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Abstract—Most industrial applications demand determinism
in terms of latency, reliability, and throughput. This goes hand
in hand with the increased complexity of real-time network
programability possibilities. To ensure network performance
low-overhead, high-granularity, and timely network verification
techniques need to be deployed. The first cornerstone of network
verification ability is to enable end-to-end network monitor-
ing, including end devices too. To achieve this, this paper
shows a novel and low overhead in-band network telemetry
and monitoring technique for wireless networks focusing on
IEEE 802.11 networks. A design of in-band network telemetry
enabled node architecture is proposed and its proof of concept
implementation is realized. The PoC realization is used to
monitor a real-life SDN-based wireless network, enabling on-
the-fly (re)configuration capabilities based on monitoring data.
In addition, the proposed monitoring technique is validated in
terms of monitoring accuracy, monitoring overhead, and network
(re)configuration accuracy. It is shown that the proposed in-
band monitoring technique has 6 times lower overhead than
other active monitoring techniques on a single-hop link. Besides
this, it is demonstrated that (re)configuration decisions taken
based on monitored data fulfill targeted application requirements,
validating the suitability of the proposed monitoring technique.

Index Terms—In-band Network Telemetry (INT), WiFi, SDN,
Industry 4.0, 5gEmPower.

I. INTRODUCTION

Network technology boundaries are being pushed further,

with Industry 4.0 being one of the driving forces. System-

level operation and the quest towards more automation is

driving machines to perform tasks that require tighter network

delivery guarantees. Hand in hand with this, networks are

becoming increasingly more complex and diverse, significantly

complicating their management for human administrators. This

is also witnessed by several trends in wireless networking,

like Software Defined Networking (SDN), Software Defined

Radios (SDR) [1], 5G [2], IEEE 802.11ax [3], etc., which

all introduce more advanced (re)configuration capabilities to

meet application demands. Similarly to increased network

complexity, applications are demanding more capacity and

lower communication latencies. Considering both, network

complexity and application demands, networks should enable

techniques for on-the-fly performance monitoring, verification,

and (re)configuration.

The increased network complexity will ultimately lead to

the need of real-time network management that is based on

temporal, historical and frequency of network data. To this

end, full cognitive-based network management mechanism

can decide to adapt the network resources leveraging such

monitoring data as well as the Service Level Agreements

(SLAs), number of users and demanded network performance

[4]. For such an automatic control and cognitive network

management, at least a three phase process is necessary.

In the first phase, network performance is monitored and

the monitored information is collected. The second phase

relates to analyzing collected information based on application

requirements and deciding on network reconfiguration. In the

last step, the network is actually reconfigured. Throughout

time, network performance is verified according to application

requirements.

The first phase depends on the network monitoring tech-

nique used. Current network monitoring techniques can be

active or passive [5]. Active monitoring techniques inject

additional traffic (such as probe packets) between endpoints in

the network for measurement purposes. Contrary, in case of

passive monitoring a central entity periodically polls network

devices for performance statistics. Polling traffic can use off-

the-band links, not impacting data flows, or in absence of

control links, it will share the bandwidth with data traffic.

Consequently, such traffic injection into the network will be

bandwidth consuming, impacting traffic data flows. Passive

based monitoring is limited only to network devices statistics,

with no information from the end devices. Moreover, both

techniques lack the flow specific monitoring information and

in case of scheduled network, they do not show the real

performance experienced by the data traffic. A number of

monitoring protocols based on such techniques already exists,

such as Net-Flow [6], IP Flow Information Export (IPFIX)

[7], Simple Network Management Protocol (SNMP) [8], etc.

Until now such network monitoring techniques are used

mainly for network troubleshooting purposes. For network

performance verification finer-grained, higher flexibility, and

timely monitoring techniques are required. Due to the contin-

ual nature of network performance verification, active mon-

itoring techniques are not the most feasible techniques for

this. Moreover, in wireless networks monitoring overhead

should be minimal due to bandwidth limitations. Besides, the

monitoring techniques should be able to adapt to wireless

network dynamics and application needs, support wireless

channel related parameters and detect reliability issues on per-

hop basis. Last but not least, the monitoring techniques should

give a holistic view on all network devices, down to end

devices.

The concept of in-band network telemetry (INT) is a new



technique that offers low overhead monitoring possibilities. It

overcomes the drawbacks of other techniques: enables end-to-

end performance view of the network (including end devices),

does not inject any new packets in the network and information

is collected per-hop, per-packet, and on flow basis. Recently

a draft proposal for INT standardization was issued by the

Internet Engineering Task Force (IETF). The draft includes

the telemetry data format [9] as well as INT encapsulation for

different protocols [10]. However, currently, all standardization

focuses on supporting INT for wired networks, mainly how

switches and routers can collect and process telemetry data.

Introducing in-band telemetry to wireless network needs new

packet design, new inter-layer communication as well as new

monitoring options for wireless-related parameters. Moreover,

the reliability need to be collected on hop basis, that is not

possible with current INT draft.

This paper investigates how the INT concept can be intro-

duced to the wireless SDN and usage of INT data monitoring

for network reconfiguration. This work is motivated by the

need of (i) interaction between the application layer and INT

layer to give freedom to the applications to control end-to-end

monitored information down to end devices, (ii) low-overhead

monitoring of wireless devices by limiting the impact of the

monitored traffic on channel contention, (iii) real-time network

(re)configuration and verification based on INT monitored

data and (iv) per-hop reliability detection in addition to other

wireless parameter monitoring. This work will contribute to

each of the four mentioned challenges.

As an extension of the previous paper [11], the INT-node

architecture is extended and unified no matter what the role

of the INT node is. The API towards the application layer is

extended with real-time and on-the-fly support for configuring

the INT parameters, while the API towards the physical layer

supports additional wireless parameters. Second, a new tech-

nique to determine reliability on hop-basis is introduced as part

of the INT options. Last and the most important, the INT-based

node architecture is integrated in the wireless SDN architecture

where monitored data is used for network reconfiguration and

verification. The whole INT node architecture is implemented

on user-level space on top of Wi-Fi commodity hardware, and

its integration with wireless SDN is verified in a real test-bed.

The remainder of this paper is structured as follows. In

section II, related works in network monitoring and network

management are presented. In section III we provide a short

overview of INT concept for wired networks and we mo-

tivate the use of INT for wireless networks. In section IV

we discuss wireless INT options, the design of INT-enabled

node architecture, its proof-of-concept implementation, net-

work controller implementation, and its interface with INT-

enabled node. Based on the motivation and contribution given

in this section, Section V validates the INT concept and its

implementation. In section V, INT overhead and its impact on

channel contention is analyzed. Further, the PoC INT-enabled

node implementation and its integration with wireless SDN is

validated in a real industrial test-bed where network recon-

figuration and verification is done based on monitored data

and the application layer requirements. Lastly, the technique

to detect reliability issues on per-hop basis is validated and the

convergence model of the detected link reliability to real link

reliability is given. Finally, section VI concludes the paper and

gives some possible future works.

II. RELATED WORK

Efficient network monitoring is a cornerstone for reliable

network management and network performance verification.

Accurate and timely monitoring of the network will impact the

accuracy of management applications in SDN-based networks.

Currently, network monitoring techniques consist in either

network device statistics polling [12], [13] or active probing

[14]. Though they decrease the communication overhead using

adaptive polling rate [12], [15] or probing rate [16], still intro-

ducing special traffic for network monitoring purposes impacts

the network behavior. In addition, they are not sufficient in

localizing the network performance problems [17]. Therefore,

in-band monitoring techniques are more beneficial in reduc-

ing network overhead and providing end-to-end performance

monitoring with no impact on network behavior.

Recently, network telemetry has gained interest in the

research community. This is mostly related to the advances in

SDN technology and the need for timely network monitoring

and configuration. A number of studies on INT realization for

different host environments and networks have been performed

[18]–[21]. A number of demos have been shown too, illustrat-

ing how INT can be used to diagnose network problems as

well as to improve network performance [22], [23].

Authors in [24] present a hybrid in-band and active prob-

ing monitoring framework for network function virtualization

(NFV) monitoring. The IntOpt solution comprises of active

probing between SDN controller and INT enabled network

devices that will add the telemetry information to active

probes. The P4-enabled programmable switches [25] are used

to implement the INT-enable nodes in the network. Still, the

presence of active probing will introduce limited overhead

during network operation. In case of wireless networks, such

approach will be less feasible as not all the nodes can

have direct control links with the controller. Moreover, no

application-INT layer interaction exists at the end nodes.

Similarly, in [18] an INT layer was implemented in Open

vSwitch (OVS) by combining the P4 INT implementation with

extended Berkeley Packet Filters (eBPF) [26]. The P4 INT

implementation was used to generate the INT logic, while the

eBPF was used to load the compiled code into specific points

inside the Linux kernel. The implementation was evaluated in

terms of CPU consumption when the OVS kernel was modified

to include the INT layer. It was shown that the CPU overhead

is 0.3% and 1% for data rates of 1 MBps and 100 MBps,

respectively. Though a kernel level INT implementation will

benefit from higher data rates processing possibilities, it lacks

the flexibility of on-the-fly changing of the processing logic.

The P4 INT implementation for network monitoring was used

also in [23] and tested in simulator environment.



In addition to INT logic in network devices, timely INT

information processing at sink nodes is crucial too. In [19] an

implementation of an INT collector entity is presented. It is

based on the extraction of network events based on the raw

INT data. Therefore, the amount of logged data is reduced as

well as CPU usage to process the data. Other INT collector

architectures are presented in [21] and [27]. Authors in [20]

present a network architecture for knowledge-defined self-

driven networking. They implement an INT for an ONOS [28]

controller using the P4 language [29]. The implementation is

evaluated in simulator (mininet with bmv2) for its average

processing delay and CPU usage.

So far, P4 language is the most widely used for INT node

logic implementation by the research community. However,

due to their kernel level implementation, designs ( [18], [19])

lack the flexibility on adapting the processing logic on-the-fly

based on the application needs. Moreover, current P4-based

INT implementation does not support flexibility in choosing

the flows which to be monitored. The INT data are added to

each packet, increasing the overhead in the network [30]. On

the other hand, other designs are evaluated only in simulator

environment [20], [21], [23], [30] while all the cited designs

focus only on wired networks. In this paper, we present an INT

design for wireless networks. We implement its PoC in the

Click router [31] framework, that is a user-space implementa-

tion that gives the flexibility of changing processing logic on

real-time by offering application and INT layer interaction.

Thus, the application layer can determine which data flows

to be monitored and when. Such an implementation does not

require any low-level changes either on the network stack or

on the driver itself. In addition we validate the implementation

on a real industrial test-bed. Compared to previous studies

that are focused only on wired networks, or monitoring-only

for wireless sensor networks [32], we focus on the validation

of INT for WiFi-based SDN, believing that its adoption can

greatly improve wireless network monitoring and network

(re)configuration speed.

In addition to monitoring, network needs to be

(re)configured based on monitored data and its application

requirements. In this context, few frameworks capable

of controlling and managing wireless networks [33]–[35]

exists. End-to-end latency, end-to-end jitter, and throughput

requirements are, besides challenging to be controlled,

unknown due to coarse granularity of the monitoring

information. In [36] authors propose an SDN-based approach

that takes advantage of the SD-RAN architecture and the

centralized view from the network resources to orchestrate

slices and thus meet the QoS requirements. In this work, we

will make use of the controller proposed in [36] for network

(re)configuration based on INT monitored data.

III. IN-BAND NETWORK TELEMETRY (INT)

In this section, we will give a detailed introduction to in-

band network telemetry, how INT headers are formed and

processed. In the second sub-section, we will motivate the

usage of INT in wireless networks and a number of use cases

that will benefit from it.

A. Background

In-band network telemetry is a new way of monitoring for

wired networks where monitoring information is appended

directly to the data packets. The source node that generates

the data packet attaches the initial INT encapsulation header

as well as INT header. The INT encapsulation header format

is composed of the INT header type, INT header length and

the next protocol field [10].

Header type (1B) can take four different values based

on the following INT header: pre-allocated hop-by-hop INT

header type, incremental hop-by-hop INT header type, proof

of transit INT header type and end-to-end header type. All

three INT header types might be present at the same packet

simultaneously. The header length (1B) contains the length of

the INT header in 4 octets, excluding the length of encapsu-

lation header itself. The next protocol (2B) field contains the

protocol that follows the INT protocol header. If INT header

is followed by another INT header then the next protocol field

takes values for the next INT header type. If no other INT

header is appended the next field specifies the next protocol

that follows INT data options. The next protocol depends on

the type of INT encapsulation. In case when INT is Ethernet

encapsulated [10] next protocol field specifies IPv4 or IPv6,

otherwise if INT is encapsulated as IPv6 hop-by-hop option

then next protocol fields determines used transport protocol

(e.g. UDP or TCP). To this end, the encapsulation in an

available IPv6 option will not break the routing functions in

non-INT enabled routers.

The INT encapsulation header is followed by the INT

type header. In Figure 1, the INT encapsulation header is

followed by the incremental hop-by-hop INT type header. The

incremental INT hop-by-hop header contains the following

fields: namesapce ID, node length, flags and remaining length.

Namespace ID (2B) identifies the INT namespace that should

be known by each node in the network. The node length

(5b) field specifies the data length that each node will add

as a multiple of 4-octets, that depends on the number of

’1’s in the trace type vector. The flag bits (4b) are used to

specify if the packet has overflown (there is no space left to

further add telemetry data), if the packet needs to be forwarded

back to source (loop-back bit), or if the telemetry data needs

to be processed immediately at every INT enabled node in

the network. The remaining length (7b) field determines the

remaining length of data that can be added by the intermediate

nodes before the INT data options are considered to be

overflown. The trace type (4B) field specifies the data types to

be collected for the packet by each INT enabled node along

the path. Practically, there can be up to 32 different data types

that can be collected. According to the current draft [9] only

13 bits are used to collect information such as: ingress and

egress port, received time, queue length etc. This paper will

focus on hop-by-hop telemetry data. For the header formats

of the other INT types we refer the reader to [9], [37].
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Fig. 2. Simple INT enable network example.

A simple INT enabled wired network example is shown

in Figure 2. Depending on its type, INT data is processed

by different nodes in the network that have different INT

processing logic. The node that initiates the data packet we

call as the INT source node and it is responsible for creating

INT header(s). By adding the necessary information, INT

source node determines the information to be monitored,

flows to be monitored and INT frequency. For this an INT

source node architecture should support interaction between

application and INT layer. Intermediate INT nodes will add

INT data based on the initiated INT header. At the end,

the destination node or the INT termination node (network

gateway) will extract the INT data. Such information can be

used by other network entities, such as network controller,

network optimization entity, or traffic visualizer entity.

INT specification was initiated by the P4 language consor-

tium in 2016 [25]. Now, INT standardization is continuing

under the name of In-situ Operations, Administration, and

Maintenance (IOAM) by the network working group of IETF.

It resulted in a number of drafts regarding different topics: the

data fields for IOAM [9], Ethernet encapsulation of IOAM

[10], and proof of transit [37]. Throughout this paper, INT

and IOAM will be used interchangeably.

B. Towards INT for Wireless and its Benefits

In conventional networks, network monitoring was triggered

by the need for network problem troubleshooting. Mainly

active monitoring techniques were used at times when some

miss-behavior of the network was observed. Different tools

such as ping or zing [38] were used to determine round-

trip time latency, end-to-end throughput, or packet losses.

Such techniques are bandwidth consuming, and in case of

wireless networks, will increase the channel contention be-

tween devices. Other approaches consisted of polling the

network devices to retrieve various statistics. Such a technique

is adopted by SNMP [8], that is widely used for network

management and monitoring. SNMP uses a client/server ap-

proach, where SNMP manager device (client) polls the SNMP

agents (servers) for device statistics. SNMP manager collects

aggregated monitored statistics from network devices that are

updated in certain time intervals. In addition, SNMP operates

only on network devices, down to APs. Both of these elements

can be a bottleneck for wireless devices. First, the aggregation

statistics interval might be high to detect wireless channel

issues. Second, the absence of monitored information from

the clients, limits the network knowledge on the real client

experience. Though some statistics are already collected on

the AP side on client basis (e.g. number of tx/rx packets),

other information, like e.g. latency or RSSI experienced at

client side, can not be derived from those statistics.

Next to network management, a tighter network-application

interaction will imply better fulfillment of application require-

ments. To this end, applications should be able to interact with

the monitoring plane in order to set the monitoring parameters

and targets. Thus an in-band monitoring approach will be

beneficial in case of wireless networks in both directions.

First it will overcome the problems with current monitoring

techniques: collects information down to end-devices and

offers a flexibility on collected information granularity. On

the other hand, as the monitoring is extended down to the

end device, INT offers the possibility for better application-

network interaction where applications can trigger and manage

monitoring themselves. We will describe a non-exhaustive list

of use-cases where in-band monitoring is beneficial.

For instance, in many Industry 4.0 applications, in addition

to problem troubleshooting, network monitoring is used to

verify whether performance metrics are met or not, in order

to avoid any down times. Active measurements by sending

special probe packets, is not desirable, as they affect opera-

tions. Moreover, as the traffic is scheduled in time too, active

measurements will not show the experienced performance of

real data traffic. In addition, in different process control loop or

emergency applications, strict end-to-end latency requirements

should be maintained over time. As said, INT can monitor

parameters on a per-hop basis. Thus, it permits to precisely

determine the latency bottleneck in the network.

Robotic applications are characterized by network dy-

namics, where nodes connectivity and communication path

changes over time. Path changes can not be detected using

active measurements as they show only end-to-end statistics.

Thus, INT monitoring techniques will enable per-hop statistics,

showing the network segments with performance issues as well

as timing of such issues.

Recently, time sensitive networking (TSN) is becoming

a standard for time-critical industrial applications. Time-

sensitive networking concept is making through to the wireless

world too, mainly driven by private 5G networks. In order



Fig. 3. Wireless link telemetry info option format.

to maintain the performance of critical processes, network

must be monitored over time. Similarly, in this case, in-

band and low overhead monitoring techniques will be the best

option. First of all, monitored packets will experience the same

performance as data packets, will follow the same schedule (in

time and frequency), and will offer end-to-end insight into the

performance including end devices.

IV. WIRELESS INT DESIGN AND IMPLEMENTATION

The design of INT-enabled network and its implementation,

as outlined in this section, targets the usage of INT in wire-

less networks, currently focusing on WiFi. In the following

subsections we will describe the wireless telemetry options,

INT-enabled node architecture and its PoC implementation, as

well as network controller used for the network verification.

A. Telemetry Options

The proposed design enables the collection of telemetry data

related to wireless links. Another aspect it considers is the

ability to monitor per-hop reliability, in addition to end-to-end

reliability. To achieve this, two new hop-by-hop options are

defined, the presence of which is indicated by bits 12 and 13

in the hop-by-hop trace type bit vector.

1) Wireless Telemetry Option: Depending on the openness

of the wireless card’s driver, various information about the

wireless link can be collected, including: RSSI, SNR, MCS,

contention window size, channel info, data rate, and reception

time. For now, we only consider RSSI, data rate, channel info,

reception time, MCS index and retransmission flag.

The wireless link telemetry option format is shown in Figure

3. The reception time is included by setting bit 2 and 3 of trace-

type, for setting the second and sub-second part respectively.

The channel (1B) field specifies the wireless channel at which

the link is operating, the RSSI (1B) field specifies the received

signal strength of the packet, the DR (9b) field specifies

the data rate used, the R (1b) flag specifies if the packet

was retransmitted or not, while the MCS (6b) specifies the

modulation and coding scheme index used for the packet.

All wireless options together are 4 bytes aligned for easy

processing.

Currently, we use layer 2 encapsulation of INT information,

with the INT header and option data field residing between

layer 2 and layer 3 headers. This way, also APs can add INT

data to data packets between wireless nodes connected to the

same AP, that is layer 2 communication. As a downside, packet

processing problems will occur in case the INT enabled packet

traverses a router that is not INT enabled. To this end, we will

limit INT usage in private networks, where single subnet is

used and packets do not traverse any router.
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Fig. 4. Tracking INT reliability per hop in different scenarios.

2) Per-hop Reliability State Option: The current INT stan-

dardization draft only supports end-to-end reliability monitor-

ing [9]. This is achieved by including a counter option in

the end-to-end INT type header. INT sink node will track the

counter and the number of INT packet loses can be calculated

at any time. However, this method cannot determine at which

hop the packet was lost. Therefore, we propose to add a per-

hop reliability state option in the hop-by-hop INT type. This

option contains a single 4-bytes label field that is used by

each intermediate node to count packets per flow. So, up to

232−1 continuous lost packets can be detected. To differentiate

between different flows, the namespace ID is used. Thus, each

device can handle up to 216 different data flows at any time.

The collection of per-hop reliability is explained in Figure

4. Every node, including the source node, will use the label

option to add an incremental label to every packet. In the

example shown in Figure 4a, the first two packets arrive

successfully at the sink node. The third packet gets lost

between the first and second intermediate node. Upon arrival

of the fourth packet at the sink, the recorded labels are used to

detect the loss and its location. As the incremental label has

’discontinuities’ the actual loss happened at the ’discontinuity’

link, in this case at the second link.

Per-hop reliability monitoring can be achieved in the pres-

ence of path changes too, as shown in Figure 4b, where the

flow changes the path right after an INT packet was lost on the

previous path. As, next to the labels, also the hop-by-hop node

IDs are monitored, the sink can detect the path change. The

last packet that is received in the sink node has the labels from

three different nodes (3,0,2) (Figure 4b). Based on collected

node IDs, the sink node detects that the path has changed, and

thus the label is reset. However, since the second intermediate

node was part of the previous path too, the received labels in

the current packet should have been (3,0,3). As the label is

different, the sink node detects that the packet loss occurred

between the first and second intermediate node.



B. INT-enabled Node Architecture

The INT enabled node architecture is shown in Figure

5. The INT layer resides between layer 2 and layer 3 and

is responsible to add/extract/process the telemetry info. The

INT layer is composed of three engines: INT source engine,

INT inter engine and INT sink engine that implements the

logic for INT packet processing based on the node role. In

addition to INT engines, the INT layer communicates with

the application layer using a ZeroMQ1 messaging entity to

share the information regarding the flows to be monitored.

As shown in Figure 5, via the ZeroMQ messaging entity

the INT layer becomes aware of the flows that need to be

monitored by getting flow specific information, like: flow ID,

source and destination port and IP address, INT frequency

and trace type bit vector. This information is necessary for the

INT source engine to initialize the INT header. Such a design

gives the opportunity to application layer to interact with INT

layer. To this end, application layer can adjust the INT data

granularity by adjusting on the fly the INT period based on

traffic flow requirements. In addition, the trace-type bit vector

can be configured by application layer too by adding/removing

certain bits based on the needed information. However, no

matter the trace-type imposed by the higher layers, INT source

engine will always set at least the node ID bit. Last but not

least, application layer can add/delete flows to be monitored

using the ZeroMQ messaging entity.

The pub/sub messaging model was chosen to keep the node

architecture agile and dynamic. To this end, the application

layer and the INT layer is kept decoupled and message polling

is avoided. Contrary, adoption of other messaging models,

like e.g. push/pull, would decrease the efficiency of packet

processing as for each data packet INT layer would need

to pull the application requirements from the socket. The

adoption of a dynamic API between application and INT

layer based on pub/sub model, enables the application layer to

change in real-time the INT parameters to be monitored and

the frequency of monitoring. In addition, ZeroMQ is chosen as

it is a lightweight implementation of a messaging library that

supports different models on how messages can be shared.

Differently from the most used and well-known messaging

protocol of MQTT2, ZeroMQ can support brokerless, broker-

based and distributed broker pub/sub model. For our com-

munication between application layer and INT layer we use

ZeroMQ broker-less pub/sub messaging model that will avoid

a single point of failure in the stack.

If the node is an intermediate node, it only adds telemetry

data. For each packet that arrives from lower layers, INT layer

determines if the packet is for itself or needs to be routed

further. If the packet needs to be routed further then the packet

will be processed by the INT intermediate engine. Differently

from INT source engine, INT intermediate engine will access

the wireless link information from the wireless card itself and

create the wireless option header. For this the INT layer should

1https://zeromq.org/
2https://mqtt.org/

have an API for the telemetry info it wants to access, e.g. API

for queues state, API to access other low level wireless info

and reception time, etc. This API is shown as Phy API in

Figure 5.

Finally, if the packet has reached the destination and is

an INT-enabled packet it will be processed by INT sink

engine. The INT sink engine extracts the INT data and

sends the data to different entities in the network, such as

a network controller or visualizer. The parameters that can

be configured at the INT sink node are the IP address of the

controller(s)/visualizer(s). Additionally, various APIs can be

used to communicate between the INT sink and controller(s),

e.g. push/pull, broker-based communication, and request/reply.

Such an API is named NC API in Figure 5. The INT sink node

can concatenate a number of telemetry measurements in order

to decrease the traffic towards the network controller(s). It can

even process the INT data locally and share only the data that

satisfies certain conditions, e.g. latency or losses higher than

a threshold.

C. Proof of Concept (PoC) Implementation

The Click Router framework [31] is used to implement a

proof of concept (PoC) of our proposed INT enabled node

architecture. As we opt for the dynamic interaction between

application and INT layer, and the ability to change on-the-fly

the monitored information based on application needs, Click

router offers this flexibility. Click Router is a modular software

router toolkit that enables packet processing in user-level space

[31]. In addition to our custom Click router extensions, we

implemented three new Click elements that represent three

different INT engines: INT source, INT intermediate and INT

sink engines. Each of them can be used in the same node

and process the packets based on traffic flow information, as

shown in Figure 5.

Click router exposes a TUN interface towards the applica-

tion layer. A TUN interface is a kernel network layer virtual

network device. It operates at the network layer, accepting

only IP packets. Thus the application layer sends directly all

its traffic through this TUN interface. Once the packets have

been processed by the Click framework and their next hop has

been determined, they are processed by the INT layer. The

INT layer will add the INT header in between layer 2 and

layer 3. The interaction between INT layer and application

layer is implemented using ZeroMQ pub/sub messaging API,

as designed in previous section. INT source Click element

consists of two main functions. The first function, named

IntSrcEngine::SetNS(), keeps track of the registered flows

from the application layer that need to be INT enabled. This

function labels all the packets coming from TUN interface that

need to be initialized with INT header. The second function,

named IntSrcEngine::InitHdr(), checks for the labeled packets

and initializes the INT header based on the information taken

from the INT table.

The wireless interface is set in monitoring mode in order

for the INT intermediate engine to extract physical layer

data. Physical layer parameters, like RSSI, data rate, MCS
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index, channel, retransmission flag and the reception time are

extracted from the radio tap header and saved in a meta-data

annotation that is appended to the packet. Thus, the Phy API

in Figure 5 is implemented using monitor mode of the wireless

interface. If the packet needs to be forwarded to another node

in the network, the INT hop-by-hop type header is processed

first. Based on the trace type the required information is added

in the INT data option space. At this point, the related wireless

info is taken from the appended meta-data of the packet and

the meta-data are cleared. Finally, the packet is forwarded to

the selected outgoing interface.

The INT data collection can be terminated either at the

destination node or at a gateway node at the border of

an INT enabled network segment. INT sink engine will

process all the INT information and create a JSON data

structure that includes the information in a structured way.

The INT sink Click element consists of three main func-

tions. The first function, named IntSinkEngine::ProcessInt(),

processes the INT end-to-end header type, while the

IntSinkEngine::ProcessIntHbH() function processes the INT

hop-by-hop header type and all the added information. The

last function, IntSinkEngine::CreateJSON(), creates a JSON

structure out of the INT information and, using the NC API,

shares it with the other interested entities in the network. In

the current implementation, such data structure is published to

a central broker using a pub/sub API. Other network entities

(network controller, visualizer) subscribe to this central broker

and will get the collected telemetry data.

D. Network Controller and Visualizer

In the validation section, we will use a network controller

that will take decisions based on collected monitored in-

formation using INT. As such, we will validate the wire-

less INT concept and its implementation. Therefore, for the

sake of completeness, in this section we will describe the

used network controller. The network controller prototype

is designed as a modular application with independent and

integrated functionalities for SDN monitoring, visualization,

and configuration. An existing implementation of an SDN plat-

form for heterogeneous RAN, called 5G-EmPOWER [34], is

extended. The 5G-EmPOWER platform is composed by a few

components including an SDN controller and an agent, called

5G-EmPOWER Operating System (OS) and 5G-EmPOWER

agent.

The SDN controller, besides comprising the network intel-

ligence and abstraction of the network elements in the infras-

tructure layer, it also implements the interface to communicate

with its agents. Such an interface enables communication

between the 5G-EmPOWER OS and the 5G-EmPOWER agent

and it is implemented using the OpenEmpower protocol [39].

The agent allows to manage radio access nodes and expose

the current statistics towards the controller. However, such

statistics do not include end node statistics and do not contain

flow related information. Therefore, to be able to recognize

and, hence, add INT measurements into data packets, we have

extended the agent implementation. In this manner, packets

with INT measurements reaching the sink node comprise the

monitoring information of the entire flow.

The framework adopts the network slicing concept for the

wireless access segment where a specific portion of airtime

is allocated to each slice at each transmission round of the

scheduler. First, frames are classified into the different queues

as slices, based on the definition of traffic rules (e.g., Open-

Flow rules [40]). Then, frames belonging to such slices/queues

are dequeued following the Airtime Deficit Weighted Round

Robin (ADWRR) scheduling algorithm [41]. The ADWRR



scheduling algorithm is responsible to assign a fraction of the

airtime (quantum value) to each slice/traffic rule according

to its relative priority. The idea is that, at each round, the

scheduler will scan all the slices for any packet to be sent.

Once it finds a slice with a non-empty queue, it will increase

the deficit counter of that slice by its quantum value. Then the

packet air time is calculated (based on the data rate used for

the link conditions). If the packet air time is lower than the

accumulated deficit counter, the packet is being transmitted

otherwise it will wait for the next round. Everytime a packet

is transmitted the deficit counter is decreased by the packet

airtime. Once the slice queue is empty or the calculated packet

air time is longer than the accumulated deficit counter the

scheduler will pass to the next queue. Therefore, when one

slice has low quantum it gives the possibility to other slices

with higher quantum to transmit more often.

Conceptually, network slicing is the abstraction that can

provide precise resource allocation and traffic isolation among

users and services. Authors in [42] present two variants

of network slicing. The first abstracts the different services

and ensures Quality of Service (QoS) within them, called

Quality of Service Slicing (QoSS). The second defines slices

as the traditional idea of network virtualization where a precise

subset of network resources is allocated to each tenant and full

control is provided, called Infrastructure Sharing Slicing (ISS).

In our work, we focus on QoS within a slice as being a service,

hence, we use the QoSS definition.

For visualization, we use an open-source time-series data

visualization platform TICKStack [43]. TICKStack supports

different adapters to interface with data series. We used

PUB/SUB API to publish JSON data structures to the TICK-

Stack broker. Then data were visualized using different graphs

by only feeding in certain fields from the JSON structure.

TICKStack has another benefit that different alarm thresholds

can be set in order to detect any misbehavior in the network.

V. VALIDATION

To validate the proposed design and implementation, we

first evaluate the INT overhead to data packets. We also bench-

mark the INT overhead to active probing overhead in terms of

measurement reports produced for the same number of channel

contention. Secondly, we validate the implementation of the

INT node architecture in a real industrial environment test-

bed 3. The validation encompasses the detection of wireless

network behaviour based on application-driven INT monitor-

ing data collection. Such measurements are then used by the

network controller on decision making for re-configuring the

network. We further validate detection of the reliability issues

on per-hop basis compared to ground truth in an emulated

environment. Lastly, we determine how fast the INT reliability

measurements converge to the real link reliability when using

different INT frequencies than the data frequencies.

3https://doc.ilabt.imec.be/ilabt/wilab/

A. INT vs Active Probing Overhead

INT usage does not come without packet overhead. The

INT overhead depends on the number of hops packet traverse,

number of collected information, the option format and the

way how INT is added. Nevertheless, it is minimal compared

to active probing as no additional packets have to be generated.

INT overhead as a function of communication hops can be

calculated according to the following formula:

INToverhead = 4 + 8 ∗ INTHBH

+ INTHBH ∗ (h ∗ 4 ∗ TRACELNGT )

+ INTETE ∗ (4 + 4 ∗ E2EOPTIONS);

(1)

where INTHBH is 1 when the hop-by-hop header is present,

h is the number of hops the packet has passed, TRACELNGT

is the number of set bits in the trace type byte vector in the

INT hop-by-hop type header, INTETE is 1 when the INT end-

to-end header is present and E2EOPTIONS is the number of

options in the end-to-end INT header. The unit of the formula

is in bytes.

In order to monitor the performance of wireless links, we

have to enable at least three bits in the trace type: the node

ID option, the wireless telemetry option and the hop-by-hop

reliability option. Next to this, the end-to-end header should

be present with the counter option. So, the INT overhead on

data packets for monitoring of wireless links will be:

INTwireless = 4 + 8 ∗ INTHBH

+ INTHBH ∗ (h ∗ 4 ∗ 3)

+ INTETE ∗ (4 + 4 ∗ 1)

= 20 + 12 ∗ h

(2)

In case when active probing is used there will be an

additional probe request/reply packet at each wireless link.

For IEEE 802.11, this is further increased by two acknowl-

edgements (ACKs) at layer two, two Request-to-send (RTS)

and two Clear-to-send (CTS) packets (assuming the RTS/CTS

mechanism is used). Ignoring the length of the probe re-

quest/reply packets, the layer 2 overhead to transmit the probes

over a single link will already be: 2*20 bytes L2 ACKs, 2*20

bytes for RTS and 2*20 bytes for CTS, 60 bytes in total.

If INT is used for a single hop, only 32 bytes overhead to

data packet will be introduced. So, the usage of INT will

decrease the monitoring overhead by ∼ 50% (not counting

here the probe request/response length of packets). For a ping

request/reply packet, the ICMP payload can be as low as 20

bytes, resulting in a total of 60 bytes, counting for IPv4 and

layer 2 headers too. So, over a single link, an additional 180

bytes are sent if active probing is used, compared to only

32 bytes of INT. This is around 6 times less overhead. In

case of multi-hop communication, this percentage is increased

further as shown in Figure 6, e.g. for 6 hops, INT has ∼ 8

times lower overhead compared to active probing. The table

in Figure 6 shows the remaining space for data in the packet
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for a maximum transmission unit (MTU) of 2304 bytes (IEEE

802.11 MTU).

Compared to the active probing techniques, INT outper-

forms in terms of overhead. However, INT overhead related to

the data packet itself depends on how often INT information

is added, what is the data-rate of the traffic flow, the number

of hops packet traverse, and actual data packet length.

Figure 7 shows the INT overhead for different parameters

configuration. When data packet length is small then the INT

overhead in the whole packet is larger compared to larger data

packets. The INT overhead is increased with the number of

hops too. In Figure 7a it can be seen that for small packets of

100 bytes the INT overhead can be up to ∼ 175% of the data

packet length for 8 hops. But this overhead is much smaller

for packet length of 1000 bytes (only ∼ 15%). INT period unit

can be in time units or in number of packets. In the later case,

the INT overhead will depend on the data rate of the traffic

flow. In case of the period expressed in number of packets, INT

overhead depends only on packet length, but not on data rate.

This two cases are shown in Figures 7b and 7c, respectively.

When INT information is added to each packet (though this is

not realistic), the number of supported flows in the same path

will decrease due to the INT overhead. Such information is

shown in Figure 7d. For flows with shorter data packet length,

the INT overhead will be higher, decreasing the number of

supported flows more. Such information is independent of the

data rate that is used by data flows.

In wireless communication, it is important to keep the

channel contention low. The channel contention relates to

the number of channel access required by the nodes in a

certain amount of time. In addition to pure decrease of link

overhead (bytes sent), INT decreases the number of channel

access by avoiding the generation of additional packets, like

probes, ACKs, RTS, and CTS packets. This decreases the

contention in the channel, improving link performance in terms

of throughput as well as latency. In case of active probing

monitoring techniques, the number of channel access per link

is increased when new packets are introduced in the network.

On the other hand, for INT, those L2 packets are generated

only for the data packet itself, keeping the channel access

overhead low. Thus, we want to quantify the number of INT

reports that we can generate for certain application data rate

compared to active probing, by keeping the number of channel

access the same as when MTU packets are sent.

For this, we perform the following analysis. Let DRi be the

i-th application datarate, hj number of hops used in network

and L the maximum packet length in the network (IEEE

802.11 MTU is 2304 B). The number of INT-enabled MTU

packets, X , that can be sent over a unit of time by the

application i will be:

Xi =
DRi

L
(3)

When no INT is added to the packet then the number of

packets that can be sent will be higher:

Yij =
DRi

L− INToverheadj

(4)

where j is the number of hops in the network. The channel

access requirement per time is the same as the number of

packets generated per time. To keep the channel access for

data packets the same, in case of active probing, the number

of reports will be:

Zij =
Yij −Xi

2
(5)

A factor of 1/2 is taken as for each probing report at each

link we need single channel access for sending the probe

and another one for receiving the reply. Then the difference

of reports that can be generated using INT compared to

active probing over a unit of time for the same number of

channel access for data packets will be Repij = Xi − Zij , i
being the application and j the number of hops. In Figure 8

the Repij matrix is plotted. For highly intensive application

requirements (like motion control) we can send between ∼ 25
to ∼ 30 (number of hops 1 to 8) more telemetry enabled

reports compared to probing reports in a unit of time. When

the application data rate requirements are lower, then the

difference decreases too (like in the control loop use case

of 0.5 Kbp). As higher the data-rate requirement by the

application, as higher the difference will be. However, the

difference between the number of hops is not significant, as

seen in Figure 8.
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B. Real Time Network Monitoring

To validate INT layer implementation, we monitored our

industrial WiFi network in the IIoT test-bed 4 for a period

of 1 hour. Wireless network under test shared the same

channel with 3 other networks in the test-bed. The goal was

to verify and validate whether we are able to identify link

quality changes using INT measurements for INT-enabled end

devices, when new data flows are introduced in the network

in addition to critical flows. Therefore, we generated two

different traffic flows between two nodes in our network and

we introduced INT to both flows. The first flow (flow A)

represents a time critical flow requiring latency lower than 10

ms, while the second flow (flow B) latency requirement was

less critical, lower than 30 ms. Iperf 5 was used for traffic flow

generation. Both flows were generated for 10 minutes while

for the next 3 minutes there was no traffic. Such a period of

4https://doc.ilabt.imec.be/ilabt/wilab/
5https://iperf.fr/



enabling/disabling traffic was run for 1 hour. Both end devices

and the AP to which they were connected were INT-enabled

devices. INT information period was set to 5 seconds. In this

case, we will focus on the end-to-end latency performance,

rather than in throughput itself. Application requirements are

compared to monitored data to take the decision on network

reconfiguration.

Besides the benefits of the SDN central point of view for

network monitoring purposes, we took advantage of it to

perform network slicing. In this manner, we make use of the

INT measurements to configure the network slices and verify

the impact of such re-configurations in real-time. As discussed

in section IV-D, the network controller has full control over

AP where slices can be instantiated, modified, and deleted

whenever is needed. It has to be stressed that the time slicing is

done in the upper MAC layer and it applies only to downlink in

AP. Still, both flows will share the same hardware queue of the

network interface card (NIC). We defined two configurations

that the network controller can perform. First, dedicated slices

with equal airtime configurations are created for both flows

in the AP. Equal portions of airtime, quantum values, are

allocated to each slice in each transmission round [41]. For all

slices, such quantum values are initialized with the same value

of 12000 µs, meaning that slices equally share the resources

on the AP. This initial quantum configuration for all slices is

set to the time needed to transmit a standard Ethernet frame

(MTU of 1500 bytes) at lowest data rate.

At each slice reconfiguration interval, the network controller

re-configures the slices within the AP based on feed-in data

from INT. We adopted a policy as proof-of-concept where,

in this case, the airtime configuration of slice without QoS is

decreased, consequently, leaving more consecutive transmis-

sion rounds to the slice with QoS. In this manner, the airtime

configuration for the slice of flow A is maintained while the

configuration for the slice of flow B is decreased to a minimum

defined value of 10 µs. Thus, giving higher priority to the flow

A and meeting its requirements. When QoS requirements are

met for flow A, slice quantum configuration for the flow B is

increased by 10% of its value at each reconfiguration interval

by making sure that such increase does not impact the QoS

flow. Of course, in this case the throughput for the second

flow will decrease, as theTable I presents the workload and all

configuration changes performed during the evaluation period.

The end-to-end latency for both flows during a period of

10 minutes is shown in Figure 9. In the first 3 minutes,

the network controller was using the INT data to determine

whether the application requirements are met. As end-to-end

latency requirement is not met, after 3 minutes the network

controller takes the decision to adjust the configuration of the

slice competing for resources with the QoS slice. As we can

see, after such slice reconfiguration, the end-to-end latency

decreases under the required levels for the first flow (flow

A). It is interesting to notice that, the end-to-end latency from

both flows (flow A and B) decrease when such reconfiguration

is performed. Such a behavior happens because the airtime

portion of the slice dedicated to flow B is decreased and,

consequently, the scheduling algorithm running on the AP

needs more iterations to gather sufficient airtime to transmit its

frames. As a result, due to upper MAC queue overflow, some

of the incoming frames are not enqueued and, thus, flow B

throughput will decrease. In other words, fewer frames are

sent to the NIC from flow B, making NIC available for longer

periods for flow A. Consequently, there is less contention for

both flows, improving the latency on both flows on the same

AP (flow A and B).

Figure 10 shows collected information for each hop and

each flow. Here we show the retransmission flag, MCS index

used, and the RSSI value of the packet. It is seen that

when the number of retransmissions is high (see first hop

information, Figures 10a and 10c, respectively) the MCS index

is lower. While in the second hop (see Figures 10b and 10d,

respectively) the number of retransmissions during the whole

experiment duration is 0. This makes that in second hop the

MCS index to be higher. Both of these information can be

related also to the RSSI values shown in the graphs. The

second node has higher RSSI value compared to the first node,

therefore better MCS index and no packet retransmissions.

Thus, wireless INT can detect the link quality changes in each

hop. It has to be highlighted that the second hop has better

channel performance due to the node positions in the test-

bed, shorter distance. This can be also detected based on the

monitored RSSI values.

TABLE I
WORKLOAD AND PARAMETERS USED DURING THE EXPERIMENTATION

Parameter Value Description

Slice reconfiguration interval 3min Interval in which con-
troller averages over INT
data to take decision for
reconfiguration of slices.

Minimum quantum configuration 10µs The minimum quantum
value a slice receives at
each transmission round
of the scheduler.

Quantum increase rate 10% The quantum increase rate
applied whenever QoS re-
quirements are met.

INT measurement interval 5sec Interval in which INT in-
formation is added into
data packets.

Traffic duration 10min Duration of the UDP traf-
fic in which INT informa-
tion is added.

C. Hop-by-hop Reliability

In order to validate per-hop reliability monitoring capabili-

ties of our INT layer, the setup shown in Figure 4a was used.

Each link between all involved network entities was set to have

a packet loss ratio of 10%. In total, 2000 data packets were

sent with a 0.5 second interval between consecutive packet

transmissions. INT information was added to every generated

data packet between the source and the sink. All data packets

are treated to be part of the same data flow, sharing the same

namespace ID. All measurements were done using an emulated

link connection in Click router framework. By using emulated
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links, we have the possibility to also track the packet losses

at each link and compare them to the collected INT reliability

data. Table II shows the number of lost packets reported by

INT and the one reported by the emulated link Click element.

It is seen that all losses are correctly reported by INT on a

per-hop basis.

TABLE II
FLOW REQUIREMENTS

Hop number
Lost packets

reported by INT

Lost packets

ground truth

Hop I 210 210

Hop II 160 160

Hop III 154 154

D. Convergence of the INT PLR to the Link PLR

In order to limit monitoring overhead, INT information does

not have to be appended to each data packet that traverses the

network. Applications can require to add INT information to

data packets at specific periods, maintaining a certain monitor-

ing information granularity. In terms of network reliability, this

might result in incorrect packet loss ratios. This depends on

the frequency of data transmissions and the actual frequency

of adding INT data.

Let p be the probability that a packet is lost, T the time

period over which the packet loss ratio is calculated and t the

data packet period. We want to determine how long we need

to average the losses of the INT packets, TINT , in order for

the INT packet loss ratio to reach the actual data packet loss

ratio. The number of packet losses over a data period T can

be calculated by the following equation:

PLdata = p ∗
T

t
(6)

We aim to let PLdata ≈ PLINT , after a certain time, thus:

p ∗
T

t
≈ pINT ∗

TINT

tINT

; (7)

When INT data are added periodically the probability to lose

an INT packet will be similar to the probability of losing a data

packet, thus p ≈ pINT , when the data period is longer than

the burst error length. From equation 7 it can be determined

for how long INT packet losses need to be averaged in order

to converge to the real data losses:

TINT ≈ tINT ∗

T

t
(8)

From equation 8 it can be concluded that in order to

converge to the actual data PLR, the averaging window for

the INT losses needs to be proportionally increased according

to the selected INT period.

We evaluate the above equation by means of a set of

measurements for a link with a packet loss ratio of 10%

and data being generated every 0.5 seconds. The convergence

of the INT PLR to the real data PLR is shown in Figure

11. In Figure 11a, when the INT information is added to

every data packet, the right PLR is found after averaging the

collected monitoring data for around ∼250 seconds. When the

INT period is increased to 1 second, the convergence time is

doubled, becoming ∼500 seconds. The same happens for an

INT period of 2 seconds, where convergence is achieved after

∼1000 seconds. For other INT periods, (4, 6 and 8 seconds,

see Figure 11b) the PLR does not converge even at 1000

seconds. According to the formula, it will converge around

∼2000 s, ∼3000 s and ∼4000 s, respectively.

VI. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of low-overhead, fine-

grained down to end devices monitoring technique for the

wireless networks. Inspired by the in-band network telemetry

approach, INT is introduced to wireless SDN, overcoming the

drawbacks of current monitoring approaches.

A telemetry-enabled wireless node architecture was de-

signed, that is able to collect wireless information. On top

of this, per-hop and per-flow reliability can be collected

with the proposed labeling method. In addition to telemetry

functionalities, the proposed design of telemetry-enabled node

architecture was integrated with other network elements, like

network controller and network visualizer. Specific APIs be-

tween INT layer and higher and lower layers are designed, for

on-the-fly information exchange and configuration purposes.

The PoC implementation of such design was carried out

using Click router framework. We showed that various in-

formation related to the wireless interface can be collected,

including RSSI, MCS, channel used, retransmissions as well

as packet reception time. The PoC implementation was vali-

dated in a real industrial test-bed, where telemetry data were
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(a) Measured parameters for the first flow in node 1.
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(b) Measured parameters for the first flow in node 2.

Time of the day

0

1

R
e
tr

a
n
s
m

is
s
io

n
s

0

1

2

3

4

5

6

7

8

M
C

S
 i
n
d
e
x

 2
:0

3:
02

 P
M

 2
:0

3:
48

 P
M

 2
:0

4:
33

 P
M

 2
:0

5:
20

 P
M

 2
:0

6:
02

 P
M

 2
:0

6:
46

 P
M

 2
:0

7:
32

 P
M

 2
:0

8:
17

 P
M

 2
:0

9:
02

 P
M

 2
:0

9:
48

 P
M

-45

-65

-85

RSSI [dBm]

MCS index

Retransmission 

(c) Measured parameters for the second flow in node 1.
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(d) Measured parameters for the second flow in node 2.

Fig. 10. Measured parameters for different flows in different nodes using INT.
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Fig. 11. Convergence of INT reliability to real link reliability based on different INT frequency measurements. The data packets were sent every 0.5 s while
INT data were added using different frequency.



used as input for the network controller to enable automatic

(re)configuration. Furthermore, the INT overhead was modeled

based on different link and flow parameters, like packet length,

data rate, telemetry periodicity, and the number of hops in

the network. It was shown that INT has nearly 6 times less

data overhead compared to active probing over a single hop.

This benefit will increase by increasing the number of hops.

In addition, the convergence time between INT reliability and

data reliability was modeled. The INT reliability was shown

to converge to real data reliability proportionally to the ratio

of the data and INT period.

This work shows that in-band telemetry can be used in

wireless networks to monitor link reliability, end-to-end de-

lay, and detect network performance issues. Further, this

paper gives the foundation for other deployments on top of

telemetry-enabled wireless network. Such a technique can be

used for network anomaly detection, network performance

verification, or cognitive network management in different

networks including industrial networks too.

Future investigation on how the INT reports should be

shared with the interested entities should be done. When a

centralized network configuration approach is followed, then

even INT data needs to be collected in a central entity, like

the one we proposed in this paper. Other approaches can

include in-band monitoring report sharing with the previous

nodes. Especially, this can be beneficial for approaches with

distributed network configuration and management entities

and will remove the risk of single point of failure. In ad-

dition,different techniques for INT report sharing and their

impact on the network overhead can be studied. This include

raw report sharing, event-based sharing, specific parameter

sharing etc. Node mobility impact on the INT monitoring

reliability is another aspect to be investigated. The absence

of data packets in the network can decrease the monitoring

frequency too. All this issues are still open research question

that can be further investigate in the future.
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