

www.embedded-world.eu

An approach to Separation of Duties validation for

MILS security configurations

Semen Kort, Dmitry Kulagin, Ekaterina Rudina

Future Technologies

Kaspersky Lab

Russian Federation

Abstract— Separation of duties (SoD) is an important concept

aimed to constrain the excessive powers of subjects regarding

system assets and control functions. Ensuring the fact that SoD is

properly implemented for the particular task may require the

individual approach in every given case.

This paper proposes an approach to SoD validation conducted

by the analysis of the security configuration of MILS-based

solution. The security policy based on object capabilities is

considered for this purpose. For this security policy two basic

issues should be met. The first issue is the enough expressivity of

the security policy. It is addressed with demonstration of

particular examples of usage scenarios. The second issue regards

the conditions under which the security problem remains

tractable. Solving this issue in context of specifically defined SoD

criteria is at the core of this research.

The approach is implemented for the security configurations

of Kaspersky Security System.

Keywords—security system; security policy; security

configuration; separation of duties; validation.

I. INTRODUCTION

Let's consider the following example. Some system needs to
run the executable files downloaded from the external network.
This system trusts several sources; before running the file it
should verify the integrity and authenticity of the executable file
image. Running the file before its verification by the specialized
tool should not be possible. The latter excludes the possibility of
launching the executable immediately by the verifier. Hence,
here we have an example of the separation of duties.

1. If a process has downloaded a file, it cannot run this file
for execution. Moreover, it cannot verify this file by itself but
shall provide the dedicated verifier with a file image and
attributes for the checking instead. Otherwise, the falsification
of the security verdict is possible.

2. If some process is allowed to verify the file, it cannot run
this file for execution. In another case, nothing restricts the
possibility of running this executable before all necessary checks
are completed.

3. If some process is allowed to launch executables, it should
not be authorized for both downloading files and their
verification. The former may cause the compromise of the
process with an execution of malicious payload, and the latter
may cause the violation of the established SoD policy.

Hence, in terms of role-based access control (RBAC) what
we have here is three different roles implementing the whole
procedure controlled according to the history-based dynamic
separation of duties policy [1]. We may implement this scheme
with a more simple operational static separation of duties
between three roles, Downloader, Verifier and Executor,
statically authorizing these roles for the operations that comprise
the whole procedure. In this case, the correctness of the sequence
may be either provided at the system level or ensured by the
trusted agent.

This is only the one of examples where SoD policy is
essential for the system security. Cyberphysical systems often
require the separation of operations comprising the whole
procedure, for security and safety reasons [2], [3]. The main
difficulty for such cases was that the checks are specified for the
definition of the operations and not enforced in their
implementation.

To illustrate this fact let’s return to the example. Eventually,
the SoD policy is enforced for the operations such as file
creation, opening, sharing of file identifier among the processes
separating the duties. The validation of the proper policy
implementation for every procedure may not take into account
the implementation details of these operations. At the same time,
the implementation of specific file operations generally is not
considered as trustworthy. Therefore, the policy enforcement
should not be a part of the operations implementation;

conversely, it is provided by the external mechanism controlling
the explicitly defined operations. It means that the validation
results make the difference for the system that guarantees the
proper separation of components responsibilities.

This is why we consider the problem of SoD validation in
the Multiple Independent Levels of Security (MILS) context [4].
The system based on MILS architecture allows making a
conclusion about the behavior of domains without going into
details of the implementation of particular operations.

II. RELATED WORK

Gligor, Gavrila, and Ferraiolo [1] formally described a wide
variety of separation of duties policies and established their
relationships within a formal RBAC model. What characterizes
this research is the orientation on the implementation, not on the
validation, of every described policy. From this point of view,
the composability of SoD policies is considered as a quite
important property.

The original paper by Ferraiolo, Cugini, and Kuhn on RBAC
[5] presented operational separation of duty as a supplement to
the static and dynamic separation of duty. Operational
separation of duty required that no role could contain the
permissions for all the operations necessary to perform a
process. This type of SoD will be mainly considered in this
paper.

Simon and Zurko [6] also enumerated various forms of SoD
and indicated how the SoD policies could be expressed in
Adage, a general purpose access control policy editor.

There are many works aimed at the validation or
enforcement of SoD property in various context. The paper of
Ahn, Sandhu, Kang, and Park [7] describes proof-of-concept
implementation to demonstrate the practical feasibility of
specifying and enforcing role-based authorization models [8]
(that potentially support the dynamic SoD) for web-based
workflow systems. The works of Basin, Burri, and Karjoth [9],
[10] concentrate on the runtime enforcement of the SoD
requirements on workflows, thereby preventing fraud and errors.
Both works use specifications in SoDA, separation of duty
algebra, defined by Li and Wang [11], and bridge the gap
between the specification of SoD constraints modeled in SoDA
and their enforcement in a dynamic, service-oriented enterprise
environment.

 For our research, we need the formal representation of SoD
security policy, which would help us to validate the
implementation of this policy according to the configuration of
rights and the scheme of their transferring between subjects for
the initial state of the system. As will be shown below, in our
case the most convenient model for this purpose is Schematic
Protection Model described by Sandhu [12] to find the
conditions under which the safety question for the access control
model remains tractable.

III. KASPERSKY SECURITY SYSTEM

A. Main Features

Kaspersky Security System (KSS) [13] was initially
implemented as a part of KasperskyOS with a view to supporting
diverse security models. Later it has evolved into a stand-alone

project and can now be embedded into other systems demanding
enhanced security.

One of the security models supported by KSS is capability-
based access control. A capability is an object that embeds the
resource reference and the set of access rights for this resource.
The capability is always possessed by some entity that presents
this capability for getting the access to the appropriate resource.
The internals of the capability is available for the resource driver
and transparent for usage by the application-level entities.

The entity may pass the capability to another entity if
security policy allows. Passing the capability may be
implemented in two ways: transferring the capability of its
deriving. Capability transfer is like copying the capability; the
entity that transferred the capability may be not allowed to bring
the situation back. In case the capability was derived it may be
revoked by the parent entity. Moreover, the access rights
provided within this capability may be adjusted by the parent
entity beforehand.

This research mainly refers the capability-based model
described above and its configurations.

One of the main features of KSS is flexible security
configuration. Configuration tools are used to adjust the security
policies and deploy them in the system.

We distinguish two types of system configuration: the
configuration of the security policy that is defined in JSON
format, and the binding configuration, or CFG file. Security
policy configuration usually contains the parameters of the
security models. While it may also be important for providing
the particular security aspects, our main interest is in addressing
the issues of validation of binding configuration (CFG file). The
application specific concerns may parametrize the system with
CFG means in a way that will enforce the required security
properties. This parametrization is a subject of our research.

B. Security Configurations

CFG is a declarative language that allows declaring the
control rules for the following actions in the system: launching
the entity (execute action); interaction of two entities (call
action); asking about the security decision for the internal event
(security ask action).

Control is determined by binding the actions with security
policies using the references onto these policies provided by the
KSS. Every reference contains the name of the policy
implementation and may be provided with the optional policy
configuration.

Every entity is accompanied with its definition and
definitions of the interfaces. While the format of these
definitions is outside the scope of this paper, it should be noted
that the set of methods and parameters may be listed within the
appropriate files and referred in the configuration.

C. Schematic Protection Model

Schematic Protection Model (SPM) is the meta-model used
for determining whether the security problem is tractable for
another model defined with SPM terms [9]. Tractability of the
security problem means the existence of the algorithm capable
of identifying the access rights leakage. Algorithms created for

www.embedded-world.eu

the Schematic Protection Model may also be used for the
validation of other significant properties of the security policy as
will be shown below.

The key notion of SPM is the protection type or just type.
The type is a label for the entity that determines its involvement
in the distribution of the access rights among entities. The
combination of the right and the objects of this right is referred
as the ticket. If the entity possesses the ticket Z/r, it means this
entity has the right r over object Z.

For describing the conditions of transferring the rights
among entities, SPM uses two functional primitives: the link
predicate and filter function. The link predicate determines
whether there exists the direct link by which the rights may be
potentially between two types of entities. The filter function
specifies the types of tickets that may be passed via this link. The
types of tickets are determined according to the types of entity
for which the right is possessed.

The order in which the entities of one type may create entities
of another is essential for the tractability of security problem. In
SPM terms, the graph of creation must be acyclic to avoid the
unsolvable security problem.

D. Modeling of KSS Security Configurations with SPM

1) Typification
Typification is one of the main concepts determining the

expressiveness and tractability of the security problem in SPM.
Also, this is one of the base concepts underlying KSS.

The set of subject types TS in SPM matches the set entities
to which CFG file refers. The set of objects types TO is
represented by the types of capabilities. Their unification
comprises the whole set of types T.

In our system, entities may have rights over the objects
obtained via the mechanism of capabilities transfer or
capabilities derivation. Regarding SPM, it means that the
subjects of appropriate type may demand the tickets that
describe the rights over the objects. The capability represents the
object, e.g. Z and every right r that is kept and transferred by this
capability may be referred separately as Z/r:c.

The typification of capabilities allows us to keep the
typification of rights. Semantically it means that the right, for
example, of reading the file is not the same as the right of reading
the network socket. The policies that applied for the regulation
of transfer of these rights may be different because the types of
the rights are different (even if the APIs for accessing the
appropriate objects look similar).

Given that the CFG file defines the policies for the interface
call separately for every kind of entities, and policies are applied
for both communication parties, we have got the complete match
with the SPM. The right is typed accordingly to the object type
and controlled individually to the type of the subject using this
right.

2) Link predicate and filter function
In SPM, the possibility of the right transfer is determined by

two functional primitives: link predicate and filter function. Link
predicate refers the existence of a kind of connection between
two types of entities via which the capability may be passed. The

filter function is applied to this capability according to the types
of entities to adjust the set of typed rights according to the fine-
grained policy for every pair of subject types.

The link predicate is constructed by the analysis of the CFG
file. For every policy defined within the CFG file, the validator
builds the relationships between entities according to the
definition of policies for the call actions. The validator goes
through the definition of entity analyzing its call policies.

Then the filter function is created. For every transferred
capability the set of rights is constrained according to the policy
definition and mandatory restrictions set for the entity.

3) Can-create Predicate and Create Rules
The next important concept is the entities creation. The SPM

requires the creation of entities to fit with the so-called acyclic
attenuating scheme. The acyclic nature of the scheme is formally
defined by the can-create predicate determining entities of
which types can create entities of other types. The graph of
creation must be acyclic.

This property may be guaranteed via the execute action
policy binding that allows configuring the execution of entities
according to the type of parent entity and parameters passed by
this entity during execution. For example, every parent that is
allowed to run the entity of particular type may be configured
using the individual policy binding, with the obligatory
verification of matching the type with the policy specifically
configured for this type.

More straightforward approach presumes the general
awareness of the validator about the entities creation scheme.

The attenuation of privilege that is also the essential
requirement that means the set of rights passed to the newly
created entity must not exceed the set of rights of the parent
entity.

Taking into account the nature of capability-based access
control, we may certainly state that creating the entities will meet
the requirement of the attenuation of privilege. If the entity does
not have the right or capability, it cannot pass this right or
capability to the newly created one.

IV. SOD VALIDATION FOR SECURITY CONFIGURATIONS

A. The Formal Definition of SoD in SPM

The operational static separation of duties criteria is
originally formulated for the RBAC model as follows [1]: for
any state, there is no such subset of roles that would be
authorized for the whole set of operations comprising the
transaction (or another type of sensitive sequence of action in the
system).

We assume that

- the states in SPM correspond the states in RBAC

- the set of subject types in SPM corresponds the set of roles
in RBAC

- the types of tickets in SPM correspond the operations
RBAC

- the typification of subjects in SPM (in relational form)
corresponds the role members relation in RBAC

- the membership of the ticket of particular type in the
domain of entity in SPM corresponds the authorization of
subject for the right in respect to object in RBAC

Thus, the operational static SoD criteria are formulated as
follows. For the set of tickets with different types and related to
the same object, the operational static separation of duties is
enforced if there is no subset of subject types TS for which the
appropriate set of subjects could have all tickets from this set.

In case the operational static SoD is applied to the set of two
types of tickets the definition is simpler. Two tickets of different
types for the object shall not be possessed by the entities of the
same type.

B. The Validation Process

The validation of the operational static separation of duties
takes as input the names of types of capabilities and rights,
provided by these capabilities, for which SoD is applied.

Several statements proven for the SPM facilitate the
checking whether the current system configuration interpreted
with SPM terms satisfies the operational static SoD criteria. The
detailed description and proof of these statements go beyond the
scope of this paper.

The validation process requires only the polynomial
computations, particularly:

1. Building the SPM scheme according to the CFG file
describing the security configuration of KSS.

2. Checking whether the scheme is acyclic.

3. Computing the special fully unfolded state for the SPM
[10]. This is the state for which entities of all possible
types are created, and for any entity that may be
additionally created another entity of the same type,
created in the same way already exists. It is provable that
such a state is reached for the acyclic attenuating scheme
by a polynomial algorithm.

4. Checking whether the fully unfolded state satisfies the
following condition: for any type of entities separating
the duties there is the type of the ticket that doesn’t
present in the domains of the subjects of other types.

C. Enhancing the Scheme with the Linear Rights

The most used case within the concept of operational SoD is
providing the monopoly access to the critical resource for any
operation at any moment of time. The monopoly may also
restrict the sharing of the right to the subjects of the same type.
In this case the monopoly access is a particular case of the
operational SoD described above.

Unfortunately, this case is the most difficult to implement if
the scheme is monotonic and attenuation of privilege principle
is upheld. The entity can't transfer the right for the monopoly
access to the resource (if it had transferred the right, the right
would not have been a monopoly right), and the right can't be
removed. To address this issue, we suggest using so-called linear
rights.

The idea of linear rights allows addressing the requirements
to the monopoly access to resources. For example, any subject
may read the audit log but simultaneous writing this log is not
allowed.

In case the right is defined as linear only one entity may
possess this right at every moment of time. If the capability with
the linear right is revoked, then this linear right will be given
back to the parent.

Let’s consider the example given in the introduction. The set
of subject types (entities) contains

- File System agent allowing to read and write files

- Downloader downloading the file from the Internet

- Verifier checking the digital signature of the file

- Application allowed working only with correctly
signed file.

Linear rights allow us to implement the scheme meeting all
requirements by the following way:

- The Downloader entity demands the capability with
writelinear and read rights from the File System entity

- The File System entity creates the file and transfers the
requested capability to the Downloader entity

- The Downloader entity writes the file using the
capability

- The Downloader transfers the capability to the Verifier
entity. The right for writing is linear, hence, the
Downloader entity is unable to change the file since this
moment.

- The Verifier entity safely checks the digital signature

- In case the signature is correct, the Verifier entity
transfers (by the derivation mechanism) the capability
to the application without writelinear right

- The Application entity can safely read the file and
transfer the capability to other entities.

As shown above, we may also need a simple read and write,
except the appropriate linear rights. However, we shall avoid the
situation where the same entity possess both the simple and
linear right of the same kind (for example, both write and
writelinear). These rights will be mutually exclusive for any
entity (static SoD). The appropriate checks may be implemented
at runtime.

The single linear right may be added to the scheme without
the violation of already verified SoD properties. This fact allows
combining the SoD aspect proven for the types of entities and
fine-grained monopoly access to the resources where needed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two approaches to the
implementation and validation of SoD policy for the
configurations of the MILS-based system. These approaches
cover substantially different cases: the operational SoD for the
acyclic attenuating schemes of rights transfer, and operational
SoD guaranteeing the monopoly access to the resource at any

www.embedded-world.eu

moment of time. These approaches may be successfully
combined if required.

We continue to investigate various MILS applications to find
the relevant use cases and discover the new scenarios that may
require separation of duties. Particularly, other types of SoD
policies except the operational SoD are of our interest.

REFERENCES

[1] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, “On the formal definition of

separation of duty policies and their composition,” Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 36, 1998.

[2] A. Cardenas, S.Amin, B.Sinopoli, A.Giani, A.Perrig, and S.Sastry,
“Challenges for securing cyber physical systems,” Workshop on Future
Directions in Cyber-physical Systems Security, DHS, Newark, NJ, July
23, 2009.

[3] C.Codella, A.Hampapur, C.Li, D.Pendarakis, and J.R.Rao, “Continuous
Assurance for Cyber Physical System Security,” Workshop on Future
Directions in Cyber-Physical Systems Security, Newark, NJ, July 2009.

[4] H.Blasum, S.Tverdyshev, B.Langenstein, J.Maebe, B.De Sutter,
B.Leconte, B.Triquet, K.Müller, M.Paulitsch, A.SödingFreiherr von
Blomberg, A.Tillequin, “MILS Architecture,“ EURO-MILS: Secure
European Virtualisation for Trustworthy Applications in Critical
Domains, Whitepaper, 2014.

[5] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control
(RBAC): features and motivations,” Proceedings of the 1995 Computer
Security Applications Conference, December 1995.

[6] R. Simon and M. E. Zurko, “Separation of duty in role-based
environments,” Proceedings of the 10th Computer Security Foundation
Workshop, Rockport, MA, June 1012, 1997.

[7] G.-J. Ahn, R. S. Sandhu, M. Kang, and J. Park, “Injecting RBAC to
Secure a Web-Based Workflow System,” Proceedings of the 5th ACM
Workshop on Role-Based Access Control, Berlin, July 2628, 2000.

[8] R. Sandhu, “Separation of Duties in Computerized Information Systems,”
Proceedings of IFIP WG11.3 Workshop on Database Security, September
1990.

[9] D. Basin, Samuel J. Burri, and G.Karjoth, ”Separation of Duties as a
Service,” Proc. of the 6th ACM Symposium on Information, Computer
and Communications Security (ASIACCS 11). Hong Kong, China, March
22-24, 2011.

[10] D. Basin, Samuel J. Burri, and G.Karjoth, ”Dynamic enforcement of
abstract separation of duty constraints,” ACM Transactions on
Information and System Security (TISSEC), Volume 15, Issue 3,
November 2012.

[11] N. Li and Q. Wang, ”Beyond separation of duty: an algebra for specifying

high-level security policies,” Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, October 30 - November 3, 2006.

[12] R. S. Sandhu, ”The schematic protection model: its definition and analysis
for acyclic attenuating schemes,” Journal of the ACM (JACM), Volume
35 Issue 2, April 1988, Pages 404-432.

[13] S.Tverdyshev, H.Blasum, E.Rudina, D.Kulagin, P.Dyakin, S.Moiseev,
”Security Architecture and Specification Framework for Safe and Secure
Industrial Automation,” Critical Information Infrastructures Security,
10th International Conference, CRITIS 2015, Berlin, Germany, October
5-7, 2015, Revised Selected Papers, Pages 3-14.

