
www.embedded-world.eu

High-End Security Features for Low-End

Microcontrollers
 Hardware-security acceleration for multi-domain ARMv8-M systems

Milosch Meriac
Principal Security Engineer,

IoT Group, ARM
Cambridge, UK

milosch.meriac@arm.com

Joseph Yiu
Senior Embedded Technology Manager,

CPU Product Group, ARM
Cambridge, UK

joseph.yiu@arm.com

Abstract —ARM® TrustZone® technology for ARM
Cortex®-M33 enables systems and their software to be
partitioned into multiple security domains. Next generation
microcontroller operating systems can benefit from these
hardware security features without affecting real time
performance.

This paper presents one of the possible configurations -
showing how critical operating system functions can be
accelerated with new hardware security features while
maintaining the real-time properties of the secure OS. Critical
system functions include secure memory allocation, interrupt
management, whitelisting of peripheral access, cross-domain-
calls and secure boot.

A prototype for such an operating system – the ARM mbed™
OS with uVisor - is currently being developed on GitHub1 to
verify these concepts with practical use cases.

Keywords — ARM TrustZone; Cortex-M33; Security
Attribution Unit (SAU); Implementation Defined Attribution Unit
(IDAU); Memory Protection Unit (MPU); MPU banking; Bus
Level Security; RTOS Security; Real-time Security

I. INTRODUCTION
Although connected microcontroller systems are

ubiquitous, the security measures found on these systems
commonly lag behind mobile application processors by ten to
twenty years. The result of these shortcomings is that potential
remote attackers have an easy game to escalate application
bugs to system privileges. Once malware becomes resident on
a microcontroller, the system turns irrecoverable for a remote
system manager – instead engineers must be sent around with
laptops and programming dongles for recovering these devices,
making the cost of recovery very expensive.

1 uVisor can be found at https://github.com/ARMmbed/uvisor

On high-end embedded systems using application
processors, security solutions like SeLinux enable fine-grained
access control and process separation by implementation of the
'Principle of Least Privilege'.

This countermeasure ensures that the effects of a successful
attack are restricted to a small portion of the system and cannot
be easily escalated to other parts.

As long as the attacker cannot escalate to the remote
recovery context, devices can be remotely recovered by
automated processes.

 On these high-end systems such measures are often secured
by using memory management units (MMU). Although in the
case of ARM TrustZone for Cortex-A usually a single security
context is used, it is seldom virtualized between security
domains. By using the MMU hardware, the operating system
can control, on a fine-grained level, which peripherals and
memories are accessible by which context. Communication
between these isolated contexts can be strictly controlled.
Security reviews of such systems therefore can be focused on
these inter-context interfaces.

 In the absence of an MMU, memory protection units
(MPUs) can be used to protect critical microcontroller software
- offering isolation whilst maintaining deterministic real-time
response and the small footprint required in microcontroller
applications.

Embedded operating systems for ARM microcontrollers
have recently started to use MPUs for implementing secure
spatial and temporal process isolation. Commonly such
isolation can come at a very high cost in terms of call-latencies
and loss of real-time properties. However, with the introduction
of TrustZone for ARMv8-M, hardware security features that
were previously only available to application processors are
now available for microcontrollers.

 We present how granular and lightweight system level
security components can be used in combination with the new

ARMv8-M architecture-based Cortex-M33 processor. We will
demonstrate how an operating system can use ARM TrustZone
technology, banked MPUs and AMBA AHB5 interconnect to
implement process isolation, without impact on the real-time
capability of the system.

We also address acceleration of common security features
like dynamic secure memory allocation during runtime,
flexible and secure inter-domain communication and peripheral
protection on a per-security-domain level on MMU-less
microcontrollers.

In addition, we'll present how ARM TrustZone for
ARMv8-M technology enables secure boot and allows
microcontroller systems to recover, even when part of the
system is compromised.

II. TRUSTZONE FOR ARMV8-M MICROCONTROLLERS
ARM Cortex-M23 and Cortex-M33 processors are both based
on the ARMv8-M architecture and use the same memory map
as the previous generation of Cortex-M processors based on
the ARMv7-M/ARMv6-M architecture.

TrustZone security functions are now part of the ARMv8-M
architecture. In a TrustZone-enabled system, software is
divided into Secure and Non-secure domains:

• Secure software executes from the Secure address
space and can access both Secure and Non-secure
addresses. Secure software typically contains
components that are critical to the security of a
device such as secure-boot, device provisioning,
encryption libraries and firmware update. The
processor is in the Secure state when executing
Secure software.

• Non-secure software executes from Non-secure
address spaces and can only access Non-secure
memories and peripherals. Traditional application
code is likely to be executed in the Non-secure state.
The processor is in the Non-secure state when
executing Non-secure software. In this paper we
describe how the Non-secure state can be split
between multiple mutually distrustful domains.

The partitioning of the address space is handled by the
processor using a programmable unit called the Security
Attribution Unit (SAU) in combination with a device specific
logic block called the Implementation Defined Attribution
Unit (IDAU). The memory space security configuration can
only be changed by software running in the Secure state.

Software functions running on the system are executed
either in Secure or Non-secure state:

• Secure and Non-secure software can interact with
each other using direct function calls

• Exception handling can switch processor states
transparently.

The separation between Non-secure and Secure software
execution can be made visible to the wider bus system:

III. BUS LEVEL SECURITY
Much like TrustZone on traditional ARMv7-A and

ARMv8-A application CPUs, hardware security is now
extended to the peripheral bus system of the microcontroller.
Each component on the bus can verify and propagate the
security level for each bus operation. Each access to the bus is
tagged by the CPU with the security attribute of the address
and is depending on the processor state (Secure or Non-
secure) when the request was originally started.

In case of derived operations like direct memory access
(DMA) controllers, Secure software running on the CPU can
program a TrustZone aware DMA controller to mark a DMA

channel as Secure, which has a Secure transfer attribute
propagated by the AHB5 interconnect when accessing Secure
address locations. The relevant system components for bus
level security are listed below:

A. Block based Memory Protection Controller
For our reference implementation, we recommend using the
block based memory controller for protecting internal SRAM
memories. The address space of the memory peripheral is
partitioned into blocks.

Alias of the
same memory
macro

Secure access
by secure SW

Non-Secure
accesses

#0
#1
#2
#3
#4
#5

#0
#1
#2
#3
#4
#5

Fig 2. Example behavior of a block based memory protection controller

Each of these blocks is either visible at its Secure alias or at
the Non-secure alias of the memory block. Every block

Fig 1. System wide security with AHB5 on chip bus protocol

www.embedded-world.eu

corresponds to one configuration bit in a set of security
registers – therefore a register of 32 bits covers 32 pages
resulting in 8 kilobytes of memory being protected when
assuming the recommended page size of 256 bytes.

For memories larger than 256kB, a block size of 512 bytes is
recommended – above 512kB 1kB pages are appropriate. This
avoids a significant increase in memory configuration
hardware.

The result of this design choice results in Secure and Non-
secure memory being distributed across the memory map of
the SRAM. Access to holes in the map – either by the CPU or
by bus master peripherals (like DMA engines) - must result in
bus faults. This way software mistakes - for example
accidentally initiating a DMA transfer over a memory hole in
SRAM - can be discovered as early as possible to avert
attacks.

B. Watermark based Memory Protection Controller
For external S(D)RAM memories or large flash memories, a
watermark based approach can be used to partition the
memory between the Secure and Non-secure alias.

All memories below the watermark offset are mapped to the
Secure alias – all memories above the watermark are mapped
into the Non-secure alias of the memory.

Watermark protection is useful for use with flash memories
for hiding security configuration storage and encryption keys
from application code. Access privileges for each item can be
then verified individually depending on the caller context as
part of a storage API.

For systems with firmware update functionality (multiple
firmware slots) a watermark-protection is not feasible. For all
non-trivial non-volatile-memory (NVM) use cases a block
based filter with the granularity of the NVM’s erase size is
required instead.

C. Peripheral Protection Controller
Like the block based memory protection controller mentioned
above, each peripheral is individually marked as Secure, Non-
secure, and additionally marked as privileged or non-
privileged using simple bit masks. Depending on the security
status of that bit, each peripheral block is mapped either into
the Secure or Non-secure peripheral range.

A bus-fault will occur if the CPU or bus master peripherals
(like a DMA engine) try to access the holes in between
mapped peripheral blocks. In the same way as the block based
memory protection controller, the bus-fault is detectable, and
hence can be used to prevent a security violation.

D. Memory Protection Unit (MPU)
ARMv8-M offers an improved MPU design compared to
ARMv7-M designs. The new MPU design provides a very
flexible configuration scheme of start and end addresses for
protected memory regions with a granularity down to 32
bytes.

As in the previous design, the MPU is used to separately
specify access for privileged and unprivileged code.
Unprivileged code can be locked out from privilege memories
and peripherals. Unprivileged code is also barred from
accessing the MPU configuration and therefore cannot
circumvent the MPU protection.

Independent of the currently active privilege level of the CPU,
the MPU also protects SRAM regions against accidental
writes, and prevents code execution from the stack.

Both the Secure and the Non-secure sides own individual
MPU instances. Both these MPUs are transparently banked by
the architecture according to the currently active CPU state.
Although the MPU itself is an optional configuration option,
as a minimum we recommend enabling the Secure MPU
option to partition privileged and unprivileged code execution.

E. Security Attribution Unit (SAU)
The MPU handles horizontal access between privileged and
unprivileged mode. The SAU on the other hand is used for
defining access between the Secure and the Non-secure
execution state.

SAU settings are therefore orthogonal to MPU settings. Thus,
we get four quadrants in our security model – allowing fine-
grained configuration of the system security depending on the
precise CPU state.

Silicon vendors can define default hardware-specific security
settings for peripherals and memories, and they do this in the
IDAU. The IDAU is
therefore responsible for
initial static partitioning of
the system according to the
needs of a particular
device. These settings can
then be refined by a Secure
software developer using
the configurable SAU unit,
to meet the needs of their
security applications.

Fig 3. Example behavior of a peripheral protection controller

Fig 4. Four quadrants of processor

states in ARMv8-M architecture

The SAU is optional – silicon vendors can choose to enable
security configuration dynamism by solely using the IDAU.
This can reduce silicon area. We recommend against such a
decision as it breaks portability across different platforms and
makes it hard for developer and penetration-testers to compare
security models across devices from different vendors.

F. Hardware Accelerated Portability – the TT instruction
The “Test Target” (TT) instruction allows discovery of the
security state and memory layout of an ARMv8M
microcontroller system in a portable way.

For every given address, the access permission and ownership
of a memory region can be queried. The TT instruction allows
an access query for the current processor state – as well as for
all privilege states lower or equal the current state and all
security states lower or equal to the current state:

- TT – Use current security state and current privilege
level

- TTT – Privileged software can determine
unprivileged access permission of current security
state

- TTA – Secure software can see the alternate
domain’s access permission

- TTAT – Secure software can see the alternate
domain’s unprivileged access permission

Every distinct block (i.e. a block with a consistent security
setting for the memory) is assigned a unique ID – the IDAU
region number. Each peripheral block in the peripheral range
must have a distinct number. The main benefit of using the TT
instruction is to discover security-discontinuities for a given
memory range.

By checking the start and end address of a memory range with
two TT-instructions, the operating system can verify if the
security-configurations are identical for both addresses:

- if the IDAU-ID’s are the same, that tells TT for
example that an intended DMA access will not run
across two peripherals. This enables detection in the
planned transaction – for example an intended DMA
request spanning two peripherals.

- the SAU-region ID, in case an SAU region is
configured for the tested address. SAU regions are
not allowed to overlap and therefore cannot be
nested. The same SAU region ID returned for the
start and end implies that start and end of the
transaction is within the same region.

- the MPU-region ID in case a MPU region is
configured for the address to be tested. Like SAU
regions, MPU regions cannot overlap and therefore
cannot be nested – again a detection of
discontinuities is possible here.

The checks itself are very
straight-forward: Perform
two TT instructions on both
the start and end address of a
transaction and compare the
results to be identical. The
main use case for applying
the TT instruction is the
security verification of
DMA transactions inside
one domain or between
Secure and Non-secure
security domains.

Both the source and destination are independently verified to
ensure that the DMA transaction is within the permission-set
of the currently active security domain.

G. Crossing Security Domains – adding SG/BXNS/BLXNS
instructions

The secure gateway instruction (SG) marks allowed code
entry points on the Secure side for Non-secure callers. This
feature is vitally important for two reasons:

- the SG instruction prevents callers to jump past a
security check on the Non-secure side

- the SG instruction also switches the security state
from Non-secure to Secure. This enables a Non-
secure caller to access Secure resources, but enables
application-specific restrictions for each individual
call.

The SG-instruction is designed to be transparent both for the
caller and the function return. From the software developer’s
perspective, the called security function simply returns from
the call on completion. The CPU transparently ensures that
privileges are switched back to the Non-secure caller when
returning. The return address must be protected by the SAU or
IDAU on the Secure stack – the OS therefore needs to be sure
to configure its memories appropriately.

Fig 5. SAU and banked MPU are used together for permission control

Fig 6. 32-bit result from a TT instruction contains various information

www.embedded-world.eu

Independent of the SG-instruction, Secure code can jump or
call into Non-secure state – with the reverse process:
Execution can be handed back from the Non-secure callback
function to the Secure caller if necessary (using the BLXNS
instruction).

H. Crossing Security Domains – Secure Interrupts
Each interrupt can be assigned to either the Secure or the Non-
secure side using a configuration register accessible only to
the Secure side. This implies that an interrupt must be able to
cross a security domain depending on its interrupt priority and
domain ownership.
Thanks to the banking of the System Control Block (SCB) –

one SCB for each the Secure and the Non-secure domain –
there are two copies of the interrupt vector table offset register
(SCB_VTOR).

Important system exceptions like the Systick, PendSV or the
SVC are banked and can be therefore used independently on
both sides. This enables an existing OS to be easily ported to
the ARMv8-M architecture.

Depending on the requirements of the target application, the
Secure side can configure the device to share the interrupt
priority levels between the Secure and Non-secure domains.
For safety critical applications Secure interrupt priorities can
be shifted to obtain higher priority levels exclusive to the
Secure side. The Secure side can then decide to trigger itself
regularly for detecting corruption of the system or malware
traces to allow controlled recovery of the system. The shifting
of priority levels ensures that the Secure side cannot be
overridden by malicious code on the Non-secure side.

To ensure CPU register data is not leaked across to the Non-
secure side, CPU registers are cleared by the CPU after storing
them to the Secure stack.

Thus whenever processing a Non-secure exception after
switching from Secure state during a crypto-operation (or
other confidential operations), this register clearing is
performed automatically. Non-secure code therefore can’t get
access to Secure register contents.

Other side channels like cache attacks must be mitigated
whenever needed by clearing caches on context switches. To
avoid unnecessary cache-clearing, code in a security context
can mark itself temporarily as side-channel-critical. The
uVisor (a hypervisor-like software component) can observe
such a hint for triggering cache-clearing and skip the clearing
in all other cases.

A similar approach is possible for Non-secure access to FPU
registers in interrupts: by enabling FPU security, all FPU
registers are saved to the Secure memory space before
switching to the Non-secure domain. The FPU registers are
then cleared before handing over control to Non-secure
interrupt code.

The Secure exception prioritization features outlined above are
also highly applicable to safety critical applications (like
motor controllers or safety-related trip wires for shutting down
machine operation) where safety-critical code and data can be
shielded from the rest of the system for preventing corruption
either by accident or by an active attacker on the system.

I. Instant stack overflow detection: The stack limit register
set

Traditional RTOS’s verify each thread’s stack pointer when
switching out of a thread. Traditional checks involve overflow
or underflow checking of stack pointer register (R12, SP) and
verification of stack canaries. (Stack canaries are special
numbers stored by the OS around the stack memory, and a
sub-class of stack canaries can be used for stack overflow
detection.) The OS then checks on every context switch,
whether these numbers are still intact or have been
(accidentally) overwritten.

The methods employed may not be sufficient however:

- Unfortunately stack overflows during execution
within an active thread slice stay undetected for the
remainder of the slice.

- Even advanced protection measures, for example
using MPU-bands for creating “MPU-region-death-
traps” around the currently active stack might fall
short as the stack pointer might grow beyond the
invalid region and can grow undetected into a valid,
but critical memory (heap etc.).

The ARMv8-M architecture therefore introduced a new
feature: The stack pointer register itself is continuously
monitored in hardware – changes to the stack pointer register
below a pre-determined address threshold are caught right at
the spot where the stack pointer changes are calculated and
stored back to the stack pointer register. Therefore, one
doesn’t have to rely on access to invalid stack memories any
more for late detection of overflows.

The remaining responsibility of the RTOS regarding stack
protection is to ensure that the stack limit register is always
updated before switching into the next thread slice.

Fig 7. Security state transitions can be triggered by exceptions and

function calls

For practical reasons the stack limit register is banked for all
privilege states in ARMv8-M Mainline:

- MSPLIM_S: Secure privileged stack pointer limit
- PSPLIM_S: Secure unprivileged stack pointer limit
- MSPLIM_NS: Non-secure privileged stack pointer

limit
- PSPLIM_NS: Non-secure unprivileged stack pointer

limit
The ARM ARMv8-M Baseline profile only supports stack
limit registers in Secure state. The Non-secure side needs to
use the MPU to protect its stacks like the ARMv7-M version
of the architecture.

IV. PULLING THINGS TOGETHER: HARDWARE ACCELERATED
SECURITY FOR REALTIME CRTICICAL SYSTEMS

For enabling secure and safe real time critical operations, it is
beneficial to use static MPU configurations on the Secure side.

During the secure-boot process a lightweight hypervisor-like
security software (called ARM mbed uVisor) will initialize the
SAU for partitioning the system into Secure and Non-secure
domains. The Non-secure side can be partitioned into multiple
domains – for multi-domain security systems with three or
more security domains or at least two mutually distrustful
security domains.

This design choice allows the OS to set up a simple and static
MPU configuration for the Secure side:

- The core lightweight hypervisor functionality running
in the Secure privileged domain which is protected
by the Secure MPU instance against the non-
privileged Secure domain. All required hypervisor
memories are protected by the SAU and memory
protection controllers against Non-secure access.

- OS-specific support functions run in the non-
privileged Secure domain. These new support
functions are called “Secure Device Services” (SDS).
Thanks to hardware-accelerated secure gateway calls
(SG calls) across Secure and the Non-secure domains
are very efficient. This results in very low and
predictable latency when using SDS APIs.

A. Secure Device Services
Secure device services (SDS) are designed to prevent
execution blocking and use as little stack as needed to
maintain at least one stack per Non-secure box domain. From
the caller’s perspective, the Non-secure domain-instance can
either block concurrent access from more than one thread in
the same box at the same time or have one SDS stack per Non-
secure thread allocated.

If more complex operations need to be triggered from an SDS,
requests can be queued and sequentially processed in a shared
thread on the Secure side. The amount of stack usage then
becomes independent from the number of pending requests or
domains. An SDS call must return immediately with a result
code indicating a deferred operation in this case.

A good example for such APIs are long running crypto
operations – the corresponding SDS API returns immediately
and the Non-secure box receives a Non-secure callback once
the operation terminates. Using SDS-functions, the result can
then be examined across the security boundary and the result
buffer can be processed on the Non-secure side.

Examples for other useful Secure Device Services are:
- Real-time critical interrupt handling – where just the time-

critical part runs on the Secure side – everything else runs
in Non-secure domains. Verification can be therefore
focused on the secure-stub.

- Secure GPIO access (pin-wise access depending on the
caller security domain, see register level access gateway
notes below).

- Handling system-wide secure pool allocators: The Non-
secure side can allocate coarse memory pages from the
Secure side that are only accessible from their individual
memory context.

- Register level / bit-level access gateways – enabling the
access to individual bits of hardware registers depending
on caller privileges.

- Inter-process communication APIs for enabling distrustful
Non-secure boxes communicating with each other.

- DMA-APIs for enforcing caller-specific permissions
across distrustful Non-secure boxes.

- Shared Crypto Accelerators / Crypto APIs – virtualize
access from multiple domains to share accelerators while
protecting against leakage of suspended operations across
distrustful security domains.

- Random Entropy Pool Drivers – ensure that the whitening
keys are invisible to caller domains and prevent starvation
of entropy.

- Key provisioning and configuration storage to keep key
material in shielded places in flash to ensure that each
individual Non-secure box can decide whether it allows
access to each individual storage items for other Non-
secure boxes.

- Partitioning access to the flash memory for complex Non-
secure clients like the firmware update or the mentioned
configuration storage.

Fig 8. Each stack pointer in ARMv8-M Mainline processor has a

corresponding stack limit register

www.embedded-world.eu

The Secure side always has access to all Non-secure memories
(unless prevented by the privileged MPU configuration on the
Secure side) – it can therefore efficiently copy data around and
execute Non-secure caller requests on their behalf in case their
context has the privilege to do so.

B. Paging for MMU-less microcontrollers
In constrained microcontroller systems one can expect a large
temporary spike of memory consumption for seldom used
processes like firmware update, device configuration or the
provisioning of new encryption keys.

To ensure that these memories can be used in other parts of
the system during daily operations, the OS must dynamically
move pages of memories around between Non-secure domains
during runtime – the first tier of a two-tier memory allocator.

Each domain is then responsible for running a fine-grained
second tier memory allocator in the allocated domain-specific
1st tier pages:

To ensure that Non-secure domains cannot perform denial-of-
service attacks against each other, the maximum memory
consumption must be capped for Non-secure boxes or large
memory allocation limited to short periods – for example for
performing memory-intense crypto operations.

To use the 1st tier pages effectively, application developers
must ensure that the chosen 1st tier page size is larger than the
largest possible 2nd tier memory allocation. For backward
compatibility 2nd tier allocation are guaranteed to be
continuous.

A good rule of thumb is to split the available program memory
into 8 to 16 equal sized chunks to determine a suitable page
size for the average IoT system. The memory allocation can be
either handled by the SDS APIs or by the privileged
hypervisor.

This approach is ideally suited for ARMv8-M block based
memory protection controllers. By using the Non-
secure/Secure mapping bitmask for protecting the SRAM, the
Secure side can selectively map in just the pages accessible to
the currently active Non-secure domain. All the pages owned
by the other, currently inactive, Non-secure domains are
inaccessible to the Non-secure side.

Fig 9. Security arrangement with uVisor and SDS

Fig 11. Two tier memory allocation

Fig 10. Memory access management in uVisor

On every box switch the whole SRAM access bitmap is
replaced by the one relevant for the newly activated box and
depends on the pages owned by that security domain in the 1st
tier allocator.

C. Register and Bit-level Access Protection
Using SDS services the Secure side can efficiently perform
operations on behalf of Non-secure domains. Like access
control to peripherals, each security domain needs to commit
at compile time the registers (or bits inside a register) the
security domain requires access to during runtime. This is
particularly important as both the MPU and SAU have a
minimum granularity of 32 bytes and are therefore not suitable
for granting access to individual registers.

In case of uVisor, this commitment is transparently done by
the pre-compiler through issuing of permissions into read-only
memories during compile time. An application developer has
convenient API functions to request and execute access to
registers or bits by using convenient and portable wrapper
functions:

- SECURE_WRITE(address, value)
- SECURE_READ(address)
- SECURE_BITS_GET(address, mask)
- SECURE_BITS_CHECK(address, mask)
- SECURE_BITS_SET(address, mask)
- SECURE_BITS_CLEAR(address, mask)
- SECURE_BITS_SET_VALUE(address, mask,

value)
- SECURE_BITS_TOGGLE(address, mask)

Behind the scenes these calls are turned into a combination of
the call and the corresponding permission plus the security
domain of the call owner. In the case that code is compiled for
a system that has no concept of these security functions, the
functions are turned into direct register access or the
corresponding bit-band access - resulting in no overhead.

During runtime the Secure domain can use the saved Non-
secure program counter to determine the Non-secure source of
that register level API call and seek back to a fixed relative
position in code for inline-verification of permission-metadata
for checking 2whether the calling box is permitted to access a
given register bit. If yes, it will perform the chosen operation
on the Secure side on behalf of the Non-secure caller (if the
caller’s domain matches the quoted domain in the permission).

Potential malware can therefore neither re-use other domain’s
register level API calls, nor can it create new register calls
during runtime. The addresses and access mask are part of the
hardcoded and in-lined proof of permission. These proofs are

2 See also the uVisor talk on Secure Register Level Access
Gateways: https://goo.gl/Wlx6fj

pure metadata and designed to be discoverable inside a device
firmware image without decompilation.

A firmware signing process is therefore able to check the
requested permissions and ACLs for each security domain and
can refuse signing the firmware image in the case it detects
unwanted access requests. The target device can then trust the
judgment of the server to install the image after verifying the
firmware signature and blindly trust all quoted permissions.

One of the main applications of the register/bit-level access
feature are clock-enable registers – it ensures that Non-secure
domains are limited just to the few bits relevant to them so
they won’t be able to shut down clocks or reconfiguring clock
dividers for the other security domains.

D. Whitelisting peripheral access in real-time
Using the peripheral protection controller, the Secure
hypervisor can re-configure the Peripheral Protection
Controller Bitmap on every box switch. For an instance a
system with 128 peripheral blocks only needs to update four
32bit registers for completely reconfiguring access when
switching between boxes:

Each domain requests access only for the peripherals it needs
for its operation. In case of the ARM mbed uVisor, security
domains are forced to commit to their resource requirements
during compile time and the ACLs are only processed once

Fig 12. Peripheral access management with uVisor

www.embedded-world.eu

during boot. During runtime Non-secure domains need to live
with their ACLs and cannot expand on them dynamically.

This approach ensures that access-timings are predictable. As
long as switching latency between boxes is predictable, we can
guarantee hard real-time even in the presence of a local
attacker running in other Non-secure boxes.

In the case of DMA access requests, the SDS API verifies if
the source and target of an operation is consistent with the box
permission before moving data from peripherals or memory
pages to the Secure state. The requested source and target
addresses are then updated to the secure mappings and the
DMA request can be started. This ensures that DMA can
continue while a security domain is inactive and while the next
box becomes active.

While running the DMA, requests to the 1st page allocator need
to block pages with a running DMA request from being
returned to the pool to avoid cross-domain attacks.

Another option is to move the low-level DMA operations of a
device to SDS and run the higher level functions on the Non-
secure side – allowing unsecure domains to get temporary
access to them (virtualizing/sharing).

I. SUMMARY AND CONCLUSION

By using newly introduced hardware features of the ARM
TrustZone technology for Cortex-M33, modern microcontroller
operarating systems can provide strong compartmentalization
of mutually distrustful processes.

Particularly block level protection features like the block-based
memory protection controller and the peripheral protection
controller allow swapping out security settings in constant time
while switching between processes with distinct access
privileges – independent of their complexity.

Block level memory protection enables secure dynamic
memory re-allocation between Secure processes during runtime
to make the best use of the constrained resource SRAM with
predictable realtime performance. Memories can change
ownership during runtime between different security domains
without affecting the security of the system.

The additional security state of the CPU - the Secure state - is
not just ideally suited for providing low latency security
services to processes. Among obvious use cases like inter-
process-communication (IPC) and crypto acceleration, the SDS
can also be used to run Secure interrupts at low latency and
high safety requirements. Using the two hardware security
domains – Secure and Non-secure - code can be partitioned not
just to fulfil the security promise, but also for achieving
functional safety for realtime-critical drivers or system
functions.

All application code is executed on the Non-secure side, which
is split into as many security domains as required in software:
enabling mutual distrustful operation between these domains

on the Non-secure side. The reach of a software bug is limited
to its own security domain and the domains API – simplifying
system design and code review.

The new ARMv8M hardware security features are designed for
seamless integration with secure operating systems - creating
high device resilience by enabling malware detection and
remote recovery while maintaining device safety and timing
integrity even under active attack3.

The ARMv8M security model for Cortex-M33 micro-
controllers nicely maps on models developers exercised in the
past on high-end Cortex-A systems - reducing the attack
surface for safety- and security-critical microcontroller
applications dramatically.

I. FURTHER READING
[1] Milosch Meriac, “Practical real-time operating system security for the

masses”, ARM TechCon 2016 (https://goo.gl/Wlx6fj)
[2] ARM mbed uVisor project source code and documentation on github:

https://github.com/ARMmbed/uvisor
[3] Joseph Yiu, ARM, “Software Development in ARMv8-M Architecture”,

Embedded World 2017
[4] Joseph Yiu, ARM, “The Next Steps in the Evolution of Embedded

Processors for the Smart Connected Era”, Embedded World 2016
[5] Joseph Yiu “ARM, “Whitepaper – ARMv8-M Architecture Technical

Overview”, ARM TechCon 2015.
[6] ARM, “ARMv8-M Architecture Reference Manual”
[7] ARM, “Memory Protection Unit for ARMv8-M based platforms”
[8] ARM, “RTOS design considerations for ARMv8-M based platforms”
[9] ARM, “Secure software guidelines for ARMv8-M based platforms”
[10] ARM, “ARMv8-M Security Extension: Requirements on Development

Tools”

3 See the ARM mbed uVisor talk on remote recovery from
malware by securing flash memory access and a Secure
watchdog: https://goo.gl/Wlx6fj

