
A Quality of Service Compliance System
Empowered by Smart Contracts and Oracles

João Paulo de Brito Gonçalves,
Roberta Lima Gomes,

Rodolfo da Silva Villaca
Federal University of Espirito Santo (Ufes)

Vitoria–ES, Brazil
jpaulo@ifes.edu.br, rgomes@inf.ufes.br,

rodolfo.villaca@ufes.br

Esteban Municio, Johann Marquez-Barja
IDLab – imec – University of Antwerp

Antwerp, Belgium
esteban.municio@uantwerpen.be

johann.marquez-barja@uantwerpen.be

Abstract—Service Level Agreements (SLAs) are used in
contracts between two parts, which can be, as an example,
between service providers or between customers and service
providers. SLA clauses represent key aspects in the relationship
between them. In order to enforce service reliability and SLA
compliance, a continuous monitoring of Quality of Service
metrics is required. Since policy breach is usually subject to
expensive penalties, using external entities acting as trustful
references is a common practice in order to avoid frequent
legal disputes, external entities are usually required to verify
it. However, coordination between different actors to agree in
one transaction is difficult, because it can open up possibilities
for multiple fraud attempts. We argue that this can be done more
efficiently using Smart Contracts, programs that are executed
in a blockchain. Such data is stored in a distributed structure
without the need of an external entity to ensure data integrity
and reliability. Smart contracts can also makes easy the charging
or possibly compensating SLA violations. In this paper we
propose a solution empowered by smart contracts in order to
simplify, and to automate the process of SLA validation, i.e,
verify if the contract is being respected. We perform some
experiments and evaluate a proof of concept using data from a
real network infrastructure in Brazil.

Index Terms—Blockchain, Service Level Agreement, Smart
Contracts, Quality of Service.

I. INTRODUCTION

Service Level Agreements (SLAs) are formal contracts
between custumers and service providers that outline the
parameters of some IT services to be supplied [1]. Besides
the nature of the service itself and its expected performance
level, a SLA also specifies the procedures for monitoring and
reporting problems, time limits for problem resolution and
the consequences for both clients and service providers when
clauses are violated.

In the network domain, a SLA can be established between
costumers and network operator, or between two operators.
Network SLAs are typically conceived in terms of network
performance between exchange points where the service is
provided. They can cover physical network aspects, such as
bandwidth, availability, latency, jitter, packet loss or error rate
[1]. However, there are SLAs that relate not only to network
performance, but also to different types of IT outsourcing in
clouds (such as computing units, data storage, hosting, etc).

Monitoring and reporting the Quality of Service (QoS)
allow clients and service providers to check how well is the
service complying with the SLA. If the specified performance
parameters are violated during the course of operation of the
system, the SLA constitutes a legal foundation that eventually
serves as a means of judgment in case of dispute between
service providers and costumers.

The root of the problem lies in the way transactions
are controlled between partners. Since both parties maintain
records with a centralized, isolated approach, there is little
transparency and this may lead to lack of trust. Since tra-
ditional centralized databases are generally not encrypted,
there is always a risk of an operator’s sensitive data about
a partner’s customers being lost, exposed, or manipulated. In
this way, SLA disputes are always problematic [2].

As different parties are involved in a SLA, to guarantee that
the agreed service has been provided, a reliable record of the
monitored parameters is required. Based on this record, SLA
compliance can be dynamically verified and the necessary
actions can be taken, but this is not trivial, and different works
try to address this problem [3]. In the face of this problem,
the following research question is raised: ”how to ensure that
the SLA is being fulfilled in a secure, certified and dynamic
way?”

A hypothesis is that blockchains and smart contracts can
help to implement such secure record by providing an im-
mutable data storage and a distributed consensus among
members without the need of a trusted third party to validate
it. As smart contracts are programs that are directly executed
in a blockchain, their integrity and reliability are ensured, and
they can be used to express, in a tamper-proof manner, SLAs
containing quantitative terms, such as QoS metrics, without
the need for any third party to arbitrate the agreement. When
both parties sign the contract, they agree on the monitoring
system and the algorithms to verify the SLA compliance.

In this context, the main goal of this paper is to propose
a solution empowered by smart contracts aiming to simplify
and automate the process of tracking SLA compliance levels.
A second goal is to show the interaction of this system
with a decentralized file system (IPFS - Interplanetary File



System) that will store the generated reports in a distributed
and transparent way. A third goal is to show how the presented
proposal works in a Brazilian academic network (Point of
Presence-ES/RNP) that was built as a proof of concept to
validate the proposal. In our deployment, SLAs are verified
in less than 15 seconds in most of the cases.

II. BACKGROUND

A. The PoP-ES

The Brazilian National Education and Research Network
operates a backbone service to serve the academic and
research communities by providing access to the Internet
through its regional Point of Presence(PoP). This network
is used to basic access to the Internet by workstations, but
also to devices with sensors that access the Internet and
exchange information. In this Internet of Things case, the
QoS requirements are even more necessary due to the large
volume of information exchanged. Among the 27 Brazilian
PoPs, which make up the national backbone (Ipê Network),
there is the PoP Espirito Santo (PoP-ES), located in Vitória,
Espirito Santo, Brazil.

The PoP-ES is in charge of maintaining, operating and
coordinating actions on the academic Internet, serving as
an access point for users to the Ipê Network backbone [4].
In addition, PoP-ES offers a variety of services related to
the maintenance, management, planning and development of
advanced networks.

PoP-ES arbitrates SLAs between network providers (link
operators) and the academic institutions connected to the
Ipê Network backbone. PoP-ES is the manager of each
SLA and has the responsibility of verifying their compliance
levels. Each SLA is defined qualitatively based on customer’s
required reliability and availability. Besides, the SLA specifies
some metrics regarding maximum response time on open
tickets (tickets are opened via a help desk system) and
minimum time before requesting maintenance windows.

PoP-ES is responsible to periodically verify real-world
compliance with the metrics established in the SLA of
each customer. In the negative case, a report must be
generated showing which metrics were violated and when.
There are several network monitoring tools that monitors
the network status and health, one of these tools is Vi-
aipe(https://viaipe.rnp.br/), used in the Ipê Network.

Once using Viaipe is detected that a link is down, an
unavailability event is registered in the help desk system. An
alert is then generated to the network provider, the customer
(academic institution), and the PoP-ES team in order to have
the technical issues fixed. Once the link becomes available
again, an availability event is registered in the help desk
system too. Every month, each event must be manually
evaluated by the PoP-ES team and each problem related to
the event must be classified regarding the responsibility: the
network provider, the customer itself, or the PoP-ES. Only
unavailability events generated by a problem related to the
network provider can count on the SLA availability metric,
as an example.

PoP-ES maintains an availability level of 99.6% agreed
via SLAs with the served institutions (the clients). Also,
according to SLAs, maintenance windows can be created
by network providers. As there are three interacting entities
(academic institutions, network providers and PoP-ES) to
provide the agreed service, a reliable record of downtime is
required to resolve disputes and verify that agreed levels are
being met.

B. Blockchain

Despite its initial financial original application [5],
blockchain technology has grown to a multiplicity of different
applications, where there is the constant need for unchang-
ing and distributed recording of operations performed on a
system. The blockchain is a distributed ledger, where each
participant has a copy of the database with all the validated
information. Besides, a consensus protocol is implemented
among the participants in order to allow them to agree about
the global state of the blockchain.

In a blockchain, each block is a set of transactions chained
through hash addresses. Each block includes, among other
information, a timestamp, its hash, and the hash of the
previous block, so that once the block is created, it cannot be
tampered under the penalty of the stored hash not matching to
the hash of the modified block, thus evidencing the attempted
fraud.

In public blockchains, i.e., where access is not controlled
by a central authority, validation of transactions and blocks is
often based on the Proof of Work (PoW) consensus protocol.
In PoW, a cryptic challenge is proposed in order to create
a valid block, once solved, the block is propagated over the
network. Only after a transaction has been validated (included
in a valid block), it is actually performed, which might change
the blockchain state.

PoW is used to discourage malicious users from creating
fraudulent transactions on the network, but there is criticism
regarding performance loss caused by their use in block
creation. In the past few years, other validation strategies
has been proposed, as Proof of Stake (PoS) [6] and Proof of
Authority (PoA) [6], both based more in age and reputation
and less in computation power. At this point, it is important
to differ between two basic types of blockchains: public and
permissioned.

In public blockchains, any computer can join the network
and have full access to it. Because of this anonymous char-
acter of computers, measures to mitigate attacks must be
adopted which results in performance degradation, as the
Proof of Work by example. Bitcoin and Ethereum [7] are
examples of public blockchains. Permissioned blockchains are
mainly used in corporate environments. This means that a user
must have a certain level of access to interact on this network,
read transactions, and participate in the consensus process.
Hyperledger Fabric [8] is an example of a permissioned
blockchain.

In addition to the applications already mentioned,
blockchain technology can be used in a wide variety of fields,



such as distributed computing [9], Internet of Things [10], file
storage [11], prediction [12], among many others.

C. Ethereum and Smart Contracts

Several blockchain platforms have emerged in recent years
and among the most popular are those based on the Ethereum
platform. Ethereum is a platform for executing blockchain
applications that are modeled as smart contracts and has its
own cryptocurrency, the ether.

Smart contracts capture and translate traditional legal con-
tract clauses into a series of computational rules which are
executed automatically and, once validated, don’t require
additional legal instruments [13].

Another important Ethereum concept is gas. Gas is a
way of decoupling the cost of transactions in the Ethereum
from the floating exchange rate of the ether cryptocurrency,
establishing a cost for each fluctuating computational job in
the financial market. Gas is also a mechanism to prevent a
smart contract with infinite loops from running indefinitely on
the blockchain. Once the maximum amount of gas allocated
to a contract expires, the contract finish its execution.

On the Ethereum platform, applications run on the
Ethereum Virtual Machine (EVM), which executes smart
contract instructions, allowing you to enter and query stored
data. It is completely isolated, and the code that runs on it has
no access to any external resources such as the network or
the computer file system [10]. Ethereum uses Proof of Work
as its current consensus mechanism, but it is in a transition
phase towards Ethereum 2.0 – this specification includes a
switch to proof of stake as well as Sharding (each node
having only a part of the data on the blockchain, and not
all the information). These two main changes should enable
the processing of up to 10000 transactions per second [14].

In Ethereum, the global state is made up of objects called
accounts. Each account has an address in hexadecimal format
(20 Bytes), and a transition state that are related to transfers
and information between accounts. In the case of external
accounts, there is no smart contract associated. These ac-
counts can send messages creating and signing transactions.
In the case of a smart contract account, whenever a message
is received, the contract code is activated, allowing it to read
or write to the blockchain internal storage, generating other
messages or even a new contract. That is, while external
accounts play an active role in the blockchain, contract
accounts - and their codes - play a passive role.

The Ethereum platform is currently the largest general
purpose public blockchain exponent on the Internet. It is a
very flexible alternative to the development of dApps (Decen-
tralized Applications) as it provides a complete programming
language, different from the Bitcoin platform, which has a
very limited scripting language and is used just to support
basic and necessary network operations [10]. A dApp is a
decentralized application that uses a smart contract in the
blockchain as backend, and a web interface as frontend,
allowing users to insert and receive data from the blockchain
in a friendly way.

D. Oracles

Often smart contracts need information that is processed
outside their computational logic and the availability of this
information is crucial to the potential of smart contracts [15].
However, this is challenging since smart contracts can only
access and write information that is stored on the blockchain,
which is an enclosed network without direct interfaces to the
real world. Oracles bridge the gap between the blockchain and
the real-world by feeding data from outside the blockchain
to smart contracts. they are usually application’s APIs that
produce data that can be consumed by smart contracts. They
are used to report events and data after the smart contract has
been programmed to allow the smart contract to react to future
information. As is the case with regular applications, the
usefulness largely depends on the available data and oracles
enable smart contracts to query data similar to an API.

E. InterPlanetary File System

The InterPlanetary File System (IPFS) [16] is a peer-to-peer
distributed file system that seeks to connect all computing
nodes in the same file system. In some ways, this is similar to
the original aims of the World Wide Web, but IPFS is actually
more similar to a single bit torrent exchanging objects. Due to
its decentralized nature, IPFS is used to store files that would
be too expensive to write in the blockchain.

IPFS is considered a promising solution for saving data
for decentralized applications. Without IPFS, the blockchain
would be reduced to any other regular storing mechanism
with many limitations. In IPFS, the file storage address is the
hash, providing a unique identification that is tightly linked
to the file itself.

III. RELATED WORK

Scheid et al. [17] presented the design and implementa-
tion of a smart contract that simplifies and automates the
compensation process in SLA violations. The prototype was
deployed in Ganache tool, that simulates an Ethereum-based
blockchain to simplify dApps deployment and tests, but there
is no deployment in a real environment.

Uriarte et al. [18] present a formal language (SLAC) to
describe SLAs for cloud providers. SLAC is used in the
context of blockchain and smart contracts. In [19], the same
authors describe a prototype to support SLA management.
They suggest an architecture with two different networks:
sidechain and blockchain. The former is used for heavy
computations such as discovery and negotiation of SLAs,
the latter is used for smart contract execution, but without
deployment in a real environment.

The work presented by Pascale et al. [20] proposes a smart
contract to automate Small-Cell-as-a-Service (SCaaS) agree-
ments between the small-cell owners and network operators.
The smart contract code and implementation is available, but
there are no evaluations or real deployments of the proposal.

In [21] a Blockchain Network Slice Broker is proposed to
reduce the service creation time for dynamically slice acqui-
sition and for verifiable charging and billing in service level



agreements. The proposal’s implementation and performance
analysis are not presented.

Zanzi et al. [22] proposed NSBchain, a novel Net-
work Slicing Brokering (NSB) solution, which leverages the
Blockchain technology to address the new business models
needs beyond traditional network sharing agreements. They
implemented NSBchain on top of Hyperledger Fabric and
its benchmarking tool, namely Hyperledger Caliper, is used
to evaluate the blockchain performance in network slicing
scenarios, but the deployment is done on a private and local
blockchain.

Also, as in the previous reference, in [23] is proposed a 5G
Network Slice Brokering using Hyperledger Fabric and using
Hyperledger Caliper as benchmark tool. The idea is to use
a distributed process to replace the conventional centralized
approach to slice brokering, where a single authority does not
control the entire conduct of the market, but also without a
deployment on a public blockchain.

Finally, Zhou et al. [24] introduces the concept of witness,
based on the John Nash’s Equilibrium Principle [25], to create
a mechanism using Smart Contracts to report violations of
compliance SLAs between providers and consumers of cloud
computing service. This mechanism would dispense with the
use of Oracles, commonly used to obtain reliable data external
to the Blockchain. Although promising, this strategy was not
used in the present work as is only a proposal, and not a
standard in the Blockchain and Smart contract market and
the scope of the problem was too small to justify the use of
the technique.

In summary, the main contribution of this paper is that,
unless previous works, it is the first one in testing a full-
powered smart contract based system to verify SLAs in a real
production environment. This proposal advances the state of
the art in SLA management by building a real application that
runs on a cloud computing infrastructure and uses a public
Ethereum-like blockchain to keep it on-line 24 hours per day,
besides the integration of blockchain and IPFS technologies
to store the generated reports. It is an unprecedented large
scale deployment, running for a long period of time, with
a large amount of data gathered. Beside this, the proof of
concept was implemented using data from a real use case
scenario (from PoP-ES) inserted into the system, acting like
an Oracle.

IV. DESIGN AND IMPLEMENTATION

Due to Ethereum’s flexibility and extensive developer com-
munity, it has been chosen to develop a proof of concept of the
proposed SLA verification system based on smart contracts.

In order to validate the presented hypothesis, two dApps
were created to store unavailability events, registered and val-
idated by the PoP-ES about the service provided by a network
provider to one of the academic institutions connected to the
Ipê Network. The goal of the dApps is to verify the SLA
compliance regarding availability of a link (≥ 99.6%).

A smart contract was developed in Solidity language, which
runs on the Ethereum Virtual Machine (EVM). This smart

contract is connected to a web interface, composing a dApp.
The dApp interface was created using React framework, a
JavaScript library for building user interfaces.

The smart contract was deployed in the Ropsten network,
a public Ethereum test network. This test network was
chosen among all others because it is the only one that
implements the PoW verification approach, being closer to the
real Ethereum’s current network, but with no real monetary
expenses to execute transactions. In Ropsten, faucets are used
to create ethers with no real value.

To visualize the transactions submitted to the blockchain,
Etherscan [26] was used. Etherscan is a block explorer and
analytics platform for Ethereum blockchain. In its dashboard,
it is possible to see all the transactions details: status, block
number, timestamp, gas used, gas price as well as the trans-
action content itself.

The information is inserted in the dApp and forwarded to
the smart contract using the web3.js library, that provides a
mechanism to connect web applications to the blockchain.
The Metamask plugin was also used in the web browser. It
handles users’ Ethereum accounts, and enables the interaction
with the blockchain without the need to locally run a full
Ethereum node.

Streamr is a framework that enables live storing and sharing
of data streams [27]. Streamr chooses to build on top of an
existing chain, rather than building a specific blockchain, thus
it is blockchain agnostic and runs off-chain. Currently, only
the Streamr Engine, which is in charge of user authentication
and payment, runs on Ethereum.

The Streamr Engine [27] was used in the proof of concept
to capture data produced by Viaipe API, process and send it
to the blockchain in an automatic way. To receive the packet
loss of each connection directly from Viaipe API, we created
a microservice which consumes and acts upon real-time data,
using a canvas in Streamr. This real-time data channel will
act as a Oracle, inserting real-world data in the blockchain
and the data security before the insertion is guaranteed by
the TLS connection.

IPFS is the storage system selected to store the reports
generated by the solution proposed in this paper. To connect
to IPFS, we used Infura, a scalable back-end infrastructure
for building dApps, to connect to both blockchain network
and decentralized storage.

A. System Dynamic

Both dApps use the same smart contract address. One dApp
will be used by PoP-ES to register unavailability events and
their timestamps. The events are: down and up of each link.
This dApp also presents an option allowing PoP-ES to create
and save in the IPFS a report of the unavailability periods
registered so far. The hash of the report, which is also the IPFS
address, will be stored in the blockchain, and be available for
further compliance verification.

The other dApp will be used by the network provider (link
operator) to schedule maintenance windows. Maintenance



windows duration will then be excluded from the total un-
availability calculation, having no influence on the availability
level agreed in the SLA.

For each unavailability period (down and up events) in-
serted in the dApp, the unavailability (time between down and
up events) is stored in the blockchain for further verification.
As result, it is possible to verify the actual availability level,
and the compliance - or not - with the SLA in the dApp.

The algorithm used by the smart contract for calculat-
ing service availability given the events recorded in the
blockchain is described in Figure 1. When the costumer
and provider agree with the Smart Contract, they also agree
with this algorithm. In the smart contract implementation
there are two arrays, one to store downtime events and
the other to store up events. For each i-th up event, its
timestamp is subtracted from the corresponding i-th downtime
timestamp, and the counter variable is incremented with this
unavailability period. After that, the Availability is calculated
as showed in Figure 1, where the constant 2592000 is the
total number of seconds in a month (30 days).

Fig. 1. Availability Algorithm

Nevertheless, as each new call to the smart contract updates
the blockchain state, it is possible to see, in a dynamic way,
the compliance of its respective SLA (if the availability is
greater or equal to 99.6%, as an example).

Through the network provider interface, maintenance win-
dows can be scheduled at least 48 hours in advance, in order
to respect the SLA restrictions. If the operator tries to insert
a maintenance window less than 48 hours in advance, it will
not be validated by the smart contract. Validated maintenance

windows are subtracted from the unavailability counter in the
smart contract, after checking if it intersects with at least one
of the registered downtime events. The systems dynamics is
illustrated in Figure 2.

Using Streamr Engine, the data incoming from Viaipe
monitoring tool are collected by the HTTPRequest compo-
nent, which through a pulling mechanism (every 10 seconds)
checks if there are new data available. This component
receives as input: i) the API endpoint; ii) the HTTP method
to be used; iii) the data type to be received; and finally, iv)
the time interval to access the endpoint.

The collected data is filtered to obtain the packet loss
of each customer and this information is sent to the smart
contract running on the Ropsten blockchain by using the
EthereumCall component. This component receives as input:
i) the smart contract address; ii) the Ethernet account; and,
finally iii) the function to be executed in the smart contract.

The packet loss is also a metric that influences the quality
of the service provided, so it must also be part of the
specification of the service level agreement. In addition, when
an unavailability event occurs, packet loss will automatically
occur, so these metrics are interrelated.

Fig. 2. System Dynamics

V. DEPLOYMENT AND EVALUATION

Our proof of concept is running on a virtual machine
created in an OpenStack [28] cloud (Pike version), distributed
on four servers with the following configuration:

• 1 Controller node with 32GB RAM, Intel® Xeon®
processor 3.70GHz, Ubuntu 16.04 Operating System;

• 2 computing nodes with 32GB RAM, Intel® Xeon®
processor 3.70GHz, Ubuntu 16.04 Operating System;

• 1 computing node with 128GB RAM, Intel® Xeon®
processor E5-2650 2.20GHz, Ubuntu 16.04 Operating
System.

The dApps were deployed and installed on a virtual ma-
chine (8 vCPUs and 16 GB memory) in a Ubuntu 18.04 op-
erating system hosted in the OpenStack cloud. We monitored



PoP-ES in about 30 days and got 90 unavailability events,
that were created during the dApps utilization.

As the analysis was focused on blockchain behavior, the
results were focused on measuring blockchain-related metrics.
The main differences of blockchains compared to traditional
programs and databases, are the occurring monetary cost of
transactions as well as the high latency of processing due to
the creation time of blocks.

The performance of a blockchain application/network can
be measured using the following metrics:

• Transaction Throughput: measured in transactions per
second (TPS) and represents the number of transactions
that are processed by the blockchain and written on the
ledger in a given second.

• Transaction Latency: The amount of time taken from
the moment when a transaction is submitted until the
moment when it is confirmed and available on the
blockchain. This includes the propagation time and the
processing time due to the consensus/ordering mecha-
nism.

• Operation Costs: The amount of computing resources
and monetary costs consumed by the blockchain
throughout the operating time, including the processing
power, memory, storage, I/O, network and transaction
fees. This metric is of great importance as it could
determine the cost efficiency of a blockchain application.
Furthermore, besides the capital expenditure for provid-
ing the computing capacity, blockchain networks could
require huge amounts of energy to operate. Therefore,
the computing intensity would also affect the operation
costs of the blockchain.

Regarding the operation costs, the higher the gas price the
more expensive the transaction costs but it also leads to faster
validation of the transaction. It is essential to find a balanced
point between the cost and the speed for the proposal. The
deployment and interactions with the smart contract that alters
its state required the payment of a certain gas fee. Using
Etherscan it is possible to see a sample transaction and its
corresponding block history, providing information such as
the amount of gas consumed per transaction and per block.
The transactions were executed at a fixed gas price of around
0.000000001 ether per unit and transaction fees that oscillate
between 0.00008410 to 0.00042832 ether.

It is noticeable that the creation of the smart contract is
the most expensive function, since it is the operation that
writes the greater amount of data on the blockchain. This
emerges from the way how transaction costs are composed in
Ethereum, namely by a fixed and a variable part. The EVM
demands a fixed cost of 32,000 gas for the creation of a smart
contract in addition to the 21,000 gas for each transaction.
The remainder is the variable part which depends on the size
of the contract code. Each byte of code consumes 200 gas
units, the more code a contract has the more expensive its
creation is [7]. The other operations are timestamp writing,
storing and operations. These are composed of a fixed gas fee
of 21,000 plus a certain fee for each operation.

In a scenario without IPFS integration, the storage of the
availability reports would be the most costly operation. But
with the IPFS integrated to the system, only reports hash
addresses are written via the smart contract.

Since every transaction interacting with the smart contract
needs to be included into a block in order to be validated,
this leads to a blockchain-dependent latency. In practice,
participants in a blockchain network are geographically dis-
tributed. Such distribution introduces additional latency. In
the Ethereum blockchain, the transaction latency was approx-
imately 15 seconds to verify the registration of an unavailabil-
ity event, which is in the Ethereum blockchain the average
block time [7].

This small latency to update variables in the smart contract
is acceptable for the applications proposed in this paper,
where the recording of downtime and maintenance windows
are made sporadically and none of these periods lasts less
than 15 seconds, so there are low probability of having
inconsistencies due to the validation delay.

Regarding the metric number of transactions per second,
the application is subject to the maximum throughput of
the ethereum blockchain, that is, around 15 transactions per
second [7].

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a solution for the problem of val-
idating SLAs in a secure, certified and dynamic way. The
proposed solution leverages blockchain and smart contracts
in order to simplify, and securely automate, the process of
tracking SLA compliance levels. A proof of concept using two
dApps was designed, implemented and deployed in a cloud
infrastructure (connected to a real Ethereum test network) to
be used by PoP-ES and network providers.

In the proof of concept, it was possible to insert up/down
events and maintenance windows, which were used to calcu-
late the total availability of the link and its compliance with
the SLA. Besides that, a real-time data analysis platform was
used to consume and send to the blockchain the data about
loss in the costumers’ connections collected by the Viaipe
monitoring tool, acting as a Oracle. An Oracle receives claims
about the state of the world and uploads it to the blockchain,
connecting the blockchain to the real world by providing it
with relevant information.

The proof of concept evaluation shows that the costs,
expressed in ethers, to execute the basic operations of the
smart contract was not too excessive and the response time
of validated transactions, even in a public blockchain, is
acceptable.

As future work, we suggest to extend the proposed solution
and include other SLA parameters besides packet loss, such
as latency, bandwidth and jitter. In another scenario, specific
parameters of IoT devices communication, such as battery
consumption and energy efficiency can also be inserted and
verified in the proposed system. Another important step is to
allow the smart contract to implement monetary compensation
in the case of SLA violations. When it is the case, once



the proposed solution is deployed on the official Ethereum
blockchain, cryptocurrencies (ethers) can be automatically
transferred from network providers to PoP-ES (for example).

Another future work proposal is to use some distributed
oracle mechanism, increasing the reliability, such as Chainlink
[29].

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001 and in part by the IMEC -
University of Antwerp and the European Union’s Horizon
2020 Research and innovation program,under grant agreement
No. 826284 (ProTego). Authors would also like to thank
FAPES, CNPq, PoP-ES/RNP and IMEC for supporting this
research.

REFERENCES

[1] D. C. Verma, “Service level agreements on ip networks,” Proceedings
of the IEEE, vol. 92, no. 9, pp. 1382–1388. [Online]. Available:
https://doi.org/10.1109/JPROC.2004.832969

[2] S. Venkatasubramanian, “Itu and its dispute settlement mechanism,”
in Dispute Settlement in the Area of Space Communication. Nomos
Verlagsgesellschaft mbH & Co. KG, 2015, pp. 21–32. [Online].
Available: https://doi.org/10.5771/9783845258584-21

[3] J. Ahmed, A. Johnsson, R. Yanggratoke, J. Ardelius, C. Flinta, and
R. Stadler, “Predicting sla violations in real time using online machine
learning,” arXiv preprint arXiv:1509.01386, 2015.

[4] L. Sampaio et al., “Implementing and deploying network monitoring
service oriented architectures: Brazilian national education and research
network measurement experiments,” in 2007 Latin American Network
Operations and Management Symposium. IEEE, 2007, pp. 28–37.
[Online]. Available: https://doi.org/10.1109/LANOMS.2007.4362457

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[6] F. Saleh, “Blockchain without waste: Proof-of-stake,” SSRN, Tech.
Rep., 5 2019. [Online]. Available: https://dx.doi.org/10.2139/ssrn.
3183935

[7] G. Wood (2014), “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project Yellow Paper, vol. 151. [Online].
Available: http://gavwood.com/paper.pdf

[8] V. Dhillon, D. Metcalf, and M. Hooper, “The hyperledger project,”
in Blockchain enabled applications, pp. 139–149. [Online]. Available:
https://doi.org/10.1007/978-1-4842-3081-7 10

[9] J. B. Pollack and H. Lipson, “The golem project: Evolving hardware
bodies and brains,” in Proceedings of the 2nd NASA/DoD Workshop
on Evolvable Hardware. IEEE, 2000, pp. 37–42. [Online]. Available:
https://doi.org/10.1109/EH.2000.869340

[10] A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh (2019),
“A decentralized privacy-preserving healthcare blockchain for iot,”
Sensors, vol. 19, no. 2, p. 326. [Online]. Available: https:
//doi.org/10.3390/s19020326

[11] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj
a peer-to-peer cloud storage network,” 2014. [Online]. Available:
https://storj.io/storj2014.pdf

[12] J. Peterson and J. Krug, “Augur: a decentralized, open-source platform
for prediction markets,” arXiv preprint arXiv:1501.01042, 2015.

[13] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, 1997. [Online]. Available:
https://doi.org/10.5210/fm.v2i9.548

[14] A. Skidanov and I. Polosukhin, “Nightshade: Near protocol sharding
design,” URL: https://nearprotocol. com/downloads/Nightshade. pdf,
p. 39, 2019.

[15] Z. Hess, Y. Malahov, and J. Pettersson, “Æternity blockchain,” Online].
Available: https://aeternity. com/aeternity-blockchainwhitepaper. pdf,
2017.

[16] Q. Zheng, Y. Li, P. Chen, and X. Dong, “An innovative ipfs-based
storage model for blockchain,” in 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, 2018, pp. 704–708.
[Online]. Available: https://doi.org/10.1109/WI.2018.000-8

[17] E. J. Scheid, B. B. Rodrigues, L. Z. Granville, and B. Stiller (2019),
“Enabling dynamic sla compensation using blockchain-based smart
contracts,” in 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). IEEE, pp. 53–61. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8717859

[18] R. B. Uriarte, R. D. Nicola, V. Scoca, and F. Tiezzi, “Defining and
guaranteeing dynamic service levels in clouds,” Future Generation
Computer Systems, vol. 99, pp. 17–40, 10 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2019.04.001

[19] R. B. Uriarte, R. de Nicola, and K. Kritikos, “Towards distributed
sla management with smart contracts and blockchain,” in 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), Dec 2018, pp. 266–271. [Online]. Available:
https://doi.org/10.1109/CloudCom2018.2018.00059

[20] E. D. Pascale, J. McMenamy, I. Macaluso, and L. Doyle,
“Smart contract slas for dense small-cell-as-a-service,” CoRR, vol.
abs/1703.04502, 2017. [Online]. Available: http://arxiv.org/abs/1703.
04502

[21] J. Backman, S. Yrjölä, K. Valtanen, and O. Mämmelä, “Blockchain
network slice broker in 5g: Slice leasing in factory of the
future use case,” in 2017 Internet of Things Business Models,
Users, and Networks. IEEE, 2017, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/CTTE.2017.8260929

[22] L. Zanzi, A. Albanese, V. Sciancalepore, and X. Costa-Pérez, “Ns-
bchain: A secure blockchain framework for network slicing brokerage,”
arXiv preprint arXiv:2003.07748, 2020.

[23] N. Afraz and M. Ruffini (2020), “5g network slice brokering: A
distributed blockchain-based market,” in 2020 European Conference on
Networks and Communications (EuCNC). IEEE, pp. 23–27. [Online].
Available: https://doi.org/10.1109/EuCNC48522.2020.9200915

[24] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, “A
blockchain based witness model for trustworthy cloud service level
agreement enforcement,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 1567–1575. [Online].
Available: https://doi.org/10.1109/INFOCOM.2019.8737580

[25] K. Binmore et al., Game theory: a very short introduction, vol. 173.
[Online]. Available: https://ssrn.com/abstract=1284255

[26] E. Team (2017), “Etherscan: The ethereum block explorer.” [Online].
Available: https://etherscan.io/

[27] M. Spiekermann (2019), “Data marketplaces: Trends and monetisation
of data goods,” Intereconomics, vol. 54, no. 4, pp. 208–216. [Online].
Available: https://link.springer.com/article/10.1007/s10272-019-0826-z

[28] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an
open-source solution for cloud computing,” International Journal of
Computer Applications, vol. 55, no. 3, pp. 38–42, 2012. [Online].
Available: https://doi.org/10.5120/8738-2991

[29] S. Ellis, A. Juels, and S. Nazarov, “Chainlink a decentralized oracle
network,” Retrieved March, vol. 11, p. 2018, 2017. [Online]. Available:
https://link.smartcontract.com/whitepaper


