

Feeding biology of habitat forming CWC: preferences and assimilation efficiencies of selected food sources

ATLAS General Assembly 2017

Rakka M., Maier S., Bilan M., Godinho A., van Oevelen D., Hennige S., Orejas C., Serrão Santos R., Carreiro-Silva M.

Introduction

Cold water corals in a changing environment: Potential impacts of global climate change across coral life history stages

- 1. Study the feeding biology of selected CWC species
- 2. Perform a first description of early life history stages of selected CWC species
- 3. Assess the potential effects of ocean climate change (temperature, OA) on the physiology of different life history stages of selected CWC species

Introduction Climate change

Increase in seawater temperature

Excessive CO2 absorption: decrease in pH levels

Enhanced water stratification and altered hydrodynamics

Unfavourable conditions for marine calcifiers

Productivity decrease

Limited food supply to benthic ecosystems

Impacts on coral communities

Introduction Coral gardens

atlas

Introduction

Case study

atlas

Introduction

Target species

Dentomuricea aff. meteor

- Octocoral
- Common in the Azores Archipelago
- Forms coral gardens between 120-800 m
- Typically encountered in seamounts

Antipathella wollastoni

- Antipatharian
- Endemic in the Macaronesia
- Forms coral gardens between 20-1200m
- Typical habitat former in island slopes

Hypothesis: We expect to see differences in the capturing capacity, rates and assimilation efficiencies of the two species

Introduction Approach

Provide different sources of live food:

- 1. Phytoplankton source
- 2. Zooplankton source
- 3. Dissolved organic carbon
- 4. Control (starved)

Determine:

- Fatty acid composition
- Stable isotope incorporation
- Feeding behaviour

Introduction Food sources

Phytoplankton source: Chaetoceros sp.

- Common diatom in the Azores
- Sizes: 10-15 μm
- Easy to culture

Introduction Food sources

Zooplankton source: Rotifers

- Small size
- Slow moving
- Can be cultured in high concentrations (~200 cells/ml)
- Non selective feeders-high metabolism
- Quite common in marine systems
- Easy to culture

Branchionus plicatilis: 130-340 μm

Branchionus rotundiformis: 100-210 μm

Introduction

Food sources

Planning and tasks

1 Culture and maintain food sources

2 Preliminary experiments

ney suitable for the species? are the required entrations?

3 Labelling trials

Chaetoceros sp.

Experimental Design

Coral Phytoplar

Cora Phytoplar

Coral Phytoplan

4x 1 ml samples every hour Observation with 5 mins interval

Observation with 5 mins interval

Chaetoceros sp.

Experimental Design

Chaetoceros sp.

Control

+ Phytoplankton

Chaetoceros sp.

Future planning

Experimental unit

- 1. Tank building
- 2. Flow trials
- 3. Mortality of live food in tank

35 cm 15 cm 15 cm

Optimizing methods

- 1. Respiration baseline studies
- 2. Labelling
- 3. Pilot experiment

Main experiments
August-October 2017

Thank You!

Presenter details:

Maria Rakka **IMAR-UAZ** marianinha.rk@gmail.com

Project Contact Details:

Coordination: Professor Murray Roberts

murray.roberts@ed.ac.uk

Project Management: Dr. Katherine Simpson

katherine.simpson@ed.ac.uk

Communication & Press: Dr. Claudia Junge

claudia@aquatt.ie

Follow us: @eu_atlas

f @EuATLAS

www.eu-atlas.org

Acknowledgments

Valentina Matos, Andreia Henriques, Domitilia Rosa, Amalia Grau (histology LIMIA, Govern de les Illes Balears), Ricardo Medeiros, Cóilín Minto, Carla Nunes, João Rodeia

