Galactic factories of cosmic electrons and positrons

Carmelo Evoli

Gran Sasso Science Institute, L'Aquila (Italy) INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

Solar Modulation and Dark Matter workshop

November 18, 2021

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The cosmic-ray spectrum in 2021

Looking forward to adding GAPS measurements to this plot! 🙂

C. Evoli (GSSI)	

590

2

<ロト < 回 > < 回 > < 回 > < 回 >

・ロト・(日)・(日)・(日)・(日)

From phenomenology to more fundamental theory

Phenomenology accomplishments

- Very remarkable that simple approaches provides explanation of data at few % level! [Schroer+, PRD 103, 2021; Korsmeier & Cuoco, PRD 103, 2021]
- \triangleright Nuclei $Z \ge 6$ share the same source spectrum but different from H and He [Evoli+, PRD 2018; Weinrich et al., A&A 2020]
- ▷ The (sharp!) break at ~300 GV is due to transport [Genolini+, PRL 119, 2017]
- \triangleright Transport at 10-100 GeV is diffusive with $\langle D
 angle \propto E^{-0.5}$
- $\triangleright~$ CRs fill a magnetized halo above and below the disk of size $H\gtrsim5$ kpc [Evoli+, PRD 2019; Weinrich et al., A&A 2020]

< □ > < □ > < Ξ > < Ξ > < Ξ | Ξ = の < ⊙

From phenomenology to more fundamental theory

Phenomenology accomplishments

- Very remarkable that simple approaches provides explanation of data at few % level! [schroer+, PRD 103, 2021; Korsmeier & Cuoco, PRD 103, 2021]
- \triangleright Nuclei $Z\geq 6$ share the same source spectrum but different from H and He [Evoli+, PRD 2018; Weimrich et al., A&A 2020]
- ▷ The (sharp!) break at ~300 GV is due to transport [Genolini+, PRL 119, 2017]
- \triangleright Transport at 10-100 GeV is diffusive with $\langle D \rangle \propto E^{-0.5}$
- $\triangleright~$ CRs fill a magnetized halo above and below the disk of size $H\gtrsim5$ kpc [Evoli+, PRD 2019; Weinrich et al., A&A 2020]

Theoretical issues

- Clear separation between acceleration and transport?
- Physicality of halo boundaries at H? [Dogiel+, ApJ 2020]
- ▷ Role of anisotropic diffusion? \rightarrow maybe relevant for γ 's [Cerri+, JCAP 2017]
- What is the origin of the scattering centres? External turbulent cascade or self-generated? What is the role of ion-neutral damping? [zirakashviii, NPB 2014]
- ▷ Is it the grammage accumulated close to the sources relevant at high-energy? [Bykov+, SSRv 2020]

Galactic factories of cosmic electrons and positrons

Rationale

- \triangleright In recent years there has been a dramatic improvement in the measurement of the spectrum of e^{\pm}
- Significant progresses also in understanding galactic cosmic-ray transport
- We revised the prevailing approach in which leptons are the product of three classes of sources: secondary, SNR (e⁻) and PWN (pairs)
- Are the observed fluxes well fitted by what we know about the Galactic properties of these populations and their energetic budgets?

Galactic factories of cosmic electrons and positrons

Rationale

- \triangleright In recent years there has been a dramatic improvement in the measurement of the spectrum of e^{\pm}
- Significant progresses also in understanding galactic cosmic-ray transport
- We revised the prevailing approach in which leptons are the product of three classes of sources: secondary, SNR (e⁻) and PWN (pairs)
- Are the observed fluxes well fitted by what we know about the Galactic properties of these populations and their energetic budgets?

A word of caution

An example of "crying wolf" for Dark Matter (blame on theorists though!)

▲ロト▲聞と▲目と▲目と 毛目 のへの

Key results of the Galactic halo model

Evoli, Blasi, and Aloisio, PRD, 2019; Evoli et al., PRD, 2020; Schroer, Evoli, and Blasi, PRD, 2021

 \triangleright We assume a phenomenological motivated D(R) (rigidity $R \equiv p/Z$) as a smoothly-broken power-law:

$$D(R) = 2v_A H + \frac{\beta D_0 (R/\mathsf{GV})^{\delta}}{\left[1 + (R/R_b)^{\Delta \delta/s}\right]^s}$$

э

イロト イロト イヨト イ

Key results of the Galactic halo model

Evoli, Blasi, and Aloisio, PRD, 2019; Evoli et al., PRD, 2020; Schroer, Evoli, and Blasi, PRD, 2021

- ▷ By fitting primary and secondary/primary measurements we obtain: $\delta \sim 0.54/0.34$, $R_b \sim 400$ GV, $D_0/H \sim 0.45 \times 10^{28}$ cm/s²/kpc, $v_A \sim 5$ km/s
- All nuclei with Z>2 are injected with $\gamma\sim 4.3$ (Oxygen here is the only pure primary species)
- ▷ Escape time weakly constrained since $\tau_{\rm esc} \simeq \frac{H^2}{D} = \left(\frac{H}{D}\right)_{\rm B/C} H$
- Shaded areas: uncertainty from cross sections

イロト イポト イヨト イヨ

Key results of the Galactic halo model

Evoli, Blasi, and Aloisio, PRD, 2019; Evoli et al., PRD, 2020; Schroer, Evoli, and Blasi, PRD, 2021

ho~ Traditionally 9 Be/ 10 Be has been used as CR clock ightarrow no measurements at $E\gtrsim 1$ GeV/n [Lipari, arXiv:1407.5223]

- ▷ Since ¹⁰Be decays to ¹⁰B the ratio Be/B is affected twice (excellent recent AMS-02 data!)
- ho
 ho
 ho Preference for large halos $H\gtrsim5$ kpc [see also Weinrich et al., A&A (2020)]

$$\tau_{\rm esc}(10~{\rm GV}) \sim \frac{H^2}{2D} \sim 20~{\rm Myr}\left(\frac{H}{\rm kpc}\right) \left(\frac{0.45\times10^{28}~{\rm cm}^2/{\rm s/kpc}}{D_0/H}\right)$$

C. Evoli (GSSI)

DQA

Secondary leptons in the Galactic Halo model

Evoli et al., PRD, 2021

ho
m AMS-02 local measurements of e^+ and e^- compared with secondary predictions CR+ISM $ightarrow e^\pm$

- ▶ It is not compatible with all leptons being secondary → we need a primary component for electrons
- ▷ If e^+ are secondaries (and $\alpha_p = \alpha_e$) the positron fraction must be a monotonically decreasing function of *E*

$$\longrightarrow \frac{e^+}{e^-} \propto E^{-\delta}$$

Nuclei and electron timescales

Evoli, Amato, Blasi & Aloisio, PRD 103, 8 (2021)

▷ Leptons lose their energy mainly by IC with the interstellar radiation fields (ISRFs) or synchrotron emission

- Milky Way is a very inefficient calorimeter for nuclei and a perfect calorimeter for leptons
- $\triangleright~$ Translate losses into propagation scale: $\lambda \sim \sqrt{4D(E)\tau_{\rm loss}} \longrightarrow$ horizon

C. Evoli (GSSI)

< □ > < □ > < Ξ > < Ξ > < Ξ | Ξ = の < ⊙

The Green function formalism

Lee, ApJ, 1979; Ptuskin+, APPh 2006; Delahaye+, A&A 2010; Blasi & Amato 2011

$$n(t_{\odot}, E, \vec{r}_{\odot}) = \iiint dt_s \, dE_s \, d^3 \vec{r}_s \, \delta(\Delta t - \Delta \tau) \mathcal{G}_{\vec{r}}(E, \vec{r}_{\odot} \leftarrow E_s, \vec{r}_s) \mathcal{Q}(t_s, E_s, \vec{r}_s).$$

イロト イロト イヨト イヨト

Pulsars as positron galactic factories

Hooper+, JCAP 2009; Grasso+, APh 2009; Delahaye+, A&A 2010; Blasi & Amato 2011; Manconi+, PRD 2020; Evoli, Amato, Blasi & Aloisio, PRD 2021

- e[±] pairs created in the pulsar magnetosphere become part of the relativistic wind into which pulsars convert most of their rotational energy → the only sources showing direct evidence for PeV particles (Bykov+, Space Sci. Rev. 2017)
- ▷ γ /X-ray emissions by these objects are described by a flat spectrum (with $1 < \alpha_L < 2$) at low energies, which then steepens to $\sim E^{-2.5}$ beyond \sim few hundred GeV [Bucciantini+, MNRAS 2011]
- HAWC has detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars (HAWC coll., Science 358 (2017)] (detected also in FERMI [Lindent, PRD 2019; Di Maurot, PRD 2019]) associated with the release of pairs in the ISM

< □ > < □ > < Ξ > < Ξ > < Ξ | Ξ = の < ⊙

Pulsars as positron galactic factories

Hooper+, JCAP 2009; Grasso+, APh 2009; Delahaye+, A&A 2010; Blasi & Amato 2011; Manconi+, PRD 2020; Evoli, Amato, Blasi & Aloisio, PRD 2021

$$Q_0(t) \mathrm{e}^{-E/E_{\mathrm{C}}(t)} \times \begin{cases} (E/E_{\mathrm{b}})^{-\gamma_{\mathrm{L}}} & E < E_{\mathrm{b}} \\ (E/E_{\mathrm{b}})^{-\gamma_{\mathrm{H}}} & E \ge E_{\mathrm{b}} \end{cases}$$

Cutoff is associated to the potential drop [Kotera, JCAP2015]

$$E_{\rm C}(t)\sim 3\,{\rm PeV}\,\left(\frac{P_0}{0.1\,{\rm s}}\right)^{-2}\frac{1}{1+t/\tau_0}$$

- ightarrow AMS-02 data requires an efficiency of conversion: $\sim 20\%$ of the energy released after the Bow-Shock phase ($t_{\rm BS} \simeq 56$ ky)
- Shaded areas: 2-sigma fluctuations due to cosmic variance (see also later)

Pulsars as positron galactic factories

Principe et al., A&A 640, A76 (2020), H.E.S.S. Collaboration, A&A 621, A116 (2019)

Figure: Combined spectra of PWN HESS J1825-137 (left) and HESS J1825-137 (right) with the spectral measurements obtained Fermi-LAT data (from \sim GeV to \sim TeV) and the H.E.S.S. data for the $\gtrsim 100$ GeV energy range

イロト イロト イヨト イヨト

The electron spectrum from SNRs

Evoli, Amato, Blasi & Aloisio, PRD 2021

- \triangleright Electrons injected by SNRs with a power law with an intrinsic cutoff at ~ 40 TeV (cooling dominated)
- \triangleright Electrons require a spectrum steeper than protons by $\sim 0.3 \rightarrow$ puzzling!
- ▷ The only aspect that is different between e^- and p is the loss rate \rightarrow negligible inside the sources unless *B* is very strongly amplified (Diesing & Caprioli, PRL 2020; Cristofari+, A&A 2021)
- ▷ Watch at the positron fraction!

C. Evoli (GSSI)

< ロ ト < 同 ト < 三 ト < 三 ト

The signature of energy losses on the cosmic ray electron spectrum

Evoli, Blasi, Amato & Aloisio, PRL 2020

- Existence of a fine structure at ~ 42 GeV was first noted by the AMS02 collaboration (and erroneously attributed to more than one CR electron population)
- ▷ The feature in the e^- spectrum is the result of KN effects in the ICS on the UV bkg \rightarrow electrons do lose energy in the ISM at odds with unorthodox transport models (Blum et al., PRL 2013; Kachelriess+, PRL 2015; Cowsik & Madziwa-Nussinov ApJ 2016; Lipari, PRD 2019]
- See also Di Mauro, Donato, and Manconi, PRD, 2021, for a different interpretation.

C. Evoli (GSSI

Are positrons truly primary?

Blum et al., PRL 111 (2013); Cowsik & Madziwa-Nussinov ApJ 827 (2016); Lipari, PRD 95 (2019)

> Positrons and anti-protons share the same spectrum (likewise electrons)!

- \triangleright The e^+/\bar{p} ratio is very close (2.04 ± 0.04) to the one expected by pure secondary production
- Can it be just a (actually two!) coincidence?

Are positrons truly primary?

Lipari, PRD, 2019

> In order to have just secondary positrons however we need to get rid of the energy losses.

- > The lepton $e^- + e^+$ spectrum exhibits a sharp and large ($\Delta \gamma \sim 1$) break at $E \simeq 1$ TeV which could be associated with the onset of energy losses.
- Given the systematics, the feature might indicate either a break in the powerlaw spectrum or a kind of cutoff, see also CALET and DAMPE for direct measurements [CALET coll., PRL 119 (2017); DAMPE coll., Nature 552 (2017)].

・ロト ・ 四ト ・ ヨト ・ ヨト

Counting the sources of leptons in the Galaxy

Evoli, Blasi, Amato & Aloisio, PRD 2021

 \triangleright Most SN explosions are located in star-forming regions which cluster inside the spiral arms and in the Galactic bar \rightarrow SNR of $\mathcal{R} = 1/30$ years

The sources that can contribute to the flux at Earth at a given energy E are

$$N(E) \sim \mathcal{R} \tau_{\rm loss}(E) \frac{\lambda_e^2(E)}{R_g^2}$$

イロト イロト イヨト イ

The trouble with fluctuations

Evoli et al., arXiv:2111.01171

▷ The spectrum we observe is due to the contribution of many sources, in the true Galaxy:

$$n_i = \iiint dt_s \, dE_s \, d^3 \vec{r}_s \, \delta(\Delta t - \Delta \tau) \mathcal{G}_{\vec{r}}(E, \vec{r}_{\odot} \leftarrow E_s, \vec{r}_s) \mathcal{Q}(t_s, E_s, \vec{r}_s).$$

where the particle transport mechanisms and boundary conditions are incorporated into \mathcal{G} .

- \triangleright As we don't know $\{t_s, \vec{r_s}\} \rightarrow$ we must rely on ensemble average quantities $\langle n_{
 m nuc} \rangle$
- > Assuming burst injection and uniform energy losses this integral is analytical and in the limit of $H \ll R_g$ gives:
 - for nuclei:

$$\langle n_{\rm NLC} \rangle = \frac{N(E)\mathcal{R}_{\rm SN}}{2\pi R_d^2 H} \frac{H^2}{D(E)} \propto N(E)\tau_{\rm esc}(E) \propto E^{-\alpha-\delta}$$

while for electrons (in the limit of energy-losses dominated):

$$\langle n_e \rangle = \frac{N(E)\mathcal{R}_{\rm SN}}{2\pi R_d^2} \frac{\tau_{\rm loss}(E)}{\sqrt{D(E)\tau_{\rm loss}(E)}} \propto E^{-\alpha - \frac{\delta}{2} - \frac{1}{2}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The trouble with fluctuations

Evoli et al., arXiv:2111.01171

▷ The spectrum we observe is due to the contribution of many sources, in the true Galaxy:

$$n_i = \iiint dt_s \, dE_s \, d^3 \vec{r}_s \, \delta(\Delta t - \Delta \tau) \mathcal{G}_{\vec{r}}(E, \vec{r}_{\odot} \leftarrow E_s, \vec{r}_s) \mathcal{Q}(t_s, E_s, \vec{r}_s).$$

where the particle transport mechanisms and boundary conditions are incorporated into \mathcal{G} .

- \triangleright As we don't know $\{t_s, \vec{r_s}\} \rightarrow$ we must rely on ensemble average quantities $\langle n_{
 m nuc} \rangle$
- > Assuming burst injection and uniform energy losses this integral is analytical and in the limit of $H \ll R_g$ gives:
 - for nuclei:

$$\langle n_{\rm NLC} \rangle = \frac{N(E)\mathcal{R}_{\rm SN}}{2\pi R_d^2 H} \frac{H^2}{D(E)} \propto N(E)\tau_{\rm esc}(E) \propto E^{-\alpha-\delta}$$

while for electrons (in the limit of energy-losses dominated):

$$\langle n_e \rangle = \frac{N(E)\mathcal{R}_{\rm SN}}{2\pi R_d^2} \frac{\tau_{\rm loss}(E)}{\sqrt{D(E)\tau_{\rm loss}(E)}} \propto E^{-\alpha - \frac{\delta}{2} - \frac{1}{2}}$$

A The variance is however $\sigma(n_i) \to \infty$! What is the significance of any excess?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The trouble with fluctuations

Evoli et al., arXiv:2111.01171

 $\triangleright~$ Divergence is due to the fact that the density $n \rightarrow \infty~ {\rm as}~ r_s \rightarrow 0$

- Cannot be cured with spirals!
- ▷ Heavy-tailed PDF → mean ≠ median (problematic for codes based on the mean field approach!)
- More relevant for high-energy electrons as the horizon reduces the number of contributing sources

< ロ ト < 同 ト < 三 ト < 三 ト

Revisiting fluctuations

Revisiting fluctuations as CDF of the flux distribution \rightarrow same problem for χ^2 !

Fluctuations in the low-energy spectrum

Phan et al., PRL, 2021

- \triangleright At low energies nuclei losses are severe!
- These effects neglected in standard approaches \rightarrow a potential issue for new physics searches in the very-low energy range, certainly smaller for secondaries. ヘロト ヘロト ヘビト ヘ

э

590

The odds of a prominent nearby source

Evoli et al., arXiv:2111.01171

- Regularly invoked to explain features in the CR spectrum.
- $\triangleright f = 1$ shows when 1 source contributes to local flux at least as much as all others added together.
- $\,\triangleright\,\,$ Assuming Spiral pattern and standard properties for transport $\rightarrow\,\,$

at ~ 1 TeV chances of f>1 are $\sim 0.01\%$ for nuclei and $\sim 0.4\%$ for leptons ,

C. Evoli (GSSI)

DQC

Thank you!

Carmelo Evoli

- ☆ GRAN SASSO SCIENCE INSTITUTE
- ✓ Viale Francesco Crispi, 7, L'Aquila (Italy)
- mailto: carmelo.evoli@gssi.it
- 9 @carmeloevoli
- carmeloevoli
- s e.carmelo
- 0000-0002-6023-5253
- ▲ slides available at:

https://zenodo.org/communities/carmeloevoli_talks

◀□▶◀@▶◀롣▶◀롣▶ 롣티티♥)९(♥

Backup slides: total lepton spectrum

イロト イロト イヨト イヨト

Backup slides: AMS-02 electron spectrum

Backup slides: anisotropy

315

DQC

イロト イロト イヨト イヨト