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Abstract —ARM® TrustZone® technology for ARM 
Cortex®-M33 enables systems and their software to be 
partitioned into multiple security domains. Next generation 
microcontroller operating systems can benefit from these 
hardware security features without affecting real time 
performance.  

This paper presents one of the possible configurations - 
showing how critical operating system functions can be 
accelerated with new hardware security features while 
maintaining the real-time properties of the secure OS. Critical 
system functions include secure memory allocation, interrupt 
management, whitelisting of peripheral access, cross-domain-
calls and secure boot. 

A prototype for such an operating system – the ARM mbed™ 
OS with uVisor - is currently being developed on GitHub1 to 
verify these concepts with practical use cases.  

Keywords — ARM TrustZone; Cortex-M33; Security 
Attribution Unit (SAU); Implementation Defined Attribution Unit 
(IDAU); Memory Protection Unit (MPU); MPU banking; Bus 
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I.  INTRODUCTION 
Although connected microcontroller systems are 

ubiquitous, the security measures found on these systems 
commonly lag behind mobile application processors by ten to 
twenty years. The result of these shortcomings is that potential 
remote attackers have an easy game to escalate application 
bugs to system privileges. Once malware becomes resident on 
a microcontroller, the system turns irrecoverable for a remote 
system manager – instead engineers must be sent around with 
laptops and programming dongles for recovering these devices, 
making the cost of recovery very expensive.  

                                                             
1 uVisor can be found at https://github.com/ARMmbed/uvisor 

On high-end embedded systems using application 
processors, security solutions like SeLinux enable fine-grained 
access control and process separation by implementation of the 
'Principle of Least Privilege'. 

This countermeasure ensures that the effects of a successful 
attack are restricted to a small portion of the system and cannot 
be easily escalated to other parts. 

As long as the attacker cannot escalate to the remote 
recovery context, devices can be remotely recovered by 
automated processes. 

 On these high-end systems such measures are often secured 
by using memory management units (MMU). Although in the 
case of ARM TrustZone for Cortex-A usually a single security 
context is used, it is seldom virtualized between security 
domains. By using the MMU hardware, the operating system 
can control, on a fine-grained level, which peripherals and 
memories are accessible by which context. Communication 
between these isolated contexts can be strictly controlled. 
Security reviews of such systems therefore can be focused on 
these inter-context interfaces.  

 In the absence of an MMU, memory protection units 
(MPUs) can be used to protect critical microcontroller software 
- offering isolation whilst maintaining deterministic real-time 
response and the small footprint required in microcontroller 
applications.  

Embedded operating systems for ARM microcontrollers 
have recently started to use MPUs for implementing secure 
spatial and temporal process isolation. Commonly such 
isolation can come at a very high cost in terms of call-latencies 
and loss of real-time properties. However, with the introduction 
of TrustZone for ARMv8-M, hardware security features that 
were previously only available to application processors are 
now available for microcontrollers.  

 We present how granular and lightweight system level 
security components can be used in combination with the new 



ARMv8-M architecture-based Cortex-M33 processor. We will 
demonstrate how an operating system can use ARM TrustZone 
technology, banked MPUs and AMBA AHB5 interconnect to 
implement process isolation, without impact on the real-time 
capability of the system.  

We also address acceleration of common security features 
like dynamic secure memory allocation during runtime, 
flexible and secure inter-domain communication and peripheral 
protection on a per-security-domain level on MMU-less 
microcontrollers. 

In addition, we'll present how ARM TrustZone for 
ARMv8-M technology enables secure boot and allows 
microcontroller systems to recover, even when part of the 
system is compromised.  

II. TRUSTZONE FOR ARMV8-M MICROCONTROLLERS 
ARM Cortex-M23 and Cortex-M33 processors are both based 
on the ARMv8-M architecture and use the same memory map 
as the previous generation of Cortex-M processors based on 
the ARMv7-M/ARMv6-M architecture. 

TrustZone security functions are now part of the ARMv8-M 
architecture. In a TrustZone-enabled system, software is 
divided into Secure and Non-secure domains: 

• Secure software executes from the Secure address 
space and can access both Secure and Non-secure 
addresses. Secure software typically contains 
components that are critical to the security of a 
device such as secure-boot, device provisioning, 
encryption libraries and firmware update. The 
processor is in the Secure state when executing 
Secure software. 

• Non-secure software executes from Non-secure 
address spaces and can only access Non-secure 
memories and peripherals.  Traditional application 
code is likely to be executed in the Non-secure state. 
The processor is in the Non-secure state when 
executing Non-secure software. In this paper we 
describe how the Non-secure state can be split 
between multiple mutually distrustful domains. 

The partitioning of the address space is handled by the 
processor using a programmable unit called the Security 
Attribution Unit (SAU) in combination with a device specific 
logic block called the Implementation Defined Attribution 
Unit (IDAU). The memory space security configuration can 
only be changed by software running in the Secure state. 

Software functions running on the system are executed 
either in Secure or Non-secure state: 

• Secure and Non-secure software can interact with 
each other using direct function calls 

• Exception handling can switch processor states 
transparently. 

The separation between Non-secure and Secure software 
execution can be made visible to the wider bus system:   

III. BUS LEVEL SECURITY 
Much like TrustZone on traditional ARMv7-A and 

ARMv8-A application CPUs, hardware security is now 
extended to the peripheral bus system of the microcontroller. 
Each component on the bus can verify and propagate the 
security level for each bus operation. Each access to the bus is 
tagged by the CPU with the security attribute of the address 
and is depending on the processor state (Secure or Non-
secure) when the request was originally started. 

In case of derived operations like direct memory access 
(DMA) controllers, Secure software running on the CPU can 
program a TrustZone aware DMA controller to mark a DMA 

channel as Secure, which has a Secure transfer attribute 
propagated by the AHB5 interconnect when accessing Secure 
address locations. The relevant system components for bus 
level security are listed below: 

A. Block based Memory Protection Controller 
For our reference implementation, we recommend using the 
block based memory controller for protecting internal SRAM 
memories. The address space of the memory peripheral is 
partitioned into blocks. 
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Fig 2. Example behavior of a block based memory protection controller 

Each of these blocks is either visible at its Secure alias or at 
the Non-secure alias of the memory block. Every block 

 
Fig 1. System wide security with AHB5 on chip bus protocol 
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corresponds to one configuration bit in a set of security 
registers – therefore a register of 32 bits covers 32 pages 
resulting in 8 kilobytes of memory being protected when 
assuming the recommended page size of 256 bytes. 
 
For memories larger than 256kB, a block size of 512 bytes is 
recommended – above 512kB 1kB pages are appropriate. This 
avoids a significant increase in memory configuration 
hardware. 
 
The result of this design choice results in Secure and Non-
secure memory being distributed across the memory map of 
the SRAM. Access to holes in the map – either by the CPU or 
by bus master peripherals (like DMA engines) - must result in 
bus faults. This way software mistakes - for example 
accidentally initiating a DMA transfer over a memory hole in 
SRAM - can be discovered as early as possible to avert 
attacks.  
 

B. Watermark based Memory Protection Controller 
For external S(D)RAM memories or large flash memories, a 
watermark based approach can be used to partition the 
memory between the Secure and Non-secure alias. 
 
All memories below the watermark offset are mapped to the 
Secure alias – all memories above the watermark are mapped 
into the Non-secure alias of the memory. 
 
Watermark protection is useful for use with flash memories 
for hiding security configuration storage and encryption keys 
from application code. Access privileges for each item can be 
then verified individually depending on the caller context as 
part of a storage API.  

For systems with firmware update functionality (multiple 
firmware slots) a watermark-protection is not feasible. For all 
non-trivial non-volatile-memory (NVM) use cases a block 
based filter with the granularity of the NVM’s erase size is 
required instead.  
  

C. Peripheral Protection Controller 
Like the block based memory protection controller mentioned 
above, each peripheral is individually marked as Secure,  Non-
secure, and additionally marked as privileged or non-
privileged using simple bit masks. Depending on the security 
status of that bit, each peripheral block is mapped either into 
the Secure or Non-secure peripheral range. 
 

A bus-fault will occur if the CPU or bus master peripherals 
(like a DMA engine) try to access the holes in between 
mapped peripheral blocks. In the same way as the block based 
memory protection controller, the bus-fault is detectable, and 
hence can be used to prevent a security violation. 
 

D. Memory Protection Unit (MPU) 
ARMv8-M offers an improved MPU design compared to 
ARMv7-M designs.  The new MPU design provides a very 
flexible configuration scheme of start and end addresses for 
protected memory regions with a granularity down to 32 
bytes. 
 
As in the previous design, the MPU is used to separately 
specify access for privileged and unprivileged code. 
Unprivileged code can be locked out from privilege memories 
and peripherals. Unprivileged code is also barred from 
accessing the MPU configuration and therefore cannot 
circumvent the MPU protection. 
 
Independent of the currently active privilege level of the CPU, 
the MPU also protects SRAM regions against accidental 
writes, and prevents code execution from the stack. 
 
Both the Secure and the Non-secure sides own individual 
MPU instances. Both these MPUs are transparently banked by 
the architecture according to the currently active CPU state. 
Although the MPU itself is an optional configuration option, 
as a minimum we recommend enabling the Secure MPU 
option to partition privileged and unprivileged code execution. 

E. Security Attribution Unit (SAU) 
The MPU handles horizontal access between privileged and 
unprivileged mode. The SAU on the other hand is used for 
defining access between the Secure and the Non-secure 
execution state. 
 
SAU settings are therefore orthogonal to MPU settings. Thus, 
we get four quadrants in our security model – allowing fine-
grained configuration of the system security depending on the 
precise CPU state. 
 
Silicon vendors can define default hardware-specific security 
settings for peripherals and memories, and they do this in the 
IDAU. The IDAU is 
therefore responsible for 
initial static partitioning of 
the system according to the 
needs of a particular 
device. These settings can 
then be refined by a Secure 
software developer using 
the configurable SAU unit, 
to meet the needs of their 
security applications. 

 
Fig 3. Example behavior of a peripheral protection controller 

 
Fig 4. Four quadrants of processor 

states in ARMv8-M architecture 



 
The SAU is optional – silicon vendors can choose to enable 
security configuration dynamism by solely using the IDAU. 
This can reduce silicon area. We recommend against such a 
decision as it breaks portability across different platforms and 
makes it hard for developer and penetration-testers to compare 
security models across devices from different vendors. 
 

F. Hardware Accelerated Portability – the TT instruction 
The “Test Target” (TT) instruction allows discovery of the 
security state and memory layout of an ARMv8M 
microcontroller system in a portable way. 
 
For every given address, the access permission and ownership 
of a memory region can be queried. The TT instruction allows 
an access query for the current processor state – as well as for 
all privilege states lower or equal the current state and all 
security states lower or equal to the current state:  

- TT – Use current security state and current privilege 
level 

- TTT – Privileged software can determine 
unprivileged access permission of current security 
state 

- TTA – Secure software can see the alternate 
domain’s access permission 

- TTAT – Secure software can see the alternate 
domain’s unprivileged access permission 

 
Every distinct block (i.e. a block with a consistent security 
setting for the memory) is assigned a unique ID – the IDAU 
region number. Each peripheral block in the peripheral range 
must have a distinct number. The main benefit of using the TT 
instruction is to discover security-discontinuities for a given 
memory range. 
 
By checking the start and end address of a memory range with 
two TT-instructions, the operating system can verify if the 
security-configurations are identical for both addresses: 

- if the IDAU-ID’s are the same, that tells TT for 
example that an intended DMA access will not run 
across two peripherals. This enables detection in the 
planned transaction – for example an intended DMA 
request spanning two peripherals. 

- the SAU-region ID, in case an SAU region is 
configured for the tested address. SAU regions are 
not allowed to overlap and therefore cannot be 
nested. The same SAU region ID returned for the 
start and end implies that start and end of the 
transaction is within the same region. 

- the MPU-region ID in case a MPU region is 
configured for the address to be tested. Like SAU 
regions, MPU regions cannot overlap and therefore 
cannot be nested – again a detection of 
discontinuities is possible here. 

The checks itself are very 
straight-forward: Perform 
two TT instructions on both 
the start and end address of a 
transaction and compare the 
results to be identical. The 
main use case for applying 
the TT instruction is the 
security verification of 
DMA transactions inside 
one domain or between 
Secure and Non-secure 
security domains. 
 
Both the source and destination are independently verified to 
ensure that the DMA transaction is within the permission-set 
of the currently active security domain. 
 

G. Crossing Security Domains – adding SG/BXNS/BLXNS 
instructions 

The secure gateway instruction (SG) marks allowed code 
entry points on the Secure side for Non-secure callers. This 
feature is vitally important for two reasons: 

- the SG instruction prevents callers to jump past a 
security check on the Non-secure side 

- the SG instruction also switches the security state 
from Non-secure to Secure. This enables a Non-
secure caller to access Secure resources, but enables 
application-specific restrictions for each individual 
call. 

The SG-instruction is designed to be transparent both for the 
caller and the function return. From the software developer’s 
perspective, the called security function simply returns from 
the call on completion. The CPU transparently ensures that 
privileges are switched back to the Non-secure caller when 
returning. The return address must be protected by the SAU or 
IDAU on the Secure stack – the OS therefore needs to be sure 
to configure its memories appropriately. 
 

 
Fig 5. SAU and banked MPU are used together for permission control  

 
Fig 6. 32-bit result from a TT instruction contains various information  
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Independent of the SG-instruction, Secure code can jump or 
call into Non-secure state – with the reverse process: 
Execution can be handed back from the Non-secure callback 
function to the Secure caller if necessary (using the BLXNS 
instruction). 
 

H. Crossing Security Domains – Secure Interrupts 
Each interrupt can be assigned to either the Secure or the Non-
secure side using a configuration register accessible only to 
the Secure side. This implies that an interrupt must be able to 
cross a security domain depending on its interrupt priority and 
domain ownership. 
Thanks to the banking of the System Control Block (SCB) – 

one SCB for each the Secure and the Non-secure domain – 
there are two copies of the interrupt vector table offset register 
(SCB_VTOR). 
 
Important system exceptions like the Systick, PendSV or the 
SVC are banked and can be therefore used independently on 
both sides. This enables an existing OS to be easily ported to 
the ARMv8-M architecture. 
 
Depending on the requirements of the target application, the 
Secure side can configure the device to share the interrupt 
priority levels between the Secure and Non-secure domains. 
For safety critical applications Secure interrupt priorities can 
be shifted to obtain higher priority levels exclusive to the 
Secure side. The Secure side can then decide to trigger itself 
regularly for detecting corruption of the system or malware 
traces to allow controlled recovery of the system. The shifting 
of priority levels ensures that the Secure side cannot be 
overridden by malicious code on the Non-secure side. 
 
To ensure CPU register data is not leaked across to the Non-
secure side, CPU registers are cleared by the CPU after storing 
them to the Secure stack. 

Thus whenever processing a Non-secure exception after 
switching from Secure state during a crypto-operation (or 
other confidential operations), this register clearing is 
performed automatically. Non-secure code therefore can’t get 
access to Secure register contents. 
 

Other side channels like cache attacks must be mitigated 
whenever needed by clearing caches on context switches. To 
avoid unnecessary cache-clearing, code in a security context 
can mark itself temporarily as side-channel-critical. The 
uVisor (a hypervisor-like software component) can observe 
such a hint for triggering cache-clearing and skip the clearing 
in all other cases.  
 
A similar approach is possible for Non-secure access to FPU 
registers in interrupts: by enabling FPU security, all FPU 
registers are saved to the Secure memory space before 
switching to the Non-secure domain. The FPU registers are 
then cleared before handing over control to Non-secure 
interrupt code. 
 
The Secure exception prioritization features outlined above are 
also highly applicable to safety critical applications (like 
motor controllers or safety-related trip wires for shutting down 
machine operation) where safety-critical code and data can be 
shielded from the rest of the system for preventing corruption 
either by accident or by an active attacker on the system. 
 

I. Instant stack overflow detection: The stack limit register 
set 

Traditional RTOS’s verify each thread’s stack pointer when 
switching out of a thread. Traditional checks involve overflow 
or underflow checking of stack pointer register (R12, SP) and 
verification of stack canaries. (Stack canaries are special 
numbers stored by the OS around the stack memory, and a 
sub-class of stack canaries can be used for stack overflow 
detection.) The OS then checks on every context switch, 
whether these numbers are still intact or have been 
(accidentally) overwritten. 
 
The methods employed may not be sufficient however: 

- Unfortunately stack overflows during execution 
within an active thread slice stay undetected for the 
remainder of the slice. 

- Even advanced protection measures, for example 
using MPU-bands for creating “MPU-region-death-
traps” around the currently active stack might fall 
short as the stack pointer might grow beyond the 
invalid region and can grow undetected into a valid, 
but critical memory (heap etc.). 

 
The ARMv8-M architecture therefore introduced a new 
feature: The stack pointer register itself is continuously 
monitored in hardware – changes to the stack pointer register 
below a pre-determined address threshold are caught right at 
the spot where the stack pointer changes are calculated and 
stored back to the stack pointer register. Therefore, one 
doesn’t have to rely on access to invalid stack memories any 
more for late detection of overflows. 
 
The remaining responsibility of the RTOS regarding stack 
protection is to ensure that the stack limit register is always 
updated before switching into the next thread slice. 

 
Fig 7. Security state transitions can be triggered by exceptions and 

function calls 



For practical reasons the stack limit register is banked for all 
privilege states in ARMv8-M Mainline: 

- MSPLIM_S: Secure privileged stack pointer limit 
- PSPLIM_S: Secure unprivileged stack pointer limit 
- MSPLIM_NS: Non-secure privileged stack pointer 

limit 
- PSPLIM_NS: Non-secure unprivileged stack pointer 

limit 
The ARM ARMv8-M Baseline profile only supports stack 
limit registers in Secure state. The Non-secure side needs to 
use the MPU to protect its stacks like the ARMv7-M version 
of the architecture. 
 

IV. PULLING THINGS TOGETHER: HARDWARE ACCELERATED 
SECURITY FOR REALTIME CRTICICAL SYSTEMS 

 
For enabling secure and safe real time critical operations, it is 
beneficial to use static MPU configurations on the Secure side. 
 
During the secure-boot process a lightweight hypervisor-like 
security software (called ARM mbed uVisor) will initialize the 
SAU for partitioning the system into Secure and Non-secure 
domains. The Non-secure side can be partitioned into multiple 
domains – for multi-domain security systems with three or 
more security domains or at least two mutually distrustful 
security domains. 
 
This design choice allows the OS to set up a simple and static 
MPU configuration for the Secure side: 

- The core lightweight hypervisor functionality running 
in the Secure privileged domain which is protected 
by the Secure MPU instance against the non-
privileged Secure domain. All required hypervisor 
memories are protected by the SAU and memory 
protection controllers against Non-secure access. 

- OS-specific support functions run in the non-
privileged Secure domain. These new support 
functions are called “Secure Device Services” (SDS). 
Thanks to hardware-accelerated secure gateway calls 
(SG calls) across Secure and the Non-secure domains 
are very efficient. This results in very low and 
predictable latency when using SDS APIs.   

A. Secure Device Services 
Secure device services (SDS) are designed to prevent 
execution blocking and use as little stack as needed to 
maintain at least one stack per Non-secure box domain. From 
the caller’s perspective, the Non-secure domain-instance can 
either block concurrent access from more than one thread in 
the same box at the same time or have one SDS stack per Non-
secure thread allocated. 

If more complex operations need to be triggered from an SDS, 
requests can be queued and sequentially processed in a shared 
thread on the Secure side. The amount of stack usage then 
becomes independent from the number of pending requests or 
domains. An SDS call must return immediately with a result 
code indicating a deferred operation in this case. 
 
A good example for such APIs are long running crypto 
operations – the corresponding SDS API returns immediately 
and the Non-secure box receives a Non-secure callback once 
the operation terminates. Using SDS-functions, the result can 
then be examined across the security boundary and the result 
buffer can be processed on the Non-secure side.   
 
Examples for other useful Secure Device Services are: 
- Real-time critical interrupt handling – where just the time-

critical part runs on the Secure side – everything else runs 
in Non-secure domains. Verification can be therefore 
focused on the secure-stub. 

- Secure GPIO access (pin-wise access depending on the 
caller security domain, see register level access gateway 
notes below). 

- Handling system-wide secure pool allocators: The Non-
secure side can allocate coarse memory pages from the 
Secure side that are only accessible from their individual 
memory context. 

- Register level / bit-level access gateways – enabling the 
access to individual bits of hardware registers depending 
on caller privileges. 

- Inter-process communication APIs for enabling distrustful 
Non-secure boxes communicating with each other. 

- DMA-APIs for enforcing caller-specific permissions 
across distrustful Non-secure boxes. 

- Shared Crypto Accelerators / Crypto APIs – virtualize 
access from multiple domains to share accelerators while 
protecting against leakage of suspended operations across 
distrustful security domains. 

- Random Entropy Pool Drivers – ensure that the whitening 
keys are invisible to caller domains and prevent starvation 
of entropy. 

- Key provisioning and configuration storage to keep key 
material in shielded places in flash to ensure that each 
individual Non-secure box can decide whether it allows 
access to each individual storage items for other Non-
secure boxes. 

- Partitioning access to the flash memory for complex Non-
secure clients like the firmware update or the mentioned 
configuration storage. 

 
Fig 8. Each stack pointer in ARMv8-M Mainline processor has a 

corresponding stack limit register 
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The Secure side always has access to all Non-secure memories 
(unless prevented by the privileged MPU configuration on the 
Secure side) – it can therefore efficiently copy data around and 
execute Non-secure caller requests on their behalf in case their 
context has the privilege to do so. 
 

B. Paging for MMU-less microcontrollers 
In constrained microcontroller systems one can expect a large 
temporary spike of memory consumption for seldom used 
processes like firmware update, device configuration or the 
provisioning of new encryption keys. 

 

To ensure that these memories can be used in other parts of 
the system during daily operations, the OS must dynamically 
move pages of memories around between Non-secure domains 
during runtime – the first tier of a two-tier memory allocator. 
 
Each domain is then responsible for running a fine-grained 
second tier memory allocator in the allocated domain-specific 
1st tier pages: 

 
To ensure that Non-secure domains cannot perform denial-of-
service attacks against each other, the maximum memory 
consumption must be capped for Non-secure boxes or large 
memory allocation limited to short periods – for example for 
performing memory-intense crypto operations. 
 
To use the 1st tier pages effectively, application developers 
must ensure that the chosen 1st tier page size is larger than the 
largest possible 2nd tier memory allocation. For backward 
compatibility 2nd tier allocation are guaranteed to be 
continuous. 
 
A good rule of thumb is to split the available program memory 
into 8 to 16 equal sized chunks to determine a suitable page 
size for the average IoT system. The memory allocation can be 
either handled by the SDS APIs or by the privileged 
hypervisor. 
 
This approach is ideally suited for ARMv8-M block based 
memory protection controllers. By using the Non-
secure/Secure mapping bitmask for protecting the SRAM, the 
Secure side can selectively map in just the pages accessible to 
the currently active Non-secure domain. All the pages owned 
by the other, currently inactive, Non-secure domains are 
inaccessible to the Non-secure side. 

 
Fig 9. Security arrangement with uVisor and SDS 

 
Fig 11. Two tier memory allocation 

 
Fig 10. Memory access management in uVisor 



 
On every box switch the whole SRAM access bitmap is 
replaced by the one relevant for the newly activated box and 
depends on the pages owned by that security domain in the 1st 
tier allocator. 
 

C. Register and Bit-level Access Protection  
Using SDS services the Secure side can efficiently perform 
operations on behalf of Non-secure domains. Like access 
control to peripherals, each security domain needs to commit 
at compile time the registers (or bits inside a register) the 
security domain requires access to during runtime. This is 
particularly important as both the MPU and SAU have a 
minimum granularity of 32 bytes and are therefore not suitable 
for granting access to individual registers. 
 
In case of uVisor, this commitment is transparently done by 
the pre-compiler through issuing of permissions into read-only 
memories during compile time. An application developer has 
convenient API functions to request and execute access to 
registers or bits by using convenient and portable wrapper 
functions: 

- SECURE_WRITE(address, value) 
- SECURE_READ(address) 
- SECURE_BITS_GET(address, mask) 
- SECURE_BITS_CHECK(address, mask) 
- SECURE_BITS_SET(address, mask) 
- SECURE_BITS_CLEAR(address, mask) 
- SECURE_BITS_SET_VALUE(address, mask, 

value) 
- SECURE_BITS_TOGGLE(address, mask) 

 
Behind the scenes these calls are turned into a combination of 
the call and the corresponding permission plus the security 
domain of the call owner. In the case that code is compiled for 
a system that has no concept of these security functions, the 
functions are turned into direct register access or the 
corresponding bit-band access - resulting in no overhead. 
 
During runtime the Secure domain can use the saved Non-
secure program counter to determine the Non-secure source of 
that register level API call and seek back to a fixed relative 
position in code for inline-verification of permission-metadata 
for checking 2whether the calling box is permitted to access a 
given register bit. If yes, it will perform the chosen operation 
on the Secure side on behalf of the Non-secure caller (if the 
caller’s domain matches the quoted domain in the permission). 
 
Potential malware can therefore neither re-use other domain’s 
register level API calls, nor can it create new register calls 
during runtime. The addresses and access mask are part of the 
hardcoded and in-lined proof of permission. These proofs are 

                                                             
2 See also the uVisor talk on Secure Register Level Access 
Gateways: https://goo.gl/Wlx6fj 

 

pure metadata and designed to be discoverable inside a device 
firmware image without decompilation. 
 
A firmware signing process is therefore able to check the 
requested permissions and ACLs for each security domain and 
can refuse signing the firmware image in the case it detects 
unwanted access requests.  The target device can then trust the 
judgment of the server to install the image after verifying the 
firmware signature and blindly trust all quoted permissions.  
 
One of the main applications of the register/bit-level access 
feature are clock-enable registers – it ensures that Non-secure 
domains are limited just to the few bits relevant to them so 
they won’t be able to shut down clocks or reconfiguring clock 
dividers for the other security domains. 
 

D. Whitelisting peripheral access in real-time 
Using the peripheral protection controller, the Secure 
hypervisor can re-configure the Peripheral Protection 
Controller Bitmap on every box switch. For an instance a 
system with 128 peripheral blocks only needs to update four 
32bit registers for completely reconfiguring access when 
switching between boxes: 
 

 
Each domain requests access only for the peripherals it needs 
for its operation. In case of the ARM mbed uVisor, security 
domains are forced to commit to their resource requirements 
during compile time and the ACLs are only processed once 

 
Fig 12. Peripheral access management with uVisor 

 



www.embedded-world.eu 
 

during boot. During runtime Non-secure domains need to live 
with their ACLs and cannot expand on them dynamically. 

This approach ensures that access-timings are predictable. As 
long as switching latency between boxes is predictable, we can 
guarantee hard real-time even in the presence of a local 
attacker running in other Non-secure boxes. 

In the case of DMA access requests, the SDS API verifies if 
the source and target of an operation is consistent with the box 
permission before moving data from peripherals or memory 
pages to the Secure state. The requested source and target 
addresses are then updated to the secure mappings and the 
DMA request can be started. This ensures that DMA can 
continue while a security domain is inactive and while the next 
box becomes active. 

While running the DMA, requests to the 1st page allocator need 
to block pages with a running DMA request from being 
returned to the pool to avoid cross-domain attacks. 

Another option is to move the low-level DMA operations of a 
device to SDS and run the higher level functions on the Non-
secure side – allowing unsecure domains to get temporary 
access to them (virtualizing/sharing). 

 

I. SUMMARY AND CONCLUSION 
 
By using newly introduced hardware features of the ARM 
TrustZone technology for Cortex-M33, modern microcontroller 
operarating systems can provide strong compartmentalization 
of mutually distrustful processes. 

Particularly block level protection features like the block-based 
memory protection controller and the peripheral protection 
controller allow swapping out security settings in constant time 
while switching between processes with distinct access 
privileges – independent of their complexity.  

Block level memory protection enables secure dynamic 
memory re-allocation between Secure processes during runtime 
to make the best use of the constrained resource SRAM with 
predictable realtime performance. Memories can change 
ownership during runtime between different security domains 
without affecting the security of the system. 

The additional security state of the CPU - the Secure state -  is 
not just ideally suited for providing low latency security 
services to processes. Among obvious use cases like inter-
process-communication (IPC) and crypto acceleration, the SDS 
can also be used to run Secure interrupts at low latency and 
high safety requirements. Using the two hardware security 
domains – Secure and Non-secure - code can be partitioned not 
just to fulfil the security promise, but also for achieving 
functional safety for realtime-critical drivers or system 
functions. 

All application code is executed on the Non-secure side, which 
is split into as many security domains as required in software: 
enabling mutual distrustful operation between these domains 

on the Non-secure side. The reach of a software bug is limited 
to its own security domain and the domains API – simplifying 
system design and code review. 

The new ARMv8M hardware security features are designed for 
seamless integration with secure operating systems - creating 
high device resilience by enabling malware detection and 
remote recovery while maintaining device safety and timing 
integrity even under active attack3. 

The ARMv8M security model for Cortex-M33 micro-
controllers nicely maps on models developers exercised in the 
past on high-end Cortex-A systems - reducing the attack 
surface for safety- and security-critical microcontroller 
applications dramatically. 
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3 See the ARM mbed uVisor talk on remote recovery from 
malware by securing flash memory access and a Secure 
watchdog: https://goo.gl/Wlx6fj 

 


