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Abstract—Separation and controlled information flow are the 

foundations of MILS. This paper describes the methods by which 

NXP QorIQ processors provide hardware enforced process 

separation, and root of trust to guarantee execution of safety and 

security software such as a MILS separation kernel and inter-

process communications. 
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I. INTRODUCTION  

The cyber-physical world is upon us.  By 2020, upwards of 30 

billion ‘things’ will make up the internet of things [1], and 

many of those things will be able to cause significant harm in 

the physical world if not properly designed for safety and 

security.  It behooves us to understand what systems engineers 

operating at the nexus of safety and security for the last couple 

decades have already learned, and benefit from what these 

‘early adopters’ have helped make ready for mass deployment.  

 

The intent of this paper is to briefly describe the Multiple 

Independent Levels of Security (MILS) approach to security 

(and safety), describe the separation kernel concept, then dive 

into details of hardware which enforces the safety and security 

policies intended by the separation kernel. 

 

The previously mentioned early adopters of the MILS 

architecture were largely found in the military & aerospace 

domain [2].  Mil/aero systems are sophisticated cyber-physical 

systems, incorporating sensors, actuators, and processors.  On 

the military side, security was a driving requirement, as the 

networked capabilities of western militaries were (and 

continue to be) a target for penetration by state level 

adversaries.  Civilian avionics were less concerned with 

malicious attacks than other types of system faults, and as 

software grew to millions of lines of code, resilient systems 

required new methods.  Both military and civilian aerospace 

are very concerned by space, weight, area, and power 

(SWAP), as well as component obsolescence.   

 

Military requirements for an architecture capable of 

supporting the US Federal Aviation Administration’s DO-

178B Software Considerations in Airborne Systems and 

Equipment Certification [3] and the Common Criteria’s EAL 

7 security level [4] was the genesis of the MILS architecture.  

MILS lays out the principles of isolated functions 

communicating through unidirectional channels.  Only the 

information intended to be shared by one isolated function 

with another is detectable by the receiving function.  Two way 

communication requires two unidirectional channels, each 

with policy enforcement.  The MILS allowance for isolation 

via physical or logical means promoted development of 

separation kernels; infrastructure software that could allow 

multiple functions to run on the same hardware, with logical 

isolation and secure communications provided by the 

separation kernel.   

 

MILS may seem very similar to server virtualization used in 

cloud computing, and indeed MILS separation kernels 

leverage virtualization techniques.  MILS separation kernels 

are distinguished from more typical commercial or open 

source hypervisors by the depth and rigor of their safety and 

security analysis, and the certifiable guarantees they offer.  

Whereas server virtualization is oriented toward efficiency, 

and delivering enough performance on average, MILS (along 

with proper system analysis) provides assured performance in 

the worst-case scenario.  Server virtualization has historically 

expected very little communication amongst the virtual 

machines, and (prior to network function virtualization and 

service chaining) provided no explicit means of supporting 

intra-VM communication, while MILS provides explicit 

methods for secure communications. 

 

While a commercial hypervisor should prevent partition A 

from accessing partition B’s data, a MILS separation kernel 

guarantees it.  MILS separation kernels also offer tighter 

control over the time domain; the MILS separation kernel 

guarantees that partition B will be allowed to execute within 

the required window of time, a commercial hypervisor’s 



scheduling is more of a Quality of Service scheme, which may 

delay partition B’s execution until partition A yields.   Explicit 

secure communication mechanisms and channels, policy 

configuration, and detection and reaction to policy violations 

(whether faults or malicious behaviors) are additional 

distinguishing features of MILS separation kernels. 

 

Just as commercial hypervisors have enabled highly efficient 

cloud computing, MILS separation kernels, combined with 

multicore processors, have enabled highly efficient 

(performance to SWAP) military and aerospace systems.  

Virtualization with safety and security guarantees also helps 

long time to market, long lived mil/aero systems, deal with 

component obsolescence.  Partition C, previously executed on 

a dedicated, but now obsolete processor, can be migrated, 

legacy operating system and all, onto a suitable multicore 

processor, while maintaining overall system safety and 

security guarantees.  The quantifiable nature of MILS safety 

and security allow for compositional certification, where in 

the example above, the processor + MILS separation kernel 

(the MILS platform) can be certified as a safe & secure 

system, and the migration of partition C onto the MILS 

platform only requires a delta certification of partition C, not a 

re-examination of all aspects of the hardware and software.    

 

II. HARDWARE ENFORCED PARTITIONING 

As previously stated, the MILS architecture supports both 

physical and logical isolation schemes.  Logical separation of 

partitions on a processor (single core or multicore) requires at 

a minimum a processor whose instruction set architecture 

(ISA) and memory management unit (MMU) supports >1 

execution level.  This allows the separation kernel to execute 

at the lower level and the partitions to run at the higher level 

[5].  The typical MILS system runs on a processor with 3 

execution levels; 0-hypervisor, 1-supervisor, and 2-user, 

where the separation kernel executes at level 0.   

 

At boot time, the separation kernel allocates memory regions 

to each partition (instructions and data), and configures the 

MMU so that the partition can successfully access its own 

memory regions (virtual to physical address translation 

succeeds), but attempted accesses to memory addresses other 

than those assigned to the partition are blocked, and trigger an 

alert (trap) to the separation kernel.  At the risk of 

generalizing, a MILS separation kernel would take a dimmer 

view of an illegal access attempt by a partition than a 

commercial hypervisor…  As the separation kernel schedules 

processes on cores, it updates the process ID register in the 

core.  This process ID accompanies the addresses generated by 

the process, and is non-by-passable.  A process in partition A 

can’t spoof the MMU into thinking it is a process belonging to 

partition B.   

 

While a MILS separation kernel can work with as little as a 

CPU with MMU, if the MILS platform is going to host 

multiple partitions, and those partitions need access to IO or 

other specialty hardware, processor characteristics start to 

dictate suitability.  The following sections look at some of the 

characteristics of processors (or SoCs) particularly suited for 

MILS platforms. 
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Figure 1: Multi-core QorIQ® Processor 

 

A. Multiple Cores 

In figure 1, a quad core SoC [6] with integrated peripherals 

and accelerators is shown.  The separation kernel runs across 

all cores as if it were a symmetric multiprocessing OS, and is 

responsible for scheduling when the partitions execute.  When 

a processor has multiple CPU cores, meeting temporal 

scheduling requirements for all partitions becomes easier.  

Using process affinity, the separation kernel can pin a partition 

to a specific CPU core or set of cores, so that the partition only 

competes with the separation kernel (and its integrated 

communications channels) for CPU cycles [7].   

 

Compared to cloud servers which may host hundreds of 

partitions/virtual machines, MILS platforms are still 

embedded systems and will tend to have smaller numbers of 

partitions.  It is often possible for all partitions to be pinned to 

a dedicated CPU core, or the partitions with the most time 

critical software to be pinned, while the remainder are 

scheduled as necessary on the remaining CPUs. 

 

A partition may consist of a guest operating systems with 

multiple applications, where the OS and applications may 

further decompose into multiple processes or threads.  Affinity 

techniques can be applied all the way down to the thread, and 

generally the performance requirements of the most CPU 

intensive single thread will determine the suitability of a given 

multicore.  Having many cores is nice, but if the individual 

cores are too weak (from a single threaded processing 

perspective), the SoC isn’t suitable. 

. 

 

B. IO MMU 

An important principle in the MILS architecture is the non-by-

passable nature of the logical separation.  If partition A, being 



blocked from directly accessing partition B’s private memory, 

can bypass MMU-based access controls to indirectly access 

partition B’s private memory, logical isolation doesn’t truly 

exist.  Indirect access can occur if CPUs aren’t the only bus 

masters in the system, and more often than not, this is the 

case.  IO controllers and various off-load engines incorporate 

or work with system hardware DMAs (Direct Memory 

Access) to read and write to system memory.  Partition A, 

knowing it can’t directly access partition B’s private memory 

due to the MMU settings of the processor it is running on, 

programs a DMA engine to read partition B’s private memory 

and write the information to partition A’s private memory.  

  

This scenario is totally feasible in systems without an IO 

MMU.  As the name implies, the IO MMU is a MMU which 

performs virtual to physical address translation and access 

control, but it does it on behalf of ‘IO’; the most commonly 

occurring non-CPU bus masters.  To make it clearer that the 

IO MMU is operating on more than just IOs, NXP’s Power® 

Architecture based QorIQ devices call this block the Platform 

MMU (PAMU), and more recent ARM® based QorIQ 

Layerscape devices adopt ARM’s name, the System MMU 

(SMMU).  Like the CPU MMUs, the separation kernel is 

responsible for configuring the IO MMU (via IO MMU 

driver) [8] to align non-CPU bus master access permissions 

with the MILS platform’s logical isolation scheme.   

 

C. Non-CPU Bus Masters and Transitive Trust 

Logical isolation of a non-CPU bus master (henceforth simply 

‘DMA’) via an IO MMU requires the IO MMU to be able to 

recognize which DMA is attempting a given memory access.  

This is accomplished by architecting the SoC interconnect so 

that in addition to the target address, the DMA sends a unique 

ID.  Depending on the SoC, the DMA’s bus master ID may be 

hardware wired, configured by the separation kernel at boot 

time, or a combination of hardware default plus additional 

configuration.  If configurable, the separation kernel is 

responsible for making sure the ID register addresses aren’t 

accessible by the partitions.  DMAs are generally fixed 

function hardware, and have no ability to spoof their bus 

master ID to the IO MMU. 

 

We’ve identified the origin of the bus master ID provided by 

the DMA to the IO MMU, but what is the origin of the address 

the DMA provides?  In most cases, the address comes from a 

descriptor, programmed by the partition requesting the DMA’s 

services.  As previously discussed, partition A may try to put 

an address belonging to partition B in the DMA descriptor, 

and the DMA will dutifully output that address toward the IO 

MMU.  The IO MMU will look up the DMA’s bus master ID 

in an access control list, and check if the address falls with the 

configured allowed address range.  In a MILS system, most 

likely the address doesn’t.   

 

For the address to be allowable, it would mean that any 

partition with the ability to send a descriptor to the DMA 

could cause a write to the same address in partition B’s 

memory.  Even if this address was in a buffer intended for 

receiving communications from partition A (secure channel 

via shared memory buffer), the fact that partition C or D could 

write to the same address allows for denial of service of 

partition A’s communications with partition B.  Partition C 

could inadvertently or intentionally overwrite partition A’s 

data before partition B had a chance to read it.  Clearly a 

DMA with broad access permissions is a threat.  This can be 

managed in software with IO virtualization, or in hardware 

with transitive trust.   

 

In the IO virtualization scheme, partitions don’t have direct 

access to DMAs.  Using a virtual device driver, they create 

requests (which may match the DMA’s descriptor format) and 

write them to an address which triggers a trap to the separation 

kernel.  The separation kernel analyzes the request against the 

logical isolation scheme, and if compliant, the separation 

kernel (which has access to the memory of all partitions) 

either performs the request in software, or the separation 

kernel creates the descriptor which the DMA uses to perform 

the request.  All DMAs are exclusively owned by the 

separation kernel, making it OK for the DMAs to have the 

same permissions (as enforced by the IO MMU) as the 

separation kernel has (as enforced by the CPU MMUs). 

 

In a transitive trust scheme, the DMA temporarily takes on the 

permissions of the partition it is serving.  NXP QorIQ devices 

support transitive trust via a SoC infrastructure called the 

Datapath Acceleration Architecture (DPAA).  The major 

components of this infrastructure are the Queue Manager 

(QMan) and the Buffer Manager (BMan).  The QMan 

maintains a list of virtual channels called frame queues, as 

well as a list in individual requests (frame descriptors) on each 

frame queue.  Producers submit frame descriptors to 

consumers by enqueuing them onto specific frame queues; 

consumers dequeue.  DMAs have hardwired QMan portals, 

software produces and consumes via memory mapped 

software portals into the QMan.  Because the QMan software 

portals are memory mapped, they can be assigned by the 

separation kernel and access controlled by MMU 

configuration.  The BMan has a similar role and architecture, 

but manages pools of buffers, rather than queues of frame 

descriptors.  The QMan, BMan, and DMAs are considered to 

be owned by the separation kernel, but used by the partitions.  

Normal SW portal and DMA events, which can include 

successful and unsuccessful completions of requests, are 

reported back to the partition that sent the request.  More 

serious hardware failures trigger interrupts which are routed to 

the separation kernel only. 

 

When partition A submits work to a DMA, it enqueues frame 

descriptors (via the software portal) to a frame queue mapped 

as a one way communication channel between partition A and 

that DMA.  Based on information received from its hardware 

portal during the dequeue, the DMA changes its master ID to a 

value which identifies the DMA as working on behalf of 

partition A.  The DMA’s memory access requests are still 



checked by the IO MMU, but the access control becomes finer 

grained.  Some DMAs can execute frame descriptors from 

multiple partitions simultaneously, and on a transaction by 

transaction basis, the IO MMU will perform different address 

translations/access control operations, based on changing bus 

master IDs.  In earlier versions of DPAA, these changing bus 

master IDs are called ‘Logical IO Device Numbers’ or 

LIODNs.  In later versions, the term is ‘Isolation Context ID’ 

or ICID. 

 

Not all memory accesses are initiated by partitions.  Certain 

DMAs, such as Ethernet controllers, receive packetized data 

from the outside world and buffer it to system memory.  

‘Dumb’ Ethernet controllers implement a single bus master 

ID; accordingly they either have to be directly assigned (para-

virtualization) [9] to a single partition (all packets arriving on 

the interface are known to belong to the partition), or they 

have to be owned by the separation kernel (IO virtualization).  

In the latter case, the dumb Ethernet controller buffers all 

arriving packets into the separation kernel’s private memory.  

The separation kernel is then responsible for classifying the 

data and copying it to a buffer in the private memory of the 

partition the data was intended for.   

 

A ‘smart’ Ethernet controller is capable of classifying arriving 

packets.  Based on determination of partition ownership via 

classification, the smart controller selects the correct 

configured bus master IDs and uses it while writing the packet 

to the partition’s private memory. 

 

By the definition above, other IO controllers in QorIQ 

processors, such as SATA, PCI Express, and UART are 

‘dumb’.  They don’t perform classification on arriving data, 

aren’t connected to the QMan/BMan, and always use the same 

bus master ID.  Like the dumb Ethernet controller, each must 

either be directly assigned to a single partition, or be owned by 

the separation kernel.   

 

It may be harsh to label PCIe as a ‘dumb’ IO.  PCIe requires 

special consideration from a partitioning perspective because 

external devices can read & write system memory via the 

controller interface.  PCIe Address Translation and Mapping 

Units (ATMUs) perform an IO MMU like function [10], 

translating the external memory address into a local memory 

address, which can then be access controlled (and potentially 

translated again) via the IO MMU.  When a QorIQ device is 

used as PCIe end-point (EP) with Single Root IO 

Virtualization (SRIOV), the PCIe controller exposes multiple 

virtual functions (VFs) to the Host.  The purpose of this paper 

isn’t to cover SRIOV, but suffice it to say that when a QorIQ 

processor is used as a PCIe EP with SRIOV, the ATMUs 

operating on in-bound transactions have different address 

translations for each SRIOV VF, and can use a different 

LIODN/ICID depending on the VF.   

 

To summarize, hardware partitioning is achieved through 

unspoofable identification of the bus master and checking the 

request against the bus master’s permissions in all SoC 

MMUs/IO MMU.  The DPAA and PCIe with SRIOV allow 

transitive trust, whereby the DMA or IO acts as a proxy for a 

partition, and identifies the partition on whose behalf it is 

operating.  Initial configuration complexity is higher when 

exploiting this hardware enforced partitioning, but the 

performance benefits are substantial (>10x) compared to IO 

virtualization in the separation kernel.   

  

 

D. Separation vs Isolation 

Separation and Isolation have been used somewhat 

interchangeably in this paper, but there are differences 

between these concepts worth clarifying.   

 

Separation is a logical concept, produced by methods such as 

access control, temporal fair sharing, and dedicated secure 

unidirectional communication channels.  Partition A can’t 

access partition B’s private resources (memory ranges), but 

they share other resources (the bandwidth of the DDR 

controller); with the result being Partition B may not get 

access to every resource it wants the instant it wants them.  

While it is possible to create temporal isolation schemes with 

enough margin around partition A’s resource usage that 

partition B never perceives a wait, this is rare in practice.      

 

Isolation is both a logical and physical concept.  Isolation 

results in a complete inability of partition A communicate 

with partition B, to interfere with it, or to even create effects 

which are detectable by partition B.  Partition B has resources 

which are dedicated to the degree that in all conditions, when 

partition B wants, it gets.  Partition A can’t create bus delays, 

heat, noise, etc that partition B could detect.  The existence of 

detectable effects constitutes a covert channel. 

 

Achieving full isolation on a multi-core SoC may be 

theoretically possible, but rather inefficient in practice.  NXP’s 

QorIQ processors don’t claim to support full hardware 

isolation, and proprietary information regarding shared 

resource fairness mechanisms and potential sources of 

interference is shared with customers under non-disclosure 

agreements. 

   

III. TAMPER-PROOFING 

The soundness of the MILS architecture can be undermined 

by poor implementations.  As should be evident from previous 

sections, the separation kernel, and its proper configuration of 

MMUs, IO MMU, and other hardware enforced partitioning 

mechanisms, is the most critical component in a MILS system.  

It is vital that the separation kernel and all configuration files 

are protected against accidental corruption or malicious 

modification throughout the system’s life cycle.   

 

Functional safety techniques such as checksums [11] and 

watchdog timers may be sufficient to detect the types of 

random faults which could accidentally corrupt the separation 



kernel and its configuration files, but these techniques are 

insufficient to deal with malicious modification.  Attackers 

with sufficient access to the system could modify the 

separation kernel and update the checksum.  For this reason, 

non-by-passable hardware rooted security features are 

required for system assurance. 

 

NXP QorIQ processors provide non-bypassable hardware 

rooted security features in the form of the QorIQ Platform’s 

Trust Architecture™.  The trust architecture is a set of 

hardware and software techniques designed to support trusted 

boot and maintenance of the trusted environment during 

runtime. 

 

The QorIQ Trust Architecture’s secure boot mechanism is the 

main line of defense against malicious modification.  The 

developer of the MILS system programs fuses in the QorIQ 

processor, creating a permanent binding between the system 

and a list of RSA public keys.  Rather than a simple 

checksum, the developer digitally signs the separation kernel, 

its configuration files, and preferably, the partition images 

with RSA private keys paired with the RSA public keys.  The 

signed images are programmed into system non-volatile 

memory and the system is deployed. 

 

Once in the field, the system boots, and the QorIQ processor 

(executing from a non-modifiable internal bootROM), verifies 

the public keys provided with the image against the fuse based 

values.  If the keys are valid, the processor checks the digital 

signature over the separation kernel, config files, and any 

other signed files, and those verifications pass, the separation 

kernel begins execution.  Failure to verify the digital signature 

(meaning the contents of non-volatile memory don’t match the 

expected content) is considered a tamper event, and the system 

will refuse to boot.  External physical tamper sensors can also 

be added to the system and connected to the QorIQ processor, 

so that if any physical tampers are detected, the system also 

refuses to boot. 

 

Trust Architecture is a tool kit.  Beyond secure boot based 

tamper detection and inputs for external physical tamper 

detection, it also supports secure debug, runtime integrity 

checking, and anti-rollback. 

 

System developers select the secure debug policy by 

irreversible fuse programming, with options to permanently 

disable the debug port, or program a challenge/response value. 

 

Run time integrity checking relies on the QorIQ processor’s 

integrated crypto acceleration engine (called the SEC).  The 

SEC performs SHA-256 hashing at multi-Gbps speeds 

capability to repeatedly hash memory pages holding the 

separation kernel itself (and anything else the developer deems 

important).  If the hash comparison against the known good 

value fails, the SEC triggers a security violation warning. 

 

Rollback is an attack strategy in which the attacker attempts to 

undo security updates by tricking a system into executing an 

authentic (but old and vulnerable) version of software.  NXP 

QorIQ processors offer monotonic counter and key revocation 

features to detect ‘de-authorized’ older revisions of software 

and block their execution.   

 

Besides preventing malicious code from executing, the Trust 

Architecture also gives trusted code the ability to create 

‘cryptographic blobs’ using a fuse based one-time 

programmable master key (OTPMK).  While the system is in 

a Trusted state, software can command the SEC to use the 

OTPMK to encrypt code, data, certificates, or additional keys, 

such that if any of these items needs to be decrypted, the 

developer can be assured that the decryption will only occur if 

the system has passed secure boot and no tamper events have 

been detected.   

 

For any type of tamper event, the reaction to the tamper is 

under the developer’s control.  Reactions can range from 

clearing & locking out the master key to instantaneous hard 

reset of the board, to full bricking of the system.  

 
Newer NXP QorIQ devices using ARM processors also 
support TrustZone®.  TrustZone is an additional CPU 
execution state designed to support separation of platform 
resources into ‘secure world’ and ‘non-secure world’.  In the 
context of a MILS system, the separation kernel could run in 
secure world and the partitions in non-secure world, or the 
separation kernel and all partitions could run in non-secure 
world, with highly specialized security functions running in 
secure world.  NXP’s Trust Architecture and ARM’s 
TrustZone are complementary technologies, and a full analysis 
of TrustZone’s potential in MILS systems is a topic for future 
investigation. 

IV. SUMMARY 

The MILS architecture, originally developed for military 

avionics, is seeing increasing adoption in other industries 

dealing with cyber-physical devices.  Support for safely and 

securely combining mixed criticality functions and providing 

a means for compositional security certification should make 

MILS the architecture of choice for a variety of industrial 

applications, including power generation & distribution, 

factory & service robotics, and intelligent transportation 

networks.  Perhaps in a near return to MILS origins, 

automotive systems currently distinguished by function 

(telematics, navigation, infotainment, driver assist, chassis & 

powertrain ECUs) will consolidate into a new class of 

‘HADionics’ (Highly Automated Drive-ionics) built on MILS 

separation kernels and processors supporting hardware 

enforced partitioning.  
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