
Title 44pt Title Case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

High-end security features for
low-end microcontrollers:
Hardware-security acceleration
on ARMv8-M systems

Milosch Meriac

Embedded World Conference

Principal Security Engineer

github.com/ARMmbed/uvisor

14 March 2017

© ARM 2016 2

Text 54pt sentence case

Why is
microcontroller security

so hard?

© ARM 2017 3

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

The IoT revolution has increased connectivity requirements in
embedded systems, but:
• Many MCU developers lack sufficient security knowledge
• Cost pressure prevents sophisticated security solutions
• Reuse of old software that was not designed for security

Microcontroller systems are usually…

…. if a product is successful, it will attract hackers

• Simple
• Low cost
• Deployed for a long time

© ARM 2017 4

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Device lifetime
The security of a system is dynamic over its lifetime. Lifetimes of
home automation nodes can be 10+ years

Attacks may be easily scaled
The assumption of being hacked at some point requires a solid
mitigation strategy for simple, reliable and inexpensive updates
Do our defenses scale with our attackers?

Assume you can’t prevent it
Value of bugs is expressed by value = number_of_installations x
device_value. Increased value and large deployments drive
attackers - especially in the IoT.
Massively parallelized security researchers/attackers vs. limited
product development budgets and time frames.

Microcontroller systems

© ARM 2017 5

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

A flat address space, as the result of lack of a memory
management units (MMU), does not justify the absence of
security.

The resulting security model is identical to ancient computer
systems from the 80’s – one remote exploits the whole
system.

Many microcontrollers like ARM Cortex-M3/M4 provide a
hardware memory protection unit (MPU) as a good
alternative to a MMU.

Flat memory models

© ARM 2017 6

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

No separation
Flat memory models and ignorance of MPUs prevents
deployment of vital security models like “least privilege”

Escalation
Flat memory models enable escalation and persistence of
bugs by uncontrolled writing to Flash memories

Verification
Security verification impossible due to the immense attack
surface and lack of secure interfaces between system
components

Flat memory models

Leakage
“All your bases are belong to us” – thanks to leakage of
device secrets like identity keys or even class secrets.

© ARM 2017 7

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Securing microcontrollers?

§ Compartmentalization of threads and
processes on microcontrollers

§ Private stack and data sections
§ Initialization of memory protection unit

based on process permissions:
§ Whitelist approach – only required peripherals

should be accessible to each box
§ Each box must have private .bss data and stack

sections

§ Switch execution to non-secure side,
continue boot unprivileged to initialize OS
and libraries to reduce the attack surface

© ARM 2016 8

Text 54pt sentence case
TrustZone for ARM ARMv8-M

simplifies MCU security

© ARM 2017 9

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

ARM TrustZone Technology

§ Optional security extension for the ARMv8-M architecture
§ Security architecture for deeply embedded processors
§ Enables containerisation of software
§ Simplifies security assessment of embedded devices

§ Similar and compatible to existing TrustZone technology
§ New architecture tailored for embedded devices

§ Preserves low interrupt latencies of Cortex-M
§ Provides high performance cross-domain calling

Bringing ARM security extensions to the embedded world

© ARM 2017 10

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Applying ARM TrustZone to microcontrollers
§ ARMv8-M architecture as used in Cortex-M23

and Cortex-M33 systems
§ Introduced system level hardware security features
§ Security-aware DMA peripherals and debugging
§ Security extended to memories and peripherals

through bus filters
§ Memory protection controllers (MPC)
§ Peripheral protection controllers (PPC)

§ CPU can run in secure and in non-secure states,
with visibility for all bus peripherals
§ Efficient and privacy-enabled transitions between

the two security modes
§ Two instances of the interrupt vector table,

one for exclusive use on the secure side.
§ Stack overflow protection

Secure regions

Non-secure regions

© ARM 2016 11

Text 54pt sentence case Designing system security
for microcontrollers

© ARM 2017 12

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

§ Non-secure side cannot
access secure resources.

§ Secure side has access to
everything on the system.

§ Secure and
Non-secure processes may
implement independent
scheduling.

A simplified use case
Composing systems from secure and non-secure security domains

Firmware projectUser project

Non-secure state Secure state

System start

Firmware

Communication
stack

User application

I/O driver

Function calls

Start

Function calls

Function calls

© ARM 2017 13

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

About TrustZone for ARMv8-M

§ A security barrier
§ Secure and Non-Secure code runs on the same core
§ Non-Secure code cannot access secure resources

§ Allows direct function calls between domains
§ Non-Secure to Secure API functions

§ Entry points protected use Secure Gateway (SG)
instructions, non-secure side can’t jump past security
checks on the secure side as a result

§ Entries only permitted in special secure memories with
Non-Secure-callable attribute (NSC)

§ Secure to Non-Secure API functions
§ BLXNS instruction and FNC_RETURN used by the

secure side to perform call-backs into the non-secure
side

Security extension for next generation Cortex-M processors

R0

R1

R13

Secure Non-secure

R14

R15

MSPLIM_S

PSPLIM_S

MSPLIM_NS

PSPLIM_NS

MSP_S

PSP_S

MSP_NS

PSP_NS

Secure
handler
mode

Secure
thread m

ode

Non-secure
handler
mode

Non-secure
thread
mode

Calls

Calls

© ARM 2017 14

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Support for multiple secure software libraries

§ Secure software library manager to handle context switching
§ Requires Secure privileged and unprivileged levels, and Secure MPU

Software Library
Manager (e.g. uVisor)

Memory Protection Unit

SW
Lib
A

Privileged

Unprivileged SW
Lib
B

SW
Lib
C

SW
Lib
X

Secure MPU prevents software
libraries from directly accessing

each other’s data

Secure firmware Non-secure

Applications

§ Calling secure APIs from currently
selected library
§ API executes without delay

§ Calling secure APIs from another Secure
library
i. Triggers Secure memory management

exception
ii. Library manager switches context to new

MPU configuration
iii. API call resumes

© ARM 2017 15

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Secure device services on TrustZone: SDS

§ Use hardware-accelerated security context
switching for low-latency system services
§ Secure Interrupt management
§ Secure GPIO access (pin-wise access)
§ Register Level / Bit Level access gateway
§ IPC
§ DMA-APIs
§ Shared Crypto Accelerators / Crypto API
§ Random Entropy Pool Drivers
§ Key Provisioning / Storage
§ Configuration Storage APIs
§ … and many more

© ARM 2016 16

Text 54pt sentence case ARMv8-M provides system security

© ARM 2017 17

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Memory protection unit (MPU)

§ Major update from previous ARMv7-M version
§ Prevents application task from corrupting

OS or other task data
§ Improves system reliability

§ User-configurable regions
§ Address
§ Size
§ Memory attributes
§ Access permissions

§ Optional in all Cortex-M
processors (except Cortex-M0)

Cortex-M

MEMORY

data for

task A

data for

task C

data for

OS kernel

data for

task B

I/O #2
I/O #1
I/O #0

I/O #n

MPU

MPU
configuration

OS kernel
(privileged)

task
A

task
B

task
C

ARM

© ARM 2017 18

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

ARMv8-M MPU features

§ MPU configuration registers is banked between Secure/Non-secure states
§ When running Secure code – use Secure MPU settings (MPU_S)
§ When running Non-Secure code – use Non-Secure MPU settings (MPU_NS)

§ Both MPUs are optional
§ Possible to have no MPU, an MPU in one domain or MPUs in both domains
§ Region count of MPUs can be different between different domains
§ Support 0 (no MPU), 4, 8, 12 and 16 regions + background regions

§ Software can use TT (Test Target) instruction to check MPU attributes for
enabling portable software security models and security-aware libraries

© ARM 2017 19

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case
§ ARMv8-M adopts base and limit style comparators for regions

§ Replaces previous power-of-two size, sized aligned scheme
§ Simplifies software development, encouraging creation of safer software
§ Accelerates programming, potentially reducing context switch times.

§ MPU configurable down to 32-byte granularity.
§ New Device memory attribute definitions (ARMv8 alignment)

PMSAv8 (Protected Memory System Arch. v8)
Improved programmability and flexibility

1kB 16kB 256kB 1kB

SINGLE 274kB REGION

PMSAv7

PMSAv8

0x3BC00 0x80400

PMSA – Protected Memory System Architecture

© ARM 2017 20

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

The ARMv8-M MPU: key changes to ARMv7-M

§ The size of an MPU region can be any size in the granularity of 32 bytes. The
previous restriction where region size must be 2^N is removed.

§ Sub-region-disable removed, regions are continuous now

§ Support for overlapping regions removed (apart from background region)
§ region priorities are not needed any more

§ New attribute definitions for device memories

§ Memory regions define memory attribute using an index value which is then
looked up in a set of memory attribute registers

© ARM 2017 21

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Interrupt handling in ARMv8-M

§ Each interrupt can be assigned toSecure or
Non-Secure side

§ Some system exceptions are banked
§ e.g. SysTick timer is banked

§ Secure interrupts can be programmed to have
higher priority than Non-secure IRQs

§ Same operations as in ARMv7-M in most cases
(no extra latency)

SysTick
(NS)

SysTick
(S)

IRQs
Processor

core
NVIC

Priority

Secure
IRQs

Non-
secure
IRQs

Secure
IRQs Non-

secure
IRQs

or

Nested
Vectored
Interrupt
Controller

© ARM 2017 22

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

CONFIDENTIAL

Hardware stack protection: Stack limit registers

§ Stack limit registers are special registers
§ Access using MRS, MSR

§ In ARMv8-M the “Mainline” profile (Cortex-M23):
§ 4 stack limit registers

§ In ARMv8-M the “Baseline” profile (Cortex-M33):
§ Stack limit for Secure SPs only
§ Prevent secure stack overflowed into NS
§ NS software can use MPU for stack limit

R0

R1

R13

Secure Non-secure

R14

R15

MSPLIM_S

PSPLIM_S

MSPLIM_NS

PSPLIM_NS

MSP_S

PSP_S

MSP_NS

PSP_NS

© ARM 2017 23

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Defining system level security with the SAU

§ The security attribution unit (SAU) and the implementation defined attribution
unit (IDAU) define access permissions for Secure/Non-Secure separation:
§ MPU defines

§ Access permissions based on Privileged/Unprivileged separation
§ Memory attributes (e.g. cache policy, XN)

§ Both of them
§ Based on (pre-)configured memory regions
§ SAU/IDAU regions and MPU regions are not necessarily correlated
§ Programmable in privileged state only (word accesses only)

© ARM 2017 24

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Defining system level security with the IDAU

§ Use IDAU for primary memory partitioning.
§ Minimal TrustZone setup

§ Allows to use IDAU interface only, with zero SAU regions
§ Memory partitioning using the Memory Protection Controller (MPC)
§ Peripheral management using the Peripheral Protection Controller (PPC)
§ Fixed memory space for secure code entries: Non-Secure Callable (NSC)

§ Typical MCU setup is to use the IDAU interface and 8 SAU regions
§ Memory partitioning using Memory Protection Controller (MPC)
§ Peripheral management using Peripheral Protection Controller (PPC)
§ Secure memory set to NSC by programmable registers, use SAU to override to Secure,

leaving small amount of memory as NSC

© ARM 2017 25

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

CONFIDENTIAL

Security-aware peripherals

§ A peripheral can be designed to have different
programming views when accessed in Secure state
and in Non-Secure state
§ Accessible in Secure address and Non-Secure address
§ AHB5 / APB4 is needed for TrustZone support
§ Peripherals should be placed in Non-executable address

spaces (to prevent code injection)

Peripheral
X

Secure
address
range

Non-secure
address
range

HNONSEC or
PPROT[1] = 0

HNONSEC or
PPROT[1] = 1

Default design approach – Secure and Non-secure aliases

Note: HNONSEC is an AHB5 signal. PPROT is an APBv2
signal with same information.

© ARM 2017 26

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

CONFIDENTIAL

Alias of the
same memory

macro

Secure
address alias.
Accessible by
secure SW

Non-Secure
address alias

#0
#1
#2
#3
#4
#5

#0
#1
#2
#3
#4
#5

Block base memory protection controller: MPC

§ Partition address space
§ Break down memory space into pages
§ Each page visible only on one alias (Secure or Non-Secure)
§ Ideal for embedded flash - with flash erase sector sized pages
§ Only one configuration-register-bit per page

to control access

§ Suitable for SRAM protection in advanced OS’s
§ e.g. ARM mbedOS uVisor: github.com/ARMmbed/uvisor
§ design of gating unit can be complex

© ARM 2017 27

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

CONFIDENTIAL

Watermark based memory protection controller

§ Partition memory address space using watermark levels
§ Each memory segment is visible in one of the address aliases
§ Easy to design, low gate count
§ Less flexible in terms of memory layout

§ Recommended for DDR/SDRAM

§ Suitable for typical MCU software
§ Static allocation of Secure/Non-secure memories
§ Not ideal for advanced OS’s

Aliases of the
same memory

Secure
access by
secure SW

Non-secure
accesses

Watermark

Watermark

© ARM 2017 28

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

IDAU/SAU summary: Security defined by address

§ All addresses are either Secure or Non-secure.

§ Policing managed by Secure Attribution Unit (SAU)
§ SAU internally similar to MPU
§ Implementation Defined Attribution Unit (IDAU) interface

for adding hardware based default policing rules
§ Supports use of external system-level definitions

§ e.g. based on flash blocks or per peripheral

§ Banked MPU configuration across Secure/Non-Secure
§ Independent memory protection per security state
§ Secure OS can be completely decoupled from Non-secure OS

§ Load/stores acquire NS attribute based on address
§ Non-secure access attempts to a secure address results in a

memory fault

All transactions from core and debugger checked

Non-Secure
MPU

Secure
MPU

Security
Attribution
Unit (SAU)

System
Level

Control

Request from CPU

Request to System

System
specific
IDAU

© ARM 2016 29

Text 54pt sentence case

Microcontroller security:
Practical use cases

© ARM 2017 30

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Simplified software security with
TrustZone for ARMv8-M

AMBA 5 AHB5 interconnect

Processor
(ARMv8-M)

Secure regions

Non-secure regions

Secure Boot
loader

Secure
access only

Memory
Protection
Controller

Flash

(Page based
partitioning)

System
Security

ControllerSRAM

(Watermark level
based

partitioning)

Peripheral
Protection
Controller

AHB5 to APB
bridge

TrustZone
aware bus

master

Legacy bus
master

(Non-Secure)

Security
wrapper

Memory
Protection
Controller

Security
wrapper

Legacy bus
master

(Secure)

Peripheral
Protection
Controller

IDAU IDAU

IDAU IDAU

APB
Peripherals

APB
Peripherals

© ARM 2017 31

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

§ Trusted messages contain commands, data or
firmware parts.

§ Box security not affected by communication
stack exploits or infections outside of trusted
box.

§ Payload delivery is agnostic of protocol stack.
§ Resilient box communication over the

available channels:
§ Ethernet, CAN-Bus, USB, Serial
§ Bluetooth, Wi-Fi, ZigBee, 6LoWPAN

Use case: Secure outbound communication

Exposed box with
communication stack

Decrypt
and verify
using
DTLS

GAP

Secured and trusted
device process

GATT

AP

BLE LL

Trusted box without
communication Stack

Opaque Block

Commands,
Data,

Firmware Blob

Opaque

Bluetooth
Communication

Stack

Ex
po

se
d

A
pp

lic
at

io
n

C
od

e

IoT Device owned by user.
Initial identity provisioned by System Integrator
Messages delivered agnostic of communication stack

© ARM 2017 32

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

§ Communication protected using TLS.
§ Raw message payloads decrypted and

verified directly by protected code:
§ TLS protocol box not exposed to communication

protocol stack bugs.
§ No interference by other boxes.
§ Low attack surface.

§ Authentication and encryption keys are
protected against malware.

§ Malware cannot interfere without knowing
the encryption or signing keys.

Use case: Secure server communication

Exposed box with
communication stack

Decrypt
and verify
using
DTLS

TLS box handles
only the SSL protocol

Opaque BlockOpaque

Initial keys provisioned by System Integrator.
Messages decoded independent of stacks using
mbed TLS in separate security context

Ex
po

se
d

A
pp

lic
at

io
n

C
od

e

Decryption Keys

Decrypted BlockDecrypted

IP Stack

© ARM 2017 33

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Use case: Secure remote firmware update

Exposed box with
communication stack

GAP

GATT

AP

BLE LL

Bluetooth
Communication

Stack

Flash interface box protected by mbed uVisor
– without own communication stack

C
us

to
m

 A
pp

lic
at

io
n

C
od

e

Opaque Block

IoT device owned by user,
Initial identity provisioned by System Integrator,
Messages delivered independent of stacks

Firmware
update blocks

FW005

Firmware Update Image

Secure Storage,
Firmware Update Blocks

Re-flash Untrusted
Application Upon Completion

Opaque

Secured and trusted
device process

Decrypt
and verify
using
DTLS

§ Delivery of firmware update must be
decoupled from a protocol-independent
firmware image verification

§ Bugs in communication stacks or cloud
infrastructure must not compromise the
firmware update

§ End-to-end security for firmware updates
between the firmware developer and the
secure box

Note: You can find the extended
version of this slide at page 37

© ARM 2017 34

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Use case: Controlled malware recovery

§ Secure box can remotely recover from malware:
§ Enforces communication through the exposed side to the server
§ Thanks to flash controller ACL restrictions, malware cannot

modify monitor code or install itself into non-volatile memories

§ When communication breaks with the server:
§ Parts of the device stack are reset to a known-good state
§ Disambiguation from Network failure
§ Reset prevents malware from staying on the device
§ Device switches to a safe mode to rule out network problems

or to remotely update the firmware via reboot if needed

https://commons.wikimedia.org/wiki/File:Biohazard.svg

Note: You can find the extended
version of this slide at page 38

Download ARM’s detailed paper on the topics
presented https://github.com/ARMmbed/uvisor/

Follow ARMmbed uVisor development on
github.com, a reference implementation for
ARMv8-M security

Contact Milosch Meriac milosch.meriac@arm.com

Thank you! Questions?

The trademarks featured in this presentation are registered and/or unregistered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved. All other marks featured may be trademarks of their
respective owners.
Copyright © 2017 ARM Limited

© ARM 2016 36

Text 54pt sentence case

Extended Slides

© ARM 2017 37

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Use case: Secure remote firmware update

Exposed box with
communication stack

GAP

GATT

AP

BLE LL

Bluetooth
Communication

Stack

Flash interface box protected by mbed uVisor
– without own communication stack

C
us

to
m

 A
pp

lic
at

io
n

C
od

e

Opaque Block

IoT device owned by user,
Initial identity provisioned by System Integrator,
Messages delivered independent of stacks

Firmware
update blocks

FW005

Firmware Update Image

Secure Storage,
Firmware Update Blocks

Re-flash Untrusted
Application Upon Completion

Opaque

Secured and trusted
device process

Decrypt
and verify
using
DTLS

§ Delivery of firmware update must be
decoupled from a protocol-independent
firmware image verification

§ Bugs in communication stacks or cloud
infrastructure must not compromise the
firmware update:
§ End-to-end security for firmware updates between

the firmware developer and the secure box
§ Secure box on the device has exclusive flash-write-

access
§ Box with flash controller ACLs only needs the

public update key to verify validity of firmware.
§ Local malware can’t forge a valid firmware signature

to the firmware update box, the required private
firmware signature key is not in the device.

© ARM 2017 38

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Use case: Controlled malware recovery
§ Secure box can remotely recover from malware:

§ Enforces communication through the exposed side to the server.
§ Receives latest security rules and virus behaviour fingerprints for

detection.
§ Shares detected pattern fingerprint matches with control server
§ Distributed detection of viruses and live infrastructure attacks.
§ Thanks to flash controller ACL restrictions, malware cannot modify

monitor code or install itself into non-volatile memories.

§ When communication with the server breaks for a
minimum time:
§ Disambiguation from Network failure
§ Parts of the device stack are reset to a known-good state.
§ Reset prevents malware from staying on the device.
§ Device switches to a safe mode to rule out network problems or to

remotely update the firmware via reboot if needed.

https://commons.wikimedia.org/wiki/File:Biohazard.svg

