
MILS Workshop 2017 at www.embedded-world.eu

Security by Design: Introduction to MILS

Sergey Tverdyshev

Research & Development

SYSGO AG

Germany

Abstract A "security by design" method achieves robustness

against programming errors and malicious attacks. A security by

design method must be simple to understand. It must be simple

to implement, and also to simple to verify. It must enable the

developer to create assurance evidence coherent with the design

decisions. MILS is a security by design method. In short,

application of the MILS approach starts with partitioning the

system under design into isolated compartments. System

resources, e.g. CPUs, CPU time, memory, IO devices, files, are

assigned to compartments. After that the communication

channels between compartments are defined with respect to the

required API (e.g. POSIX, ARINC, AUTOSAR). Communication

and resource sharing between security domains have to be

explicit, i.e. everything is forbidden what is not explicitly allowed.

In parallel threat modeling is executed, i.e. define system assets to

be protected, threat agents and possible malicious actions, system

objectives to fight the threats. MILS provides a way to execute

mixed-critical applications of different pedigrees on one system.

The system as a whole still can be certified to the highest security

and safety assurance levels. This makes the approach extremely

interesting for modern complex systems, e.g. in a car

infotainment system: Android applications can run on the same

platform as AUTOSAR applications that communicate with the

engine. Until ca. 2000 the MILS concept was mainly used in the

US military. Now the commercial interest has picked up. We

explain a MILS Architectural Template that simplifies to set up

MILS systems. We finish with applications of the MILS concepts

across automotive and avionics.

I. INTRODUCTION

A "security by design" must enable the system developer to
create assurance evidence coherently with the design decisions.
Thus, when the requirements state "what the system does", the
design supports to explain "why the system does it correctly".
Moreover, design is largely about splitting a system into
components and connections, and security by design shall be
able to securely separate components from each other. That is,
in case a low-criticality component functionality yields to an
attacker, the design shall guarantee that other high-criticality
components remain unharmed.

MILS is a high-assurance security architectural approach

based on the concepts of separation and controlled information

flow. The MILS approach has become a new strategy for

effectively designing systems requiring high-assurance,

including effective and efficient compositional certification.

II. MILS PLATFORM

The cornerstone of the architecture is a MILS platform, which

encapsulates trusted and untrusted applications into

compartments that reduce mutual dependencies to

communications over channels explicitly defined by security

policies. This cornerstone component has to be non-

bypassable, evaluable, always invoked, and tamperproof

(NEAT) [1], [2]. The MILS platform is implemented as a

software-hardware (SW-HW) system, consisting of a software

separation kernel and the hardware central processing unit

(CPU) and memory management unit (MMU), as well as other

critical hardware devices (e.g. IOMMU) and their

software [3]. The central part of the MILS platform is its

separation kernel, which implements those separated

compartments, manages hardware, as well as enforces security

policies for information flow, access control, and resource

availability. The MILS principles are based on system

decomposition of HW and SW into meaningful and from a

security point of view atomic components.

In a benign environment, built for cooperating actors, it

suffices if resource decompositions are partial [4]. In an

adversarial environment, the allocation of resources has to be

completely compartimentalised (see Table 1), such that every

resource belongs to some component and can only be accessed

by any another component if allowed by the global

configuration as well as by the resource owning component

itself (“security domains” [5]). Thus, if a component fails or

starts acting maliciously, other components are unaffected.

Decom-

position

means

Components

the system is

decomposed to

Typical enforce-

ment

mechanisms

Security

view on

environment

Security

properties

preserved

Safety

protection

against

Functions Independent/

loosely

connected

computations

Compiler

convention for

register storing at

function entry /

exit; stack

convention

Cooperative None Uninten-

ded reuse

of

variables

Threads Single-thread

computation

Saving/restoring

the threads’ states

Cooperative None Uninten-

ded reuse

of

variables

Operating

system:

Processes

Applications /

processes in an

operating

system

Address space

separation by

MMU

Cooperative Integrity,

confidentiality

for memory

accesses

Uninten-

ded reuse

of

memory

locations

Hypervi-

sor: Virtu-

alization

Guest operating

systems

CPU

virtualization

Cooperative

to malicious

Integrity,

confidentiality

for CPU

operations

Uninten-

ded access

to

resources

MILS Partitions CPU

virtualization,

real-time,

resource

management,

secure IO, use of

a small code base

Malicious Integrity,

confidentia-

lity,

availability,

information

flow

Malicious

resource

depletion

Table 1: Overview of software decomposition means

III. BUILDING MILS SYSTEMS

Architecture is the planning of how to build a new or

reengineer an existing system from components [6, 7]. Thus,

the first step is the selection of the components (architectural

decomposition) of the system into components and

connections denoting information flows. Where it is possible

to identify components that have no connection,

decomposition produces isolated components. Often,

components do have one or more connections, and a common

convention is to denote components as shapes (e.g., circles)

and connections by arrows, as in Figure 1. The absence of an

arrow (separation) is as important as its presence. The low-

criticality (green) partitions are connected to an untrusted

network and high-criticality partitions (red) control an

actuator. The separation kernel controls and separates all

resources and enforces security policies. It has a small

codebase and thus is amenable to high-assurance verification

and certification. In summary, MILS gives an agreement to

define clear layers, applicable to a large class of systems,

although these systems do not all brand themselves MILS.

When applying a MILS design, the integrator of the embedded

system using the MILS separation kernel assigns system

resources, e.g. CPUs, CPU time, memory, IO devices, files, to

compartments, called partitions, and puts applications (that,

for instance, may have been developed at different criticality)

into the partitions. The integrator may choose to equip certain

partitions with additional libraries or run-time environments

(e.g. POSIX, ARINC, AUTOSAR) or even to run (para-)

virtualized operating systems (e.g. Linux) in a partition. After

that, the integrator defines communication channels between

partitions with respect to the required API (e.g. POSIX,

ARINC, AUTOSAR). Any communication and resource

sharing between security domains has to be explicit, i.e.

everything is forbidden what is not explicitly allowed.
Thus, the MILS approach provides a way to execute mixed-

critical applications of different pedigrees on one system and
still have that system being certified to the highest security and
safety assurance levels. This makes the approach extremely
interesting for modern complex systems, e.g. in a car
infotainment system: Android applications can run on the same
platform as AUTOSAR applications communicating with the
engine.

Figure 1: MILS Architectural Approach

The MILS approach enables different composition strategies,

comprising:

 T-composition (Figure 2): the composition of the

MILS platform with the applications running on the

MILS platform.

 P-composition or “puzzle composition” (Figure 3)

takes into account maintenance aspects: at time point

X, the blue partition has been updated, and the

redesign / recertification effort is kept local to the

blue partition.

Figure 2: T-composition

Figure 3: P-composition or puzzle composition

An advantage you gain by using the MILS approach is that
it becomes easy to describe the high-level architecture of your
system, which can be aligned to the MILS architecture. As first
step to standardize the terminology of describing MILS

MILS Workshop 2017 at www.embedded-world.eu

architecture, a MILS architectural template is available
(Figure 4). Figure 4 shows that assurances made by the MILS
architecture not only depend on the separation kernel, but also
strongly depend on the underlying hardware, a topic that today
will be treated for ARM [8] and NXP [9] hardware.

Figure 4: MILS Architectural Template [3]

For instance, in the automotive architecture depicted in
Figure 5, on the right-hand side there is a MILS system with
PikeOS as separation kernel, a network manager, Android
(interacting with a modem), and AUTOSAR (interacting with
CAN), implemented as three partitions. Further MILS designs
that will be presented today are another automotive
design [10], an avionics design [11], a design for critical
industrial systems [12], and designs for fog computing [13].

Figure 5: Automotive architecture [14]

IV. ASSURANCE AND CERTIFICATION

The modularity of MILS design simplifies establishing a

security / safety case and compositional certification. For

instance, for security a draft MILS protection profile has

already been established (Figure 6). A compositional safety

case is discussed in [15]. MILS design analysis and

certification for safety and security will be subject of talks this

afternoon [16] [17] [18].

Figure 6: MILS PP [19]

V. DISCUSSION

To support MILS users, a MILS Community has been

founded, as an informal group that specifically targets users of

MILS systems [20]. For instance, the MILS Community has

produced a MILS roadmap (Figure 7). We expect today’s

workshop to push forward common understanding of MILS

topics, including building systems with the MILS architecture,

as well as bringing forward new approaches for MILS

foundations and MILS verification.

Figure 7: MILS community roadmap [21]

VI. ACKNOWLEDGMENT

Work has received partial funding from the EU Horizon 2020

projects CITADEL, http://www.citadel-project.org/ (project

number 700665) and certMILS http://www.certmils.eu/,

(project number 731456).

VII. BIBLIOGRAPHY

[1] D. Kleidermacher and M. Wolf, "MILS Virtualization for Integrated

Modular Avionics," in Digital Avionics Systems Conference (DASC),
St Paul, 2008.

[2] J. Rushby, “Design and Verification of Secure Systems,” 1981.

[Online]. Available: http://www.sdl.sri.com/papers/sosp81/sosp81.pdf.

http://www.citadel-project.org/
http://www.certmils.eu/

[3] S. Tverdyshev, H. Blasum, B. Langenstein, J. Maebe, B. De Sutter, B.
Leconte, B. Triquet, K. Mueller, M. Paulitsch, A. Soeding-Freiherr von

Blomberg and A. Tillequin, “MILS Architecture,” 2013. [Online].

Available: http://dx.doi.org/10.5281/zenodo.45164.

[4] H. A. Simon, “The Architecture of Complexity,” Proc Am Phil Society,

vol. 106, no. 6, pp. 467-482, December 1962.

[5] B. W. Lampson, “Protection,” in Proc Fifth Annual Princeton

Conference on Information Sciences and Systems, Princeton, 1971.

[6] L. Bass, P. Clements and R. Kazman, Software Architecture in
Practice, Addison-Wesley, 2003.

[7] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young and G.

Zelesnik, "Abstractions for Software Architecture and Tools to Support
Them," Software Engineering, IEEE Transactions on, vol. 21, no. 4,

pp. 314-335, 1995.

[8] M. Meriac, “High-End Security Features for Low-End
Microcontrollers: Hardware-Security Acceleration on ARMv8-M

Systems,” this workshop, 2017.

[9] G. Waters, “Hardware Enforced Separation in Embedded Multicore

SoCs,” this workshop, 2017.

[10] E. Waitz, “Current Trends and Solutions in Securing Automotive

Software,” this workshop., 2017.

[11] K. Müller, “Hardening High Assurance Systems: MILS as Software

Design for Avionics,” this workshop, 2017.

[12] E. Rudina, “An Approach to SoD Validation for MILS Security
Configurations,” this workshop, 2017.

[13] W. Steiner, “Fog Computing as Enabler for the Industrial Internet of

Things /,” this workshop, 2017.

[14] S. Tverdyshev, “EURO-MILS: Building and certifying modular secure

systems,” 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.47972.

[15] K. Netkachova, K. Müller, M. Paulitsch and R. Bloomfield, “Security-
Informed Safety Case Approach to Analysing MILS Systems,” 2015.

[Online]. Available: http://dx.doi.org/10.5281/zenodo.47987.

[16] I. Furgel, V. Saftig, T. Wagner, K. Müller, R. Schwarz and A. Söding-
Freiherr von Blomberg, “Non-Interfering Composed Evaluation,” this

workshop, 2017.

[17] S. Nordhoff and H. Blasum, “Ease Standard Compliance by Technical
Means via MILS,” this workshop, 2017.

[18] T. Noll, “Analysing Cryptographically-Masked Information Flows in

MILS-AADL,” this workshop, 2017.

[19] I. Furgel and V. Saftig, “D12.3 Common Criteria Protection Profile,

“Multiple Independent Levels of Security: Operating System” (MILS

PP: Operating System),” 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.51582.

[20] MILS Community, “MILS Community web site,” [Online]. Available:

http://mils-community.euromils.eu/.

[21] MILS Community, “MILS Community Roadmap,” 2016. [Online].

Available:

http://lists.euromils.eu/mailman/private/mils/attachments/20160808/bf
6222c0/attachment-0001.pdf .

	I. Introduction
	II. MILS platform
	III. Building MILS systems
	IV. Assurance and certification
	V. Discussion
	VI. Acknowledgment
	VII. Bibliography

