

UNIVERSITEIT GENT CAMPUS KORTR'JK

MICROTEACHING ESR 9 SOLVENT TECHNIQUES FOR CLOSED-

LOOP RECYCLING OF PLASTICS

Rita Kol - 25/10/2021

ARISTOTLE UNIVERSITY OF THESSALONIK

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 859885

Plastic additives

Solvent-based recycling **Dissolution-precipitation technique**

Rheology and viscosity of polymer solutions

Filtration process for removal of colorants

CHALLENGES IN PLASTIC RECYCLING

CHALLENGES IN PLASTIC RECYCLING

PLASTIC ADDITIVES

ADDITIVES IN PLASTICS

Functional additives	Flame retardants, antistatic agen antioxidants, lubricants, slip age biocide	
Fillers	Increase bulk of plastic and mo hardness, chemical resistand strength. Examples: Calcium ca	
Reinforcements	Increase mechanical strer Example: Glass fibres	
Colorants	Aesthetic purposes, increase reinforcement. Two groups: D	
JNIVERSITEIT GENT		

CAMPUS KORTRUK

nts, stabilizers, plasticizers, jents, foaming agents and es

odify properties such as ce, impact and tensile arbonate, graphene, talc

ength and stiffness. s, carbon fibres

e heat resistance and as Dyes, pigments

ADDITIVES IN PLASTIC RECYCLING

- Migration
- Degradation \bullet
- Emission/Leaching lacksquare
- Unwanted effects on recycled plastic

Brominated flame retardants, phthalates

Metal containing additives

Phthalates, brominated flame retardants, Bisphenol A, lead, etc.

Colour pigments

SOLVENT-BASED RECYCLING

SOLVENT-BASED RECYCLING

Solvent-based recycling (physical recycling):

Composition of the polymer is not changed \neq chemical recycling

□ Advantages:

- Removal of impurities;
- 'Virgin-grade' granulates;
- Prevention of operational Ο problems, such as corrosion.

SOLVENT-BASED TECHNIQUES

Solvent-based techniques

Solid-liquid extraction

Dissolutionprecipitation

Chapter Intechopen, 2021

Rita Kol, Martijn Roosen, Sibel Ügdüler, Kevin M. Van Geem, Kim Ragaert, Dimitris S. Achilias and Steven De Meester

Shake-flask, Soxhlet, Ultrasonic

- extraction, Microwave assisted
- extraction, Supercritical fluids extraction,
- Accelerated solvent extraction

Recent Advances in Pre-Treatment of Plastic Packaging Waste

□ Example: Sugar and water

Solvent: A fluid that dissolves a material (called solute).

During dissolution: Solute molecules (sugar molecules) separate from each other and are surrounded by solvent molecules.

• Temperature

• Stir

□ Antisolvent: Liquid that is miscible with the solvent, and it will reduce the solubility of the solute in the solution, leading to precipitation of the solute (polymer).

Solution with dissolved solute

Antisolvent

Laboratory for Circular Process Engineering

- **Colored** plastic
- Filtration/Centrifugation
- Addition of antisolvent
- **Recovered polymer**

SELECTIVE DISSOLUTION

Separation of different polymers

- Changing solvents
- **D** Temperature
 - Xylene @25°C for PS
 - Xylene @85°C for LDPE
 - Xylene @150°C for HDPE

Figure from J. Sherwood (2020) Closed-loop recycling of polymers using solvents. Johnson Matthey Technology Review. pp. 4-15

Fig. 4. Separation of polyolefins; **A** mixed PE and PP feedstock; **B** selective dissolution of PE; **C** PP recovered; **D** filtration to give a PE solution; **E** addition of anti-solvent; **F** isolation of PE by filtration

OVERVIEW OF (OPERATIONAL) PLANTS

Technology	Principle	Current state and capacity	Current application	Source
VinyLoop [®] & Texyloop [®]	Dissolution and precipitation of flexible PVC	Italy: pilot scale at 10.000 tons/year (closed in 2018)	Recycling of flexible PVC.	(VinylPlus)
Polyloop®	Dissolution and precipitation of PVC	Mobile (container) solution, treating 300kg in 3h intervals. Sales planned to start in 2021.	Recycling of PVC composite materials, continuing from Texyloop [®]	(Polyloop, 2020), (Ferrari, 2021)
CreaSolv [®] Technology, PolyStyreneLoop	Dissolution and precipitation of PS	The Netherlands: pilot scale at 3.000 tons/year starting 2020	Removal of banned, legacy flame retardant HBCDD.	(PolyStyreneLoop, 2020)
CreaSolv [®] Technology, Unilever Sachet Recycling	Dissolution and precipitation of PE	Indonesia: pilot scale at 30 tons/day	Separation of multilayer sachets.	(Crippa et al., 2019)
CreaSolv [®] Technology, Lober	Dissolution and precipitation of PE and PP from multilayer laminates	Germany: pilot scale at 5 m ³ per day, with 15x industrial up-scaling in a second phase	Separation of multilayer laminates	(CreaCycle, 2018a)
PureCycle Technologies [™] , P&G	Dissolution and precipitation of PP	The United States: industrial-scale demonstration plant at 119 million pounds (≈ 54.000 tons) per year by 2021	Removal of colour, odour and other contaminants.	(PureCycle Technologies, 2019)
Newcycling [®] , APK AG	Dissolution and precipitation of PE multilayer films	Germany: pilot scale at 8.000 tons/year	Separation of multilayer films (PE/PA). Additional separation of PP, PET, PS, PLA and aluminium fractions possible.	(Niaounakis, 2020), (Wohnig, 2018), (Coker, 2019)

Economical balance: amount of solvent

High amount of antisolvent (typical ratio: 3:1) Higher costs (also for S/AS treatment)

Lower costs (also for S/AS treatment)

RHEOLOGY AND VISCOSITY OF POLYMER SOLUTIONS

Rheology: Study of deformation and flow of materials under an applied force.

- $\circ~$ Shear flow
- $\circ~$ Extensional flow

Figure from Anton Paar, https://wiki.antonpaar.com/en/basics-of-rheology/.

SHEAR FLOW

Shear rate, γ: Velocity gradient, which is the rate of change of deformation with time.

Shear stress, σ: External applied force that acts on the fluid.

Figure from B. Hasanzadeh (2017) Testing and modeling of the thixotropic behavior of cementitious materials. Electronic Theses and Dissertations. Paper 2868.

FLOW CURVE

Laboratory for Circular Process Engineering

Bingham fluids Time-depend fluids: thixotropic, rheopectic Viscoelastic behaviour _

Polymer solutions

SHEAR RATE RANGES

Figure from V. Carnicer et al. (2020), Open Ceramics 5,100052.

RHEOLOGY OF POLYMER SOLUTIONS

 $\dot{\gamma}_{\rm c}$ - critical shear rate η_0 – Zero-shear viscosity η – Non-Newtonian viscosity η_{∞} - Infinite shear viscosity

First published: 29 July 2021 | https://doi.org/10.1002/cssc.202100876

Rheological behavior of polymer solutions is

- Concentration
- **Temperature**
- Solvent interactions
- □ Others, such as branching, dispersity, conformation

Figure from:

Review 🖻 Open Access 💿 😧 🗐 😂

State-Of-The-Art Quantification of Polymer Solution Viscosity for **Plastic Waste Recycling**

Rita Kol, Tobias De Somer, Prof. Dagmar R. D'hooge, Fabian Knappich, Prof. Kim Ragaert, Prof. Dimitris S. Achilias, Prof. Steven De Meester 🔀

NEWTONIAN AND SHEAR-THINNING

Concentration

Molar Mass

Figures from R.Kol et al.(2021) State-Of-The-Art Quantification of Polymer Solution Viscosity for Plastic Waste recycling, ChemSusChem, 14, 4071-4102.

NEWTONIAN AND SHEAR-THINNING

Temperature

Figure from J.R. Robledo-Ortiz, et al. (2006) Journal of Plastic Film&Sheeting, 22, 287-314

Pressure

Figure from S. E. Kadijk, B. H. A. A. Van Den Brule (1994) Polymer Engineering and Science, 34, 1535-1546.

shear rate (s-1)

Fig. 6. Viscosity of PP vs. the shear rate (after Weissenberg-Rabinowitsch correction) at pressure levels of 200 bar (circles), 500 bar (triangles), and 1000 bar (squares) at temperatures of 180°C (broken lines), 230°C (solid lines), and 300°C (dotted lines). The drawn curves are fits of the sixparameter WLF-Cross-Carreau model ($\beta = 0, T_r = 0$).

NEWTONIAN AND SHEAR-THINNING

Solvent interaction

Figures from R.Kol et al. (2021) State-Of-The-Art Quantification of Polymer Solution Viscosity for Plastic Waste recycling, ChemSusChem, 14, 4071-4102.

RHEOLOGICAL RESULTS

PS in limonene (L) at concentrations ranging from 5 – 35 wt%

□ Mostly Newtonian behaviour.

Higher concentrated solutions (>25 wt%) start to show non-Newtonian behaviour at higher shear rates.

RHEOLOGICAL RESULTS

PS solutions with different solvents

	η ₀ (mPa.s)
- acetate	0.68
lacetate	2.30

HANDLING WITH POLYMER SOLUTIONS

□ Increase of concentration of the polymer in solution \rightarrow increase in viscosity

Viscosity of a 5 wt% is 8.5 times higher than viscosity of solvent

Fig. 4. Separation of polyolefins: A mixed P and PP feedstock; B selective dissolution of P C PP recovered; D filtration to give a PE solution E addition of anti-solvent: E isolation of PE b

HANDLING WITH POLYMER SOLUTIONS

FILTRATION PROCESS FOR REMOVAL OF COLORANTS

Pigments do not dissolve in the medium ≠ dyes

 Separate from the polymer with a solid-liquid separation process (e.g. filtration, centrifugation)

Cake filtration

Figure from R.Kol et al.(2021) State-Of-The–Art Quantification of Polymer Solution Viscosity for Plastic Waste recycling, ChemSusChem, 14, 4071-4102.

Cake filtration, constant pressure

Figure from R.Kol et al.(2021) State-Of-The–Art Quantification of Polymer Solution Viscosity for Plastic Waste recycling, ChemSusChem, 14, 4071-4102.

How the viscosity of polymer solutions will influence the filtration? Changing the polymer solution viscosity, how much pressure has to be applied in order to obtain the same flow rate?

Assumption:

- Newtonian behaviour
- $\circ R_m \ll R_c$
- □ PS/styrene solution containing 0.5 wt\% TiO_2

$$\frac{\Delta P_2}{\Delta P_1} = \sqrt[1-s]{\frac{\eta_{0,2} c_{m,2}}{\eta_{0,1} c_{m,1}}}$$

Figure adapted from R.Kol et al.(2021) State-Of-The-Art Quantification of Polymer Solution Viscosity for Plastic

DISSOLUTION OF MUSHROOM BOX

CAMPUS KORTRUK

Laboratory for Circular Process Engineering

RECOVERED POLYMER FROM BLUE BOX

 Filtration and drying after
 addition of
 antisolvent

Filtration residue
 contains
 polystyrene

FINAL CONCLUSIONS

Working on solvent-based recycling, using the dissolution-precipitation techinque.

GFocus:

- □Study of the rheology of polymer solutions to analyse its influence on solid-liquid separation processes for the removal of colourants.
- Optimization of a solid-liquid separation process for the removal of contaminants from plastic waste.

Chapter Intechopen, 2021 Recent Advances in Pre-Treatment of Plastic Packaging Waste

Rita Kol, Martijn Roosen, Sibel Ügdüler, Kevin M. Van Geem, Kim Ragaert, Dimitris S. Achilias and Steven De Meester

ChemSusChem Chemistry-Sustainability-Energy-Materials

Review 🖻 Open Access 💿 🖲 🗐 🗐 😒

State-Of-The-Art Quantification of Polymer Solution Viscosity for **Plastic Waste Recycling**

Rita Kol, Tobias De Somer, Prof. Dagmar R. D'hooge, Fabian Knappich, Prof. Kim Ragaert, Prof. Dimitris S. Achilias. Prof. Steven De Meester 🔀

First published: 29 July 2021 | https://doi.org/10.1002/cssc.202100876

Rita Kol PhD student

LCPE – Laboratory for Circular Process Engineering

- E Rita.DuarteKoldeCarvalho@UGent.be
- M 0032 56 32 21 93

f UGent C
✓ @ugent
Ø @ugent
in Ghent U

www.ugent.be/campuskortrijk

ARISTOTLE UNIVERSITY OF THESSALONIKI

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 859885

UGent Campus Kortrijk

Ghent University

<u>REFERENCES</u>

Coker, R. (2019) APK deploys downstream melt processing system. Available at: https://www.eppm.com/industry-news/apk-deploys-downstream-melt-processing-system/ (Accessed: 23 March 2020).

CreaCycle (2018a) Circular Packaging (2018). Available at: https://www.creacycle.de/en/creasolv-plants/circular-packaging-2018.html (Accessed: 25 March 2020).

CreaCycle (2018b) Plastic Recycling with the CreaSolv Process. Available at: https://www.creacycle.de/images/2018.10.16_CreaSolv-Process-EN.jpg (Accessed: 31 March 2020).

Crippa, M. et al. (2019) A circular economy for plastics – Insights from research and innovation to inform policy and funding decisions. Brussels. doi: 10.2777/616094.

Ferrari, S. (2021) Serge Ferrari partner of the Polyloop Start up for a new recycling project. Available at: https://www.sergeferrari.com/ms-my/serge-ferrari-partner-polyloop-start-new-recycling-project (Accessed: 15 March 2021).

Niaounakis, M. (2020) '7 - Solvent- and/or Chemical Agent-Based Separation', in Niaounakis, M. B. T.-R. of F. P. P. (ed.) Plastics Design Library. William Andrew Publishing, pp. 211–264. doi: https://doi.org/10.1016/B978-0-12-816335-1.00007-4.

Polyloop (2020) Composite PVC regeneration. Available at: https://polyloop.fr/en/ (Accessed: 15 March 2021).

PolyStyreneLoop (no date) A pilot-scale proven and tested physico-chemical recycling process. Available at: https://polystyreneloop.org/technology (Accessed: 25 March 2020).

PureCycle Technologies (2019) PureCycle Technologies Celebrates Successful Run of Groundbreaking Plastics Recycling Technology. Available at: https://purecycletech.com/2019/09/successful-run-of-feedstock-evaluation-unit/ (Accessed: 1 April 2020).

VinylPlus (no date) Feedstock recycling. Available at: https://vinylplus.eu/recycling/recycling-options/feedstock-recycling (Accessed: 20 March 2021).

Wohnig, K. (2018) From Recycling to Newcycling. Available at: https://gpcaplastics.com/wp-content/uploads/2018/10/Klaus-Wohnig.pdf (Accessed: 23 March 2020).

dustry-news/apk-deploys-downstream-meltcular-packaging-2018.html (Accessed: 25 March ges/2018.10.16_CreaSolv-Process-EN.jpg olicy and funding decisions. Brussels. doi: ps://www.sergeferrari.com/ms-my/serge-ferrari-E. P. P. (ed.) Plastics Design Library. William Andrew 21).

tock-recycling (Accessed: 20 March 2021). ds/2018/10/Klaus-Wohnig.pdf (Accessed: 23 March

REFERENCES

Figures slide 3:

https://www.theguardian.com (accessed 16/08/2020)

https://www.rutlandplastics.co.uk/plastics-additives-intro/ (accessed 14/10/2021)

https://wiki.anton-paar.com/ch-fr/notionsdebasesurlaviscosimetrie/ (accessed 14/10/2021)

Figure slide 5:

https://www.theguardian.com (accessed 16/08/2020)

Figures slide 22:

https://www.craftsuprint.com/projects/kids-crafts/putty-dough-and-slime/how-to-make-oobleck.cfm (accessed 19/10/21)

https://www.bonappetit.com/story/what-the-heck-is-honey (accessed 14/10/21)

Figures slide 28:

https://polymerinnovationblog.com/rheology-thermosets-part-2-rheometers/ (accessed 14/10/21) https://www.anton-paar.com/corp-en/products/group/rheometer/ (accessed 14/10/21)

Figure slide 37:

Image from Sterlichtech, Stirred Cell Assembly and Operation Manual.

Figure slide 36:

Dye in solution, a courtesy from the colleague Kim Phan.

