, i.e., by assigning a lower security level
to the encrypted value. If this value is later decrypted using the
matching private key, the result is re-classified to its original
security level.

More concretely, our analysis is implemented by an exten-
sion of the algorithm shown in Figure 3. It computes a condi-
tional slice of the given specification whose contents depends
on the distribution of (private) keys in the system. For each
usage of an encryption operation of the form encrypt(d, k),
we maintain two sets which are both computed by slicing.
The first is denoted by C and collects all data elements that
possibly influence the message argument d. The second is
denoted by U and contains all public keys that may be used
as the key argument k. Both are combined to a (C,U) pair.
The result of this encryption is always declassified to L.

For each usage of a decryption operation of the form
decrypt(d, k), the (C,U) pairs that may contribute to the
ciphertext argument d are determined using backward slicing,
which yields a set CU of such pairs. Moreover, we compute
a set P of private keys that may be used as the key argument
k by applying slicing again. At this point, it is possible to

split1

bypass1

crypto

merge1 split2

bypass2

decrypto

merge2
(L, H)

HH LL

(L, L)

L

L L L L

H

(L, H)

Fig. 4. Combination of encryption/decryption controller

identify all plaintexts that may result from this decryption
operation by taking the union of all C sets whose U parts
intersect with P , that is,⋃

(C,U)∈CU

{C | U ∩ P 6= ∅}

is added to the backward slice of decrypt(d, k). Accordingly,
the resulting security level is the maximal level of the data
elements in C ′.

In order to implement this analysis, the slicing algorithm is
extended by the following steps that are added at the respective
labels given in Figure 3:

1) The set of (C,U) pairs is initialised using the assignment

CU := ∅.

2) The unconditional update D := D ∪ {d | a reads d}
is replaced by the following case distinction, which
collects the (C,U) pairs and private keys in case of an
encryption/decryption operation and accordingly extends
the slicing information as described before:

if a = encrypt(d, k) then
(C,CU ′, E′,M ′) := slice({d});
(U,CU ′′, E′′,M ′′) := slice({k});
CU := CU ∪ {(C,U)};

else if a = decrypt(d, k) then
(D′, CU ′, E′,M ′) := slice({d});
(P,CU ′′, E′′,M ′′) := slice({k});
D := D ∪ {C | (C,U) ∈ CU ′, U ∩ P 6= ∅};

else
D := D ∪ {d | a reads d};

3) After replacing the original return statement by

return (D,CU,E,M),

a call of the extended slicing algorithm additionally
yields the (C,U) pairs collected for encryption oper-
ations.

In analogy to the correctness result stated at the end of
Section IV, one can show that if none of the security levels
of the elements of the backward slice of a slicing criterion
R exceeds the minimal security level in R, then the system
ensures possibilistic non-interference.

Example 3: In order to illustrate the working principle
of the conditional slicing algorithm, we extend the crypto
controller system from Example 1 by adding a “mirrored”

www.embedded-world.eu

www.embedded-world.eu


decryption component decryptocontroller as shown in
Figure 4. The specification of decryptocontroller is almost
identical to that of cryptocontroller with the exception that
the decrypto component employs a transition assignment of
the form

outload := decrypt(inload, p)

where the private key p is declared by p : private(mykey)
such that P = {mykey}. Backward slicing of the extended
specification with respect to criterion

R = {decryptocontroller.outframe}

first identifies the dependence of decrypto.outload, whose
value is given by decrypt(decrypto.inload, p). A call
of slice({decrypto.inload}) yields the dependency of
crypto.outload. An analysis of the defining expression
encrypt(crypto.inload, u) then returns the singleton pair
CU = {(C,U)}, where C is given by

{split1.load, split1.frame, cryptocontroller.inframe}

and U = {mykey}. Hence, U ∩ P 6= ∅ such that al-
together decryptocontroller.outframe is dependent on
cryptocontroller.inframe. However, Figure 4 shows that
there is a security assignment that satisfies the requirement of
possibilistic non-interference.

VI. CONCLUSION

In this paper, we have proposed a formal approach to
analyse information flow security properties of distributed
systems that are specified in a MILS variant of the Architecture
Analysis and Design Language (AADL). Due to the presence
of encryption features, the standard notion of non-interference
is too strong to distinguish between breaking non-interference
because of legitimate use of sufficiently strong encryption on
the one side, and due to unintended information leaks on
the other side. Our key idea is to employ the well-known
technique of program slicing to identify (potential) information
flows between the data elements of a given specification.
Starting with a basic version of a slicing algorithm which does
not support encryption (and which essentially characterises
non-interference therefore), we developed an extension that
keeps track of the distribution and application of keys. This
enabled us to clearly identify the (high) inputs on which a
(low) output possibly depends in the presence of cryptographic
operations. We also investigated the relation between our
slicing approach and an extended notion of non-interference
known as possibilistic non-interference, and demonstrated its
applicability on a concrete example system.
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