

Hardware enforced separation in embedded

multicore SoCs

Geoffrey Waters

Digital Networking Group

NXP Semiconductor

Austin, TX USA

Geoffrey.waters@nxp.com

Abstract—Separation and controlled information flow are the

foundations of MILS. This paper describes the methods by which

NXP QorIQ processors provide hardware enforced process

separation, and root of trust to guarantee execution of safety and

security software such as a MILS separation kernel and inter-

process communications.

Keywords—MILS; NXP, QorIQ™; Layerscape™, Trust

Architecture™; separation kernel; partitioning

I. INTRODUCTION

The cyber-physical world is upon us. By 2020, upwards of 30

billion ‘things’ will make up the internet of things [1], and

many of those things will be able to cause significant harm in

the physical world if not properly designed for safety and

security. It behooves us to understand what systems engineers

operating at the nexus of safety and security for the last couple

decades have already learned, and benefit from what these

‘early adopters’ have helped make ready for mass deployment.

The intent of this paper is to briefly describe the Multiple

Independent Levels of Security (MILS) approach to security

(and safety), describe the separation kernel concept, then dive

into details of hardware which enforces the safety and security

policies intended by the separation kernel.

The previously mentioned early adopters of the MILS

architecture were largely found in the military & aerospace

domain [2]. Mil/aero systems are sophisticated cyber-physical

systems, incorporating sensors, actuators, and processors. On

the military side, security was a driving requirement, as the

networked capabilities of western militaries were (and

continue to be) a target for penetration by state level

adversaries. Civilian avionics were less concerned with

malicious attacks than other types of system faults, and as

software grew to millions of lines of code, resilient systems

required new methods. Both military and civilian aerospace

are very concerned by space, weight, area, and power

(SWAP), as well as component obsolescence.

Military requirements for an architecture capable of

supporting the US Federal Aviation Administration’s DO-

178B Software Considerations in Airborne Systems and

Equipment Certification [3] and the Common Criteria’s EAL

7 security level [4] was the genesis of the MILS architecture.

MILS lays out the principles of isolated functions

communicating through unidirectional channels. Only the

information intended to be shared by one isolated function

with another is detectable by the receiving function. Two way

communication requires two unidirectional channels, each

with policy enforcement. The MILS allowance for isolation

via physical or logical means promoted development of

separation kernels; infrastructure software that could allow

multiple functions to run on the same hardware, with logical

isolation and secure communications provided by the

separation kernel.

MILS may seem very similar to server virtualization used in

cloud computing, and indeed MILS separation kernels

leverage virtualization techniques. MILS separation kernels

are distinguished from more typical commercial or open

source hypervisors by the depth and rigor of their safety and

security analysis, and the certifiable guarantees they offer.

Whereas server virtualization is oriented toward efficiency,

and delivering enough performance on average, MILS (along

with proper system analysis) provides assured performance in

the worst-case scenario. Server virtualization has historically

expected very little communication amongst the virtual

machines, and (prior to network function virtualization and

service chaining) provided no explicit means of supporting

intra-VM communication, while MILS provides explicit

methods for secure communications.

While a commercial hypervisor should prevent partition A

from accessing partition B’s data, a MILS separation kernel

guarantees it. MILS separation kernels also offer tighter

control over the time domain; the MILS separation kernel

guarantees that partition B will be allowed to execute within

the required window of time, a commercial hypervisor’s

scheduling is more of a Quality of Service scheme, which may

delay partition B’s execution until partition A yields. Explicit

secure communication mechanisms and channels, policy

configuration, and detection and reaction to policy violations

(whether faults or malicious behaviors) are additional

distinguishing features of MILS separation kernels.

Just as commercial hypervisors have enabled highly efficient

cloud computing, MILS separation kernels, combined with

multicore processors, have enabled highly efficient

(performance to SWAP) military and aerospace systems.

Virtualization with safety and security guarantees also helps

long time to market, long lived mil/aero systems, deal with

component obsolescence. Partition C, previously executed on

a dedicated, but now obsolete processor, can be migrated,

legacy operating system and all, onto a suitable multicore

processor, while maintaining overall system safety and

security guarantees. The quantifiable nature of MILS safety

and security allow for compositional certification, where in

the example above, the processor + MILS separation kernel

(the MILS platform) can be certified as a safe & secure

system, and the migration of partition C onto the MILS

platform only requires a delta certification of partition C, not a

re-examination of all aspects of the hardware and software.

II. HARDWARE ENFORCED PARTITIONING

As previously stated, the MILS architecture supports both

physical and logical isolation schemes. Logical separation of

partitions on a processor (single core or multicore) requires at

a minimum a processor whose instruction set architecture

(ISA) and memory management unit (MMU) supports >1

execution level. This allows the separation kernel to execute

at the lower level and the partitions to run at the higher level

[5]. The typical MILS system runs on a processor with 3

execution levels; 0-hypervisor, 1-supervisor, and 2-user,

where the separation kernel executes at level 0.

At boot time, the separation kernel allocates memory regions

to each partition (instructions and data), and configures the

MMU so that the partition can successfully access its own

memory regions (virtual to physical address translation

succeeds), but attempted accesses to memory addresses other

than those assigned to the partition are blocked, and trigger an

alert (trap) to the separation kernel. At the risk of

generalizing, a MILS separation kernel would take a dimmer

view of an illegal access attempt by a partition than a

commercial hypervisor… As the separation kernel schedules

processes on cores, it updates the process ID register in the

core. This process ID accompanies the addresses generated by

the process, and is non-by-passable. A process in partition A

can’t spoof the MMU into thinking it is a process belonging to

partition B.

While a MILS separation kernel can work with as little as a

CPU with MMU, if the MILS platform is going to host

multiple partitions, and those partitions need access to IO or

other specialty hardware, processor characteristics start to

dictate suitability. The following sections look at some of the

characteristics of processors (or SoCs) particularly suited for

MILS platforms.

Partition C

Private Memory

Partition B

Private Memory

Partition C
Private Memory

Partition D
Private Memory

Separation Kernel

Private Memory

Command

Control
Status

Registers

Coherency Fabric

IO MMU

SERDES

PME

SEC QMan

BMan

S
A

T
A

FMan Complex

Parse, Classify,
Distribute

Buffer

MAC MAC

FMan

P
C

Ie

P
C

Ie

s
R

IO

s
R

IO

P
C

Ie

P
C

Ie

S
A

T
A

DMAx2

Plat

Cache

DDR
Controller

Secure
Debug

Controller

CPU

MMU

MAC MAC

Partition A

Qman Portal

CPU

MMU

Partition B

Qman Portal

CPU

MMU

Partition C

Qman Portal

CPU

MMU

Partition D

Qman Portal

Shared

Qman Portal Qman Portal Qman Portal Qman Portal

Figure 1: Multi-core QorIQ® Processor

A. Multiple Cores

In figure 1, a quad core SoC [6] with integrated peripherals

and accelerators is shown. The separation kernel runs across

all cores as if it were a symmetric multiprocessing OS, and is

responsible for scheduling when the partitions execute. When

a processor has multiple CPU cores, meeting temporal

scheduling requirements for all partitions becomes easier.

Using process affinity, the separation kernel can pin a partition

to a specific CPU core or set of cores, so that the partition only

competes with the separation kernel (and its integrated

communications channels) for CPU cycles [7].

Compared to cloud servers which may host hundreds of

partitions/virtual machines, MILS platforms are still

embedded systems and will tend to have smaller numbers of

partitions. It is often possible for all partitions to be pinned to

a dedicated CPU core, or the partitions with the most time

critical software to be pinned, while the remainder are

scheduled as necessary on the remaining CPUs.

A partition may consist of a guest operating systems with

multiple applications, where the OS and applications may

further decompose into multiple processes or threads. Affinity

techniques can be applied all the way down to the thread, and

generally the performance requirements of the most CPU

intensive single thread will determine the suitability of a given

multicore. Having many cores is nice, but if the individual

cores are too weak (from a single threaded processing

perspective), the SoC isn’t suitable.

.

B. IO MMU

An important principle in the MILS architecture is the non-by-

passable nature of the logical separation. If partition A, being

blocked from directly accessing partition B’s private memory,

can bypass MMU-based access controls to indirectly access

partition B’s private memory, logical isolation doesn’t truly

exist. Indirect access can occur if CPUs aren’t the only bus

masters in the system, and more often than not, this is the

case. IO controllers and various off-load engines incorporate

or work with system hardware DMAs (Direct Memory

Access) to read and write to system memory. Partition A,

knowing it can’t directly access partition B’s private memory

due to the MMU settings of the processor it is running on,

programs a DMA engine to read partition B’s private memory

and write the information to partition A’s private memory.

This scenario is totally feasible in systems without an IO

MMU. As the name implies, the IO MMU is a MMU which

performs virtual to physical address translation and access

control, but it does it on behalf of ‘IO’; the most commonly

occurring non-CPU bus masters. To make it clearer that the

IO MMU is operating on more than just IOs, NXP’s Power®

Architecture based QorIQ devices call this block the Platform

MMU (PAMU), and more recent ARM® based QorIQ

Layerscape devices adopt ARM’s name, the System MMU

(SMMU). Like the CPU MMUs, the separation kernel is

responsible for configuring the IO MMU (via IO MMU

driver) [8] to align non-CPU bus master access permissions

with the MILS platform’s logical isolation scheme.

C. Non-CPU Bus Masters and Transitive Trust

Logical isolation of a non-CPU bus master (henceforth simply

‘DMA’) via an IO MMU requires the IO MMU to be able to

recognize which DMA is attempting a given memory access.

This is accomplished by architecting the SoC interconnect so

that in addition to the target address, the DMA sends a unique

ID. Depending on the SoC, the DMA’s bus master ID may be

hardware wired, configured by the separation kernel at boot

time, or a combination of hardware default plus additional

configuration. If configurable, the separation kernel is

responsible for making sure the ID register addresses aren’t

accessible by the partitions. DMAs are generally fixed

function hardware, and have no ability to spoof their bus

master ID to the IO MMU.

We’ve identified the origin of the bus master ID provided by

the DMA to the IO MMU, but what is the origin of the address

the DMA provides? In most cases, the address comes from a

descriptor, programmed by the partition requesting the DMA’s

services. As previously discussed, partition A may try to put

an address belonging to partition B in the DMA descriptor,

and the DMA will dutifully output that address toward the IO

MMU. The IO MMU will look up the DMA’s bus master ID

in an access control list, and check if the address falls with the

configured allowed address range. In a MILS system, most

likely the address doesn’t.

For the address to be allowable, it would mean that any

partition with the ability to send a descriptor to the DMA

could cause a write to the same address in partition B’s

memory. Even if this address was in a buffer intended for

receiving communications from partition A (secure channel

via shared memory buffer), the fact that partition C or D could

write to the same address allows for denial of service of

partition A’s communications with partition B. Partition C

could inadvertently or intentionally overwrite partition A’s

data before partition B had a chance to read it. Clearly a

DMA with broad access permissions is a threat. This can be

managed in software with IO virtualization, or in hardware

with transitive trust.

In the IO virtualization scheme, partitions don’t have direct

access to DMAs. Using a virtual device driver, they create

requests (which may match the DMA’s descriptor format) and

write them to an address which triggers a trap to the separation

kernel. The separation kernel analyzes the request against the

logical isolation scheme, and if compliant, the separation

kernel (which has access to the memory of all partitions)

either performs the request in software, or the separation

kernel creates the descriptor which the DMA uses to perform

the request. All DMAs are exclusively owned by the

separation kernel, making it OK for the DMAs to have the

same permissions (as enforced by the IO MMU) as the

separation kernel has (as enforced by the CPU MMUs).

In a transitive trust scheme, the DMA temporarily takes on the

permissions of the partition it is serving. NXP QorIQ devices

support transitive trust via a SoC infrastructure called the

Datapath Acceleration Architecture (DPAA). The major

components of this infrastructure are the Queue Manager

(QMan) and the Buffer Manager (BMan). The QMan

maintains a list of virtual channels called frame queues, as

well as a list in individual requests (frame descriptors) on each

frame queue. Producers submit frame descriptors to

consumers by enqueuing them onto specific frame queues;

consumers dequeue. DMAs have hardwired QMan portals,

software produces and consumes via memory mapped

software portals into the QMan. Because the QMan software

portals are memory mapped, they can be assigned by the

separation kernel and access controlled by MMU

configuration. The BMan has a similar role and architecture,

but manages pools of buffers, rather than queues of frame

descriptors. The QMan, BMan, and DMAs are considered to

be owned by the separation kernel, but used by the partitions.

Normal SW portal and DMA events, which can include

successful and unsuccessful completions of requests, are

reported back to the partition that sent the request. More

serious hardware failures trigger interrupts which are routed to

the separation kernel only.

When partition A submits work to a DMA, it enqueues frame

descriptors (via the software portal) to a frame queue mapped

as a one way communication channel between partition A and

that DMA. Based on information received from its hardware

portal during the dequeue, the DMA changes its master ID to a

value which identifies the DMA as working on behalf of

partition A. The DMA’s memory access requests are still

checked by the IO MMU, but the access control becomes finer

grained. Some DMAs can execute frame descriptors from

multiple partitions simultaneously, and on a transaction by

transaction basis, the IO MMU will perform different address

translations/access control operations, based on changing bus

master IDs. In earlier versions of DPAA, these changing bus

master IDs are called ‘Logical IO Device Numbers’ or

LIODNs. In later versions, the term is ‘Isolation Context ID’

or ICID.

Not all memory accesses are initiated by partitions. Certain

DMAs, such as Ethernet controllers, receive packetized data

from the outside world and buffer it to system memory.

‘Dumb’ Ethernet controllers implement a single bus master

ID; accordingly they either have to be directly assigned (para-

virtualization) [9] to a single partition (all packets arriving on

the interface are known to belong to the partition), or they

have to be owned by the separation kernel (IO virtualization).

In the latter case, the dumb Ethernet controller buffers all

arriving packets into the separation kernel’s private memory.

The separation kernel is then responsible for classifying the

data and copying it to a buffer in the private memory of the

partition the data was intended for.

A ‘smart’ Ethernet controller is capable of classifying arriving

packets. Based on determination of partition ownership via

classification, the smart controller selects the correct

configured bus master IDs and uses it while writing the packet

to the partition’s private memory.

By the definition above, other IO controllers in QorIQ

processors, such as SATA, PCI Express, and UART are

‘dumb’. They don’t perform classification on arriving data,

aren’t connected to the QMan/BMan, and always use the same

bus master ID. Like the dumb Ethernet controller, each must

either be directly assigned to a single partition, or be owned by

the separation kernel.

It may be harsh to label PCIe as a ‘dumb’ IO. PCIe requires

special consideration from a partitioning perspective because

external devices can read & write system memory via the

controller interface. PCIe Address Translation and Mapping

Units (ATMUs) perform an IO MMU like function [10],

translating the external memory address into a local memory

address, which can then be access controlled (and potentially

translated again) via the IO MMU. When a QorIQ device is

used as PCIe end-point (EP) with Single Root IO

Virtualization (SRIOV), the PCIe controller exposes multiple

virtual functions (VFs) to the Host. The purpose of this paper

isn’t to cover SRIOV, but suffice it to say that when a QorIQ

processor is used as a PCIe EP with SRIOV, the ATMUs

operating on in-bound transactions have different address

translations for each SRIOV VF, and can use a different

LIODN/ICID depending on the VF.

To summarize, hardware partitioning is achieved through

unspoofable identification of the bus master and checking the

request against the bus master’s permissions in all SoC

MMUs/IO MMU. The DPAA and PCIe with SRIOV allow

transitive trust, whereby the DMA or IO acts as a proxy for a

partition, and identifies the partition on whose behalf it is

operating. Initial configuration complexity is higher when

exploiting this hardware enforced partitioning, but the

performance benefits are substantial (>10x) compared to IO

virtualization in the separation kernel.

D. Separation vs Isolation

Separation and Isolation have been used somewhat

interchangeably in this paper, but there are differences

between these concepts worth clarifying.

Separation is a logical concept, produced by methods such as

access control, temporal fair sharing, and dedicated secure

unidirectional communication channels. Partition A can’t

access partition B’s private resources (memory ranges), but

they share other resources (the bandwidth of the DDR

controller); with the result being Partition B may not get

access to every resource it wants the instant it wants them.

While it is possible to create temporal isolation schemes with

enough margin around partition A’s resource usage that

partition B never perceives a wait, this is rare in practice.

Isolation is both a logical and physical concept. Isolation

results in a complete inability of partition A communicate

with partition B, to interfere with it, or to even create effects

which are detectable by partition B. Partition B has resources

which are dedicated to the degree that in all conditions, when

partition B wants, it gets. Partition A can’t create bus delays,

heat, noise, etc that partition B could detect. The existence of

detectable effects constitutes a covert channel.

Achieving full isolation on a multi-core SoC may be

theoretically possible, but rather inefficient in practice. NXP’s

QorIQ processors don’t claim to support full hardware

isolation, and proprietary information regarding shared

resource fairness mechanisms and potential sources of

interference is shared with customers under non-disclosure

agreements.

III. TAMPER-PROOFING

The soundness of the MILS architecture can be undermined

by poor implementations. As should be evident from previous

sections, the separation kernel, and its proper configuration of

MMUs, IO MMU, and other hardware enforced partitioning

mechanisms, is the most critical component in a MILS system.

It is vital that the separation kernel and all configuration files

are protected against accidental corruption or malicious

modification throughout the system’s life cycle.

Functional safety techniques such as checksums [11] and

watchdog timers may be sufficient to detect the types of

random faults which could accidentally corrupt the separation

kernel and its configuration files, but these techniques are

insufficient to deal with malicious modification. Attackers

with sufficient access to the system could modify the

separation kernel and update the checksum. For this reason,

non-by-passable hardware rooted security features are

required for system assurance.

NXP QorIQ processors provide non-bypassable hardware

rooted security features in the form of the QorIQ Platform’s

Trust Architecture™. The trust architecture is a set of

hardware and software techniques designed to support trusted

boot and maintenance of the trusted environment during

runtime.

The QorIQ Trust Architecture’s secure boot mechanism is the

main line of defense against malicious modification. The

developer of the MILS system programs fuses in the QorIQ

processor, creating a permanent binding between the system

and a list of RSA public keys. Rather than a simple

checksum, the developer digitally signs the separation kernel,

its configuration files, and preferably, the partition images

with RSA private keys paired with the RSA public keys. The

signed images are programmed into system non-volatile

memory and the system is deployed.

Once in the field, the system boots, and the QorIQ processor

(executing from a non-modifiable internal bootROM), verifies

the public keys provided with the image against the fuse based

values. If the keys are valid, the processor checks the digital

signature over the separation kernel, config files, and any

other signed files, and those verifications pass, the separation

kernel begins execution. Failure to verify the digital signature

(meaning the contents of non-volatile memory don’t match the

expected content) is considered a tamper event, and the system

will refuse to boot. External physical tamper sensors can also

be added to the system and connected to the QorIQ processor,

so that if any physical tampers are detected, the system also

refuses to boot.

Trust Architecture is a tool kit. Beyond secure boot based

tamper detection and inputs for external physical tamper

detection, it also supports secure debug, runtime integrity

checking, and anti-rollback.

System developers select the secure debug policy by

irreversible fuse programming, with options to permanently

disable the debug port, or program a challenge/response value.

Run time integrity checking relies on the QorIQ processor’s

integrated crypto acceleration engine (called the SEC). The

SEC performs SHA-256 hashing at multi-Gbps speeds

capability to repeatedly hash memory pages holding the

separation kernel itself (and anything else the developer deems

important). If the hash comparison against the known good

value fails, the SEC triggers a security violation warning.

Rollback is an attack strategy in which the attacker attempts to

undo security updates by tricking a system into executing an

authentic (but old and vulnerable) version of software. NXP

QorIQ processors offer monotonic counter and key revocation

features to detect ‘de-authorized’ older revisions of software

and block their execution.

Besides preventing malicious code from executing, the Trust

Architecture also gives trusted code the ability to create

‘cryptographic blobs’ using a fuse based one-time

programmable master key (OTPMK). While the system is in

a Trusted state, software can command the SEC to use the

OTPMK to encrypt code, data, certificates, or additional keys,

such that if any of these items needs to be decrypted, the

developer can be assured that the decryption will only occur if

the system has passed secure boot and no tamper events have

been detected.

For any type of tamper event, the reaction to the tamper is

under the developer’s control. Reactions can range from

clearing & locking out the master key to instantaneous hard

reset of the board, to full bricking of the system.

Newer NXP QorIQ devices using ARM processors also
support TrustZone®. TrustZone is an additional CPU
execution state designed to support separation of platform
resources into ‘secure world’ and ‘non-secure world’. In the
context of a MILS system, the separation kernel could run in
secure world and the partitions in non-secure world, or the
separation kernel and all partitions could run in non-secure
world, with highly specialized security functions running in
secure world. NXP’s Trust Architecture and ARM’s
TrustZone are complementary technologies, and a full analysis
of TrustZone’s potential in MILS systems is a topic for future
investigation.

IV. SUMMARY

The MILS architecture, originally developed for military

avionics, is seeing increasing adoption in other industries

dealing with cyber-physical devices. Support for safely and

securely combining mixed criticality functions and providing

a means for compositional security certification should make

MILS the architecture of choice for a variety of industrial

applications, including power generation & distribution,

factory & service robotics, and intelligent transportation

networks. Perhaps in a near return to MILS origins,

automotive systems currently distinguished by function

(telematics, navigation, infotainment, driver assist, chassis &

powertrain ECUs) will consolidate into a new class of

‘HADionics’ (Highly Automated Drive-ionics) built on MILS

separation kernels and processors supporting hardware

enforced partitioning.

ACKNOWLEDGMENT

I would like to thank the design team responsible for the

QorIQ Trust Architecture, and thank the Horizon2020 project,

certMILS (GA number 731456), for including NXP as third

party. The tools and the talent to make a difference are in

place.

NXP, the NXP logo, Layerscape and QorIQ are trademarks of

NXP B.V. All other product or service names are the property

of their respective owners. ARM and TrustZone are registered

trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. © 2017 NXP B.V.

ARM is a registered trademark of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved.

REFERENCES

[1] Sam Lucero Sr. Principal Analyst, M2M and IoT, IHS, “IoT platforms:
enabling the Internet of Things,” March 2016
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf

[2] John Rushby, “A Trusted Computing Base for Embedded Systems,”
Proceedings 7th DoD/NBS Computer Security Conference,
Gaithersburg, Maryland (September 24–26, 1984), 294–311,
http://www.csl.sri.com/users/rushby/abstracts/ ncsc84-tcb.

[3] DO-178B was introduced in Jan, 1993 and superseded by DO-178C in
July, 2013. These standards are published by the Radio Technical

Commission for Aeronautics (RTCA) and are available to RTCA
members at http://www.rtca.org/store_product.asp?prodid=803

[4] Common Criteria Evaluation and Validation Scheme (CCEVS),
National Information Assurance Partnership (NIAP), http://www.niap-
ccevs.org/cc-scheme

[5] Trust and Trustworthy Computing: Third International Conference,
TRUST 2010, Berlin, Germany, June 21-23, 2010, Proceedings

Alessandro Acquisti, Sean W. Smith, Ahmad-Reza Sadeghi; Springer
Science & Business Media, Jun 9, 2010

[6] Representative of the NXP QorIQ T1040. Reference Manual for the
SoC and for the Power Architecture e5500 CPU cores can be accessed at
http://www.nxp.com/products/microcontrollers-and-processors/power-
architecture-processors/qoriq-platforms/t-series/qoriq-t1040-and-t1020-
multicore-communications-processors:T1040?tab=Documentation_Tab

[7] John Fuscoll; The Linux Programmer’s Toolbox; Pearson Education,
March 2007

[8] Computer Architecture: ISCA 2010 International Workshops A4MMC,
AMAS-BT, EAMA, WEED, WIOSCA, Saint-Malo, France, June 19-23,
2010, Revised Selected Papers; Ana Lucia Varbanescu, Anca Molnos,
Rob van Nieuwpoort; Springer, Feb 15, 2012

[9] “Understanding Full Virtualization, Paravirtualization, and Hardware
Assist”; VMware whitepaper, revision: 20070911; WP-028-PRD-0101;
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/
techpaper/VMware_paravirtualization.pdf

[10] PCI-SIG Address Transalation Services Revision 1.1, January 26, 2009

[11] Robert Hanmer; Patterns for Fault Tolerant Software; John Wiley &
Sons, Jul 12, 2013.

