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Abstract—In this paper, we consider a scenario where a
number of energy harvesting sensors cooperate to transmit a
common message to a distant base station. The goal is to find
the jointly optimal transmission (power allocation) policy which
maximizes the total throughput for a given deadline. We solve
the problem in a semi-analytical manner and rigorously prove
its optimality. The computational complexity of the proposed
scheme is analyzed in detail and compared with that of interior
point methods. Performance is extensively assessed by means
of computer simulations. As benchmarks, we consider the case
where the transmission policies for each sensor are separately
optimized, as well as other cluster-based suboptimal transmission
strategies.

I. INTRODUCTION

S
ENSOR nodes are typically powered by batteries that,

quite often, are either costly, difficult or simply impos-

sible to replace. Clearly, this limits network lifetime. Energy

harvesting makes it possible to overcome this drawback by

allowing sensors to harvest energy from e.g. solar, mechanical,

or thermal sources. The harvested energy is typically stored

in a device (e.g. battery, super capacitor) and then supplied

for communication and/or processing tasks when needed. In

recent years, many authors have analyzed how to optimally

use such harvested energy. For single-sensor scenarios, in [1]

the authors derive the optimal transmission (power allocation)

policy which minimizes the time needed to deliver all data

packets to the destination subject to causality constraints on

energy and packet arrivals. In [2], the authors go one step

beyond and, unlike [1], they consider finite storage capacity ef-

fects. In both cases, the energy harvesting instants and amounts

of energy harvested are assumed to be non-causally known.

Ozel et al generalize the analysis to Rayleigh-fading channels

(instead of Gaussian) and for the case in which the information

on the harvested energy and channel gains is either causally

or non-causally known [3]. Other works in the literature have

addressed scenarios with multiple energy harvesting terminals.

This includes studies for the multiple-access [4], interference

[5] and relay [6], [7] channels, as well as the broadcast channel

with infinite [8] or finite battery capacity [9]. The impact of

battery imperfections has also been addressed in a number of
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works. For instance in [10] the authors compute the optimal

transmission policy in the presence of (constant-rate) energy

leakage in the battery. Going one step beyond, [11] generalizes

the previous result to broadcast channels and, in addition, it

identifies the associated online optimal transmission policy. A

suboptimal policy exhibiting a notable performance is derived

as well.

Collaborative beamforming techniques allow nodes in a

Wireless Sensor Network (WSN) to act as a virtual antenna

array in order to e.g. reach a distant Base Station (BS) or data

sink. This, however, requires accurate frequency and phase

synchronization over sensors. To that aim, one can resort to

the iterative synchronization scheme with one-bit of feedback

proposed in [12], or opportunistic sensor selection schemes

[13].

A. Contributions

In this paper, we consider a scenario where a number of

energy harvesting (EH) sensors cooperate to transmit (beam-

form) a common message to a distant base station. This

differs from the scenarios in [4], [5], where multiple messages

were delivered to the destination node(s). The scenario is

also different from that in our previous work [14] where the

virtual array also comprised battery operated (BO) sensors.

Specifically, our goal is to find the jointly optimal transmission

(i.e., power allocation) policy which maximizes the total

throughput for a given deadline. This problem is equivalent to

that addressed e.g. in [1], [3] but here we consider the more

general case with multiple transmitters. We also go one step

beyond the distributed beamforming approaches in [12], [13]

and MAC channel with common data [15] where all sensors

were implicitly assumed to be battery operated, and investigate

the impact of energy harvesting constraints on performance.

Unlike [2], the storage capacity of the EH sensors is assumed

to be infinite here and, differently from [10], the battery

leakage effects negligible. The main contributions of this paper

are as follows:

1) We pose the problem of computing the jointly optimal

transmission policy in a convex optimization framework.

2) We derive a semi-analytical solution to the problem

which leverages on (i) the computationally-efficient it-

erative coordinate descent method of [16]; and (ii) an

algorithm that we propose in this paper, on which basis
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one can compute the optimal policy for one sensor whilst

the policy(ies) for the remaining one(s) is (are) held

fixed.

3) We rigorously prove the optimality of the proposed

method for a virtual array with an arbitrary number

of EH sensors. By doing so, we generalize the anal-

ysis in our previous work [14] where the virtual array

comprised one EH sensor assisted by a BO one.

4) We analyze the computational complexity associated

to the proposed optimization scheme. In this respect,

interior point methods are used as a benchmark.

Besides, we extensively assess the performance of the pro-

posed method in a realistic system scenario where vibrational

energy is harvested from the environment.

B. Organization

The paper is organized as follows. In Section II, we intro-

duce the signal and communication model for the two-sensor

case. Next, in Section III we pose the optimization problem in

a convex optimization framework. Then we show that it can

be solved in an iterative fashion. In Section IV, we propose a

semi-analytical algorithm which allows to compute the jointly

optimal transmission policy for one particular sensor when

that of the other one is held fixed. A rigorous proof of

its optimality follows. Section V is devoted to generalize

the previous results to networks with an arbitrary number

of sensors. Then, in Section VI, we analyze and compare

the computational complexity of the proposed optimization

scheme. Next, we present selected computer simulation results

in Section VII. Section VIII closes the paper by summarizing

the main results and drawing some conclusions.

II. SIGNAL AND COMMUNICATION MODEL

Let I denote the total number of EH sensors which coop-

erate to transmit a common message to a distant base station.

Initially, we restrict the analysis to the two-sensor case1 (i.e.,

I = 2) and, thus, the received signal reads

r(t) = m(t)

(
2∑

i=1

wi(t)e
jψi(t)

)

+ n(t) (1)

where the common message is given by m(t) =
∑

l xlg(t −
lTs), with {xl} standing for a sequence of zero-mean complex

Gaussian symbols with unit variance (Ts is the symbol period)

and g(t) denoting the impulse response of a bandlimited pulse

(unit bandwidth), that we have used for signal modulation

(e.g., a sinc pulse); function wi(t) =
√

pi(t)e
jφi(t) denotes

the i-th time-varying complex transmit weight to be designed

(in polar notation); ejψi(t) stands for the phase shift of the

Gaussian sensor-to-base station channels2; and n(t) is zero-

mean complex additive white Gaussian noise with unit vari-

ance (i.e. n(t) ∼ CN (0, 1)). By properly designing φi(t) for

1This initial assumption, to be relaxed in Section V, greatly facilitates the
presentation of the proposed algorithm.

2The effects of path-loss, slow and/or fast (block) fading could be specif-
ically taken into account by modeling the received power as pBF (t) =
(

∑

I

i=1
αi(t)

√

pi(t)
)

2

, with αi(t) denoting the time-varying channel am-

plitude for the ith sensor-to-BS channel. As long as the αi(t) coefficients
were non-causally known, the optimal transmission policies could still be
computed.

i = {1, 2}, we assume that the aforementioned channel phase

shifts and oscillator offsets can be ideally pre-compensated

[12] (frequency and time synchronization are assumed, as

well). With this assumption, the whole sensor network behaves

as a virtual array capable of beamforming the message to the

base station. The instantaneous received power at the base

station is thus given by pBF(t) = (
√

p1(t) +
√

p2(t))
2, and

the total throughput for a given deadline T , GT , then reads

GT = GT
(
p1(t), p2(t)

)
=

∫ T

0

log
(
1 + pBF (t)

)
dt. (2)

Our goal is to find the jointly optimal transmission (power

allocation) policies p1(t) and p2(t) such that GT is maximized

subject to the causality constraints imposed by the energy

harvesting processes, namely,

e1(t) ≤ E1(t) ,
∑

k:sk<t

E1,k ; 0 ≤ t ≤ T (3)

e2(t) ≤ E2(t) ,
∑

k:sk<t

E2,k ; 0 ≤ t ≤ T, (4)

where e1(t) =
∫ t

0 p1(τ)dτ and e2(t) =
∫ t

0 p2(τ)dτ denote the

energy consumption (EC) curves; and E1(t), E2(t) stand for

the cumulative energy harvesting (cEH) constraints which, as

Fig. 1 illustrates, are staircase functions. Besides, Ei,k in the

above expression accounts for the amount of energy harvested

by sensor i in the k-th event (k = 0 . . .N−1). We define event

sk as the time instant in which some energy is harvested by

any of the sensors in the network (Ei,k = 0 for the sensor

not harvesting any energy in that event). Both the events

and the amounts of energy harvested Ei,k are assumed to be

non-causally known3. Further, we impose Ei,0 > 0 for all i
(sensors) in such a way that collaborative transmission can

start immediately.

Finally, we define epoch as the time elapsed between two

consecutive events. Its duration is given by τk , sk − sk−1

for k = 1 . . .N − 1 and, likewise, we define τN , T −
sN−1. A given transmission policy is said to be feasible (yet,

perhaps, not optimal) if, as imposed by (3) and (4), the energy

consumption curves lie below the cEH ones at all times (or

occasionally touch them).

III. COMPUTATION OF THE OPTIMAL TRANSMISSION

POLICY

The following lemmas, the proofs of which can be found

in our previous work [17], state the necessary conditions for

a transmission policy to be optimal4.

Lemma 1. The transmit power in each sensor remains con-

stant between consecutive events.

In other words, the transmit power in each sensor only

potentially changes when new energy arrives to any of them.

Lemma 2. All the harvested/stored energy must be consumed

by the given deadline T .

3Yet not realistic, the assumption of perfect knowledge makes this new
problem (the interplay of energy harvesting and collaborative beamforming)
more tractable. An online algorithm, where such knowledge is acquired over
time, would require different approach to problem solving (e.g., stochastic
programming).

4Some similar Lemmas can also be found in [1] or [4]
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Fig. 1. Network with two energy harvesting sensors (left); cumulative energy
constraints and energy consumption curves (right).

This means that, necessarily, the energy consumption curves

touch the cumulative energy harvesting constraints at time

instant T .

Lemma 3. Transmit powers are strictly positive.

That is, as soon as all sensors harvest some energy (namely,

in t = 0 as imposed earlier), there is no interruption in the

data transmission of any sensor. That is, the total number of

active sensors is constant and equal to I .

Lemma 1 above implies that p1(t) = p1,k and p2(t) = p2,k
for sk−1 ≤ t < sk. That is, the power allocation curves p1(t)
and p2(t) are necessarily staircase functions and, hence, the

energy consumption curves e1(t) and e2(t) are piecewise linear.

This observation allows to pose the original problem into

a convex optimization framework in which a numerical or

analytical solution are easier to find. Specifically, the original

optimization problem given by the score function (2) and the

causality constraints (3) and (4) can be re-written as

max
{p1,k}N

k=1
,{p2,k}N

k=1

N∑

k=1

τk log
(
1 + (

√
p1,k +

√
p2,k)

2
)
(5)

s.t.:
n∑

k=1

τkp1,k ≤ En
1 =

n−1∑

k=0

E1,k for n = 1 . . .N (6)

n∑

k=1

τkp2,k ≤ En
2 =

n−1∑

k=0

E2,k for n = 1 . . .N (7)

p1,k > 0 for k = 1 . . .N (8)

p2,k > 0 for k = 1 . . .N (9)

where we have defined En
i , Ei(t) for t ∈ [sn−1, sn), and

where the last two (strict) inequalities follow from Lemma 3

above. From Lemma 2, it becomes apparent that inequalities

(6) and (7) must hold with equality for n = N . Besides, the

problem is convex since (i) all the constraints are affine or

linear; and (ii) the objective function can be shown to be

concave. To prove the latter, we observe that the k-th term in

the summation, namely Gk(p1,k, p2,k) = τk log(1 + (
√
p1,k +√

p2,k)
2), exclusively depends on the corresponding optimiza-

tion variables p1,k and p2,k (i.e. no cross variables). Hence, it

suffices to show that Gk(p1,k, p2,k) is a concave function for

any k. This can be easily verified by realizing that its 2 × 2
Hessian is negative definite, namely, ∇2Gk(p1,k, p2,k) ≺ 0,

for p1,k > 0 and p2,k > 0. From all the above, we conclude

that the optimization problem (5)-(9) for the two-sensor case is

strictly convex and, hence, its unique solution can be found at

least numerically (e.g. by resorting to interior point methods).

However, such numerical approaches can be computationally

intensive, in particular when the number of energy harvesting

events N (i.e. the size of optimization vector) is large. For

this reason, in the sequel we derive a semi-analytical solution

which is computationally efficient. To that aim, we leverage on

(i) the so-called iterative coordinate descent method (see next

subsection); and (ii) the algorithm that we propose in Section

IV, on which basis we can compute the optimal policy for one

sensor whilst the policy of the other sensor is held fixed.

A. Iterative Coordinate Descent Method

Consider an optimization problem of the form:

max
p

f(p)

s.t. p ∈ P , (10)

where f(p) : Rn → R is a continuously differentiable and

concave function on a set P which, in turn, can be expressed

as the Cartesian product of convex sets P1, . . . ,Pn.

In [18], the authors prove that as long as (i) f(p) is a strictly

concave function of the i-th coordinate of vector p (i.e. it

has a unique maximum in pi when the remaining coordinates

are held constant); and (ii) the sequence of said coordinates

is generated according to an almost cyclic rule (or, more

intuitively, every coordinate is iterated a sufficient number of

times); an iterative procedure by which in each step a subset

of coordinates in p are adjusted so as to minimize f(·) over

P along this direction necessarily converges to the optimal

solution.

One can easily prove that the optimization problem (5)-

(9) can be cast into the general framework described above5

and, hence, it can be solved in an iterative fashion. In this

context, we let pi = [pi,1, pi,2, . . . , pi,N ]
T

denote a column

vector gathering the N components in the transmission policy

{pi,k}Nk=1 of sensor i ∈ {1, 2}. Further, we define transmis-

sion sub-policy as the subset of transmit powers {pi,k}kuk=kl
in epochs k = kl . . . ku. Accordingly, vector pi,kl:ku =

[pi,kl , pi,kl+1, . . . , pi,ku ]
T

gathers the transmit powers in such

transmission sub-policy. Bearing all this in mind, the original

optimization problem (5)-(9) can be decomposed in two indi-

vidual sub-problems (one for each sensor in the network) and

be iteratively solved. More precisely, in the m-th iteration we

update the transmission policy of the first sensor, p
(m)
1 , by

solving the subproblem

p
(m)
1 = argmax

p1

N∑

k=1

τk log

(

1 +

(√

p
(m)
1,k +

√

p
(m−1)
2,k

)2
)

(11)

s.t.:

n∑

k=1

τkp
(m)
1,k ≤ En

1 =

n−1∑

k=0

E1,k for n = 1 . . .N (12)

p
(m)
1,k > 0 for k = 1 . . .N (13)

5A detailed derivation is omitted here due to space limitations.
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while holding fixed the policy for the second sensor that was

computed in the previous iteration, namely, p
(m−1)
2 . Next, we

update the transmission policy of the second sensor, p
(m)
2 by

solving

p
(m)
2 = argmax

p2

N∑

k=1

τk log

(

1 +

(√

p
(m)
1,k +

√

p
(m)
2,k

)2
)

(14)

s.t.:

n∑

k=1

τkp
(m)
2,k ≤ En

2 =
n−1∑

k=0

E2,k for n = 1 . . .N (15)

p
(m)
2,k > 0 for k = 1 . . .N (16)

while holding p
(m)
1 fixed6. This procedure is iterated until a

prescribed level of accuracy is attained or when the maximum

number of iterations is reached. Since in each iteration both

transmission policies are updated, the almost cyclic rule is

clearly satisfied. To remark, this optimization technique has

been widely used in multi-user scenarios (see e.g. [4] and [19]

for details).

IV. OPTIMIZATION OF THE TRANSMISSION POLICY OF ONE

EH SENSOR

In this section, we propose an algorithm to semi-analytically

find the (jointly) optimal transmission policy of one sensor

whilst that of the other one is held fixed.

A. Proposed algorithm

Assume, without loss of generality, that we want to optimize

the transmission policy of the first sensor. The Karush-Kuhn-

Tucker (K.K.T.) conditions for the sub-problem (11)-(13),

read7:

∂L1
∂p̆1,k

= 0 (17)

n∑

k=1

τkp̆1,k ≤ En
1 =

n−1∑

k=0

E1,k for n = 1 . . .N (18)

p̆1,k > 0 (19)

λ̆n, µ̆k ≥ 0 (20)

λ̆n

(
n∑

k=1

τk p̆1,k − En
1

)

= 0 for n = 1 . . .N (21)

−µ̆kp̆1,k = 0, (22)

where ∂L1

∂p̆1,k
stands for the partial derivative of the Lagrangian

associated to the sub-problem, namely,

∂L1
∂p̆1,k

=− τk

√
p̆1,k +

√
p2,k

√
p̆1,k

(
1 + (

√
p̆1,k +

√
p2,k)2

)

+ τk

(
N∑

n=k

λ̆n −
µ̆k
τk

)

. (23)

6Note that each subproblem includes only its own energy causality con-
straint. This follows from the fact that (i) causality for the other (fixed)
transmission policy is enforced in the previous iteration; and (ii) causality
constraints are not mutually coupled since both sensors harvest energy
independently.

7For brevity, hereinafter we omit the iteration index m.
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The complementary slackness condition (22) along with (19)

imply that, at the optimal point p̆1, all µ̆k must vanish, i.e.

µ̆k = 0, ∀k. Hence, by defining

Ak =

N∑

n=k

λn (24)

the partial derivative of the Lagrangian in (23) can be conve-

niently re-written as

∂L1
∂p̆1,k

=− τk

√
p̆1,k +

√
p2,k

√
p̆1,k

(
1 + (

√
p̆1,k +

√
p2,k)2

) + τkĂk.

(25)

In order to compute the optimal transmission policy for

the first sensor, we partly leverage on (and generalize) the

algorithm presented in our previous work [14]. The algorithm

allows to analytically compute the optimal policy for a battery

operated (BO) sensor in a virtual array composed of one EH

plus one BO sensor (see Appendix A). For a BO sensor, we

have Ei,0 > 0 whereas Ei,k = 0 for k = 1 . . .N − 1, In other

words, no energy other than that initially stored in its battery is

harvested during sensor operation. As a result, the cEH curve

defined in (3) or (4) is no longer a staircase function. Instead,

it takes a constant value for the whole 0 ≤ t ≤ T period.

Specifically, in order to compute the optimal transmission

policy for the first sensor we propose the following 4-step

procedure:

1) Check whether a BO-like solution for epochs k =
1 . . .N is feasible: To that aim, we assume that all the

energy harvested by the first sensor during its operation

is available from t = 0 (see Fig. 2). This is equivalent to

solve an optimization sub-problem where we replace the

set of actual harvested energies E1,k by the following

virtual ones

E′
1,0 =

N−1∑

k=0

E1,k (26)

E′
1,k = 0 (27)

for k = 1 . . .N−1. The corresponding virtual transmis-

sion policy p̆′
1 can thus be computed as it is explained in

the Appendix A. If such virtual transmission policy veri-

fies the constraints (12)-(13) of the original sub-problem

(i.e. it is feasible) then it is solved and the procedure
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terminated8. This follows from the facts that (i) the

score function optimized in the virtual and original sub-

problems are identical; (ii) the sub-problem is strictly

convex and, hence, the optimal solution is unique; and

(iii) the solution of the virtual sub-problem is feasible for

the original one too9. In other words, we have p̆1 = p̆′
1.

Interestingly enough, if the BO-like solution is feasible

(and, thus, optimal) then p̆1 is not affected by the

causality constraints for n = 1 . . .N − 1 which could

well be dismissed. More formally, this is equivalent to

say that, in the Lagrangian dual we have λ̆n = 0 for

n = 1 . . .N − 1 (still, we must have λ̆N > 0 in order

to fulfill the necessary optimality condition given by

Lemma 2 and, thus, enforce
∑N
k=1 τkp̆1,k = EN

1 in the

KKT condition given by (21)).

On the contrary, if the resulting virtual policy p̆′
1 violates

one or more causality constraint given by (12) then it

is not feasible. In order to enforce those constraints,

we necessarily have λ̆n > 0 for one or more epochs

in n = 1 . . .N − 1 (in addition to having λ̆N > 0).

Consequently, the optimal policy p̆1 is such that the EC

curve touches the cEH constraints in one or more corner

points of the cEH curve in n = 1 . . . N − 1. This case

is addressed in Step 2.

2) Find the largest L < N such that a BO-like solution

for epochs k = 1 . . . L is feasible and, simultaneously,

the energy harvested by that sensor in sL is non-zero:

If the BO-like virtual sub-policy p′
1,1:L is feasible for

original problem, then it verifies the causality constraints

for k = 1 . . . L (or, equivalently, the KKT conditions for

such epochs). Hence, p′
1,1:L is a good candidate for the

optimal transmission policy p̆1 since, at least, it verifies

the problem constraints up to the L-th epoch. As soon

as this happens, we move to Step 3 below (otherwise,

we try a smaller value of L). It is worth noting that,

analogously to Step 1, the fact that this virtual sub-policy

is feasible implies that, in the Lagrangian dual, we have

λn = 0 for n = 1 . . . L − 1 and10 λL > 0. In other

words, in the first L epochs the EC curve associated to

this candidate hits the cEH curve in sL only.

The reason why we impose the sensor to effectively

harvest some energy in sL (i.e., E1,L > 0) will be

clarified in Step 4 below. For the time being, it suffices

to say that imposing E1,L > 0 is equivalent impose that

the cEH curve has a corner point in sL.

3) Retain sub-policy p′
1,1:L and repeat Steps 1 and 2 for

epochs k = L + 1 . . .N only (instead of k = 1 . . .N ).

Steps 1 to 3 are iterated until all the transmit powers

for epochs k = 1 . . .N have been computed as BO-like

feasible solutions.

4) Construct the optimal transmission policy as a con-

8Note that the generalized water-filling solution of [4] would only come
to this conclusion after computing all waterlevels and realizing that they are
equivalent

9Intuitively, since in a BO-like policy all the energy harvested is available
from the onset the throughput it attains is necessarily higher than that of any
other policy computed with the actual energy arrivals.

10This is consistent with the fact that, from Step 1, we know that there

exists at least one n < N such that λ̆n > 0.
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catenation of the BO-like sub-policies computed and

retained in Steps 1-3. This extent is illustrated in

Fig. 3 where, as an example, we have p̆1 =
[p

′T
1,1:L,p

′T
1,L+1:M ,p

′T
1,M+1:N ]T with L,M < N . The

intuition behind this approach is that, as previously dis-

cussed, each BO-like policy attains the highest possible

throughput in its own epoch subset, which is determined

in Steps 1-2. However, its overall optimality needs to be

proved.

As a final remark, note that should the sub-policy p
′

1,1:L

hit the cEH curve in a non-corner point, we would

unavoidably have p
′

1,L+1 = 0 which contradicts the

necessary optimality condition of Lemma 3. This is why

in Step 2 above we imposed E1,L > 0.

B. Algorithm Optimality

In the remainder of this section, we prove our claim that the

resulting transmission policy is indeed optimal. This motivates

the following two lemmas and theorem.

Lemma 4. If L ≤ N is the largest value for which a candidate

BO-like transmission sub-policy p1,1:L ending in a corner

point of the cEH curve is feasible, then there exists no other

transmission sub-policy p1,1:R with R < L such that it is part

of the optimal transmission policy.

This lemma implies that, as soon as the aforementioned

largest L has been identified, there is no need to search

for additional candidate sub-policies in which the EC curve

touches the cEH one in a corner point at a previous time instant

sR (since, for sure, the overall optimal transmission policy will

not include those corner points). This avoids conducting an

exhaustive search over events and, hence, allows us to move

from Step 2 to Step 3 as described in the procedure above

without compromising optimality. This lemma can be easily

proved by contradiction, as shown in the Appendix B.

To insist, this Lemma does not state that p1,1:L is part of

the overall optimal policy (to that aim we need Lemma 5 next)

but, instead, that ṗ1,1:L cannot be part of it.

Lemma 5. If L ≤ N is the largest value for which a candidate

BO-like sub-policy p1,1:L ending in a corner point of the cEH

curve is feasible then such sub-policy is necessarily part of

the optimal transmission policy p̆1.

Proof: For the L = N case, the proof is trivial. In order

to prove the lemma for L < N , notice that from Step 1 we
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know that there exists one (or more) λ̆k > 0 for k = 1 . . .N−
1. In other words, the EC curve hits the cEH curve in some

corner point(s) at sk with k = 1 . . .N − 1. Assume that this

occurs for the first time at k = N−1. If so, the corresponding

BO-like sub-policy is feasible and λN−1 > 0. Otherwise, we

know that the EC curve hits the cEH one for the first time

in some corner point(s) at sk for k = 1 . . .N − 2 for which

λk > 0. We recursively apply this procedure and, for k =
L + 1, we realize that the corresponding BO-like policy is

again not feasible and, thus, the first λk > 0 is necessarily

in the range k = 1 . . . L. Finally, for k = L the BO-like

policy is feasible and, from Lemma 4, we know that the EC

curve associated to the optimal transmission policy does not

touch the cEH one in a corner point at a previous time instant.

Therefore only the BO-like transmission sub-policy p1,1:L is

in a position to satisfy the λk > 0 for some k = 1 . . . L
and, thus, it must be part of the overall optimal transmission

policy11. This concludes the proof.

Theorem 1. When the transmission policy for the second

sensor is held fixed, the jointly optimal transmission policy

for the first sensor, p̆1, can be computed with the procedure

given in Algorithm 1.

Algorithm 1 Optimal policy for sensor 1 in the m-th iteration

1: m ⊲ Current iteration index

2: kl = 1 ⊲ Transmission sub-policy starts in epoch 1

3: ku = N ⊲ Transmission sub-policy ends in epoch N

4: p2 := p
(m−1)
2 ⊲ Let the transmission policy for sensor 2

5: ⊲ be the one computed in the previous iteration.

6: repeat

7: Compute BO-like sub-policy p′
1,kl:ku

as per Alg. 2

8: if (p′
1,kl:ku

is feasible) then

9: p
(m)
1 [kl : ku]← p′

1,kl:ku
10: kl ← ku + 1
11: ku ← N
12: else

13: repeat

14: ku ← ku − 1
15: until E1,ku > 0 ⊲ Sub-policy ends in corner point

16: end if

17: until kl > ku

Algorithm 1 is nothing but a more formal representation

of the 4-step procedure described above. The corresponding

proof of its optimality follows.

Proof: After computing and retaining the candidate

sub-policy p1,1:L, we only need to compute the remaining

elements of the optimal transmission policy, namely, p̆1,k for

k = L+1 . . .N . Since at sL the total energy spent equals the

energy harvested, those elements exclusively depend on the

energy harvested in subsequent events (i.e. not in the previous

ones, or on the optimal transmit powers for the preceding

epochs). Thus, we can simply re-start the 4-step procedure

above for epoch L+ 1 onwards, as it is done in Step 3. The

11Note that, unlike [4], we have proven that the overall optimal policy can
be computed as a concatenation of the “longest” feasible BO-like sub-policies.
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Fig. 4. Joint vs. separate optimization of transmission policies (I = 2)

overall optimal transmission policy is finally computed as a

concatenation of the BO-like sub-policies computed in Steps

1-3, which is accomplished in Step 4.

To conclude this section, in Figure 4 we depict the transmis-

sion policies of both sensors when (i) both policies are jointly

optimized (JO); and (ii) such policies are separately optimized

(SO) as in the single-sensor scenario addressed in [1], which

is suboptimal. For case (ii), each sensor attempts to maximize

its own throughput rather than the throughput resulting from

cooperative transmission. In these circumstances, the ”opti-

mal” transmission policy for each sensor can be conveniently

computed as the shortest string lying below the cEH curve

of that sensor (see [1], for details). The impact in terms of

throughput will be assessed in detail in Section VII.

V. GENERALIZATION TO NETWORKS WITH AN ARBITRARY

NUMBER OF SENSORS

For the general case of a network with I energy-harvesting

sensors, the optimization problem reads

max
p1,p2,...pI

N∑

k=1

τk log



1 +

(
I∑

i=1

√
pi,k

)2


 (28)

s.t.:
n∑

k=1

τkpi,k ≤ En
i =

n−1∑

k=0

Ei,k i = 1 . . . I (29)

n = 1 . . .N

pi,k > 0 i = 1 . . . I (30)

k = 1 . . .N.

In order to generalize the results from the previous sections, it

suffices to (i) show that the score function (28) is strictly con-

cave as well; and (ii) ensure that the sequence of transmission

policy updates of the iterative coordinate descent method is

almost cyclic. The latter can be enforced by e.g. sequentially

updating all sensor transmission policies in each iteration

(namely, pm1 → pm2 → . . . → pmI → pm+1
1 → . . .). As

for the former, it is worth noting again that the k-th term in

the summation, namely

Gk(p1,k...pI,k) = τk log



1 +

(
I∑

i=1

√
pi,k

)2


 , (31)
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exclusively depends on the vector of transmit powers in the

k-th epoch. In other words, there are no cross variables. In

these circumstances, it suffices to show that for any k, Gk(·)
is a strictly concave function. This holds true if its Hessian

∇2Gk is negative definite (namely, ∇2Gk ≺ 0) in its domain,

that is, if yT∇2Gky < 0 for all non-zero vectors y ∈ RI .

Let us define functions f (·) and h (·) as

f (h) = log (1 + h) (32)

h (p) =

(
I∑

i=1

√
pi

)2

(33)

From these definitions, we can write G (p) = f (h (p)) where

we have omitted the epoch index k for brevity. Its Hessian can

thus be expressed as12:

∇2G = ∇h∂
2f

∂h2

∣
∣
∣
h=h(p)

∇hT +
∂f

∂h

∣
∣
∣
h=h(p)

∇2h (34)

with

∇h =

(
I∑

i=1

√
pi

)

·
[

1√
p1

1√
p2

. . . 1√
pI

]T

, (35)

∂2f

∂h2

∣
∣
∣
h=h(p)

= − 1
(

1 +
(
∑I

i=1

√
pi

)2
)2 , (36)

∂f

∂h

∣
∣
∣
h=h(p)

=
1

1 +
(
∑I

i=1

√
pi

)2 , (37)

and

∇2h =
1

2











−
∑

I
i=1

√
pi−

√
p1√

p1
3 . . . 1√

p1
√
pI

1√
p1

√
p2

. . . 1√
p2

√
pI

...
. . .

...

1√
p1

√
pI

. . . −
∑I

i=1

√
pi−

√
pI√

pI
3











.

(38)

After some tedious manipulations, it yields

yT∇2G y = − 1

1 + h (p)
·









h (p)

1 + h (p)
·
(

I∑

i=1

yi√
pi

)2

︸ ︷︷ ︸

L1

− 1

2

(
I∑

i=1

yi√
pi

)2

︸ ︷︷ ︸

L2

+
1

2





I∑

i=1

y2i√
pi

2 ·
1√
pi

I∑

j=1

√
pj





︸ ︷︷ ︸

L3










(39)

12The composition of strictly concave functions is not necessarily a strictly
concave function [20]. This is why, in the sequel, we derive a specific proof
for the function of interest.

Interestingly, from Cauchy-Schwartz’s inequality [21][Sec.

1.6.2], the following relationship between the L2 and L3 terms

can be established:

L3 =
1

2

(
I∑

i=1

y2i√
pi

2 ·
1√
pi

)

·





I∑

j=1

√
pj





≥ 1

2

(
I∑

i=1

yi√
pi

4
√
pi

4
√
pi

)2

=
1

2

(
I∑

i=1

yi√
pi

)2

= L2 (40)

where the equality holds if (and only if) yi = αpi for all i,
that is, if vectors y and p are co-linear. Besides, we know

from Lemma 3 that all transmit powers pi are strictly positive

and, hence, from (33) we have h (p) > 0. Thus, from (39) it

follows that ∇2G is negative definite iff L1 − L2 + L3 > 0.

Since vector y is different from zero, this implies L1, L2 > 0,

and L3 > 0. If vectors y and p are not co-linear then L3 > L2

and, consequently, L1 − L2 + L3 > 0. If, on the contrary,

vectors y and p are co-linear then L2 = L3 which yields

L1−L2+L3 = L1. Since yi = αpi this means that all yi are

either strictly positive or negative. Consequently, L1 > 0 and,

again, this yields yT∇2G y < 0, which concludes the proof.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity

of the proposed joint optimization scheme, and compare it

with that of the popular interior point methods [22]. More

precisely, we focus on the number of operations needed in

order to determine the (jointly) optimal transmission policy

of one sensor while holding the rest fixed. This renders the

comparison independent of the number of iterations of the

coordinate descent method described in Section III-A which

depends inter-alia on the required precision.

To recall, we construct the jointly optimal transmission

policy as the concatenation of a number of feasible BO-like

sub-policies. Necessarily, each sub-policy starts and ends in

a corner point of its cEH curve (see Fig. 3). For large I ,

the average number of corner points in each cEH curve reads

P = N/I . The total number of corner points in the optimal

policy is, thus, within the 1 . . . P range. The maximum (worst-

case) number of BO-like sub-policies that need to be checked

for feasibility (i.e. pseudo-instructions 6 to 15 in Algorithm 1)

equals P + (P − 1) + (P − 2) + ...+ 1 = P (P−1)
2 . The min-

imum number (best-case) is, clearly, 1 (when the EH sensor

behaves as a BO one), whereas the actual number depends

on the specific realization of energy arrivals. In all cases,

though, the number of epochs in each sub-policy is upper-

bounded by N . For each of those epochs, the BO-like transmit

power is computed according to the iterative procedure given

by Algorithm 2 (see Appendix A) which essentially entails

solving the third order equation in pseudo-instruction 8. Still,

the number of operations that solving it entails, Ω, does not

depend on the problem dimensionality (e.g. N , or I). Finally,

the total number of times that such third order equation needs

to be solved depends on χ, namely, the required accuracy

with which the constraint in pseudo-instruction 12 is enforced.

When a bi-section scheme is adopted (rather than the grid

search actually used in Algorithm 2), the total number of
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iterations needed scales as log( 1
χ
) [23]. Bearing all the above

in mind, the computational complexity of the proposed scheme

is upper-bounded by

O
(

P 2 ·N · Ω · log
(
1

χ

))

= O
(

N3

I2
· Ω · log

(
1

χ

))

(41)

and lower-bounded by

O
(

N · Ω · log
(
1

χ

))

. (42)

The computational complexity of interior point methods reads

[22]

O
(

N3 · log
(
1

ǫ

))

. (43)

where parameter ǫ is directly related with the accuracy with

which the optimization problem is solved. Clearly, even for the

upper bound of (41), the computational complexity savings

are on the order of I2, for large N (i.e., asymptotically).

This is of utmost importance since the number of sensors in

such networks is typically high. Furthermore, Figure 5 reveals

that the actual number of times that a BO-like policy needs

to be checked for feasibility (averaged over realizations) is

substantially below the
P ·(P−1)

2 figure of the worst case. For

this particular yet representative setting, it was empirically

found to be O (NP ). Consequently, the actual savings are

much larger than those predicted by the upper bound (41).

VII. COMPUTER SIMULATION RESULTS

In this section, we assess the performance of the proposed

power allocation algorithm in a scenario where vibrational

energy is harvested from the environment. More precisely,

sensors are assumed to be deployed along a roadside and the

energy they harvest is generated by passing-by vehicles which

move at a constant speed. The energy storage device in each

sensor comprises (i) a supercapacitor [24]; and (ii) a Lithium-

Ion battery, which is assumed to have infinite capacity. Upon

being harvested, the energy is temporarily stored in the super-

capacitor. When it is fully charged, the energy is transferred

to the battery in a burst which validates the event-based model

of the energy harvesting process presented in Section II. For

such devices, the amount of energy harvested in each event is

constant and it equals the maximum energy that can be stored

in the supercapacitor. Except in very dense traffic conditions,

the levels of vibrational energy change over time (e.g. when

a vehicle passes by), and so does the average number of

energy arrivals (events). Consequently, the stochastic process

that models energy arrivals is non-stationary. In the sequel,

we adopt a Poisson process with time-varying mean given by

λE(t). For simplicity, we assume that sensors harvest energy

at a constant rate λE(t) = λo = 50/32 when the vehicle is in

its vicinity, and λE(t) = 0 otherwise (i.e. λE(t) is given by a

sequence of rectangular pulses).

Hereinafter, we let Ei
T =

∑N−1
k=0 Ei,k denote the total

energy harvested by the i-th sensor; whereas ET =
∑I

i=1 E
i
T

accounts for the total energy in the system. In all plots, we

have set T = 320 s. Numerical results are averaged over 1000

realizations of energy arrivals.

A. Two-sensor case

Here, we assume that two sensors have been deployed at

normalized locations d1 = 0.05 and d2 ≥ d1. The normalized

inter-sensor distance is denoted by ∆d = d2−d1. Each sensor

i ∈ {1, 2} is assumed to harvest energy when the passing

vehicle is within a road segment centered in di and total

normalized length13 0.1. Further, we define RE = E1
T /E

2
T

as the ratio between the total energy harvested by the first and

second sensors, respectively (i.e. for large RE , the first sensor

dominates).

In Fig. 6, we depict the throughput attained by the virtual

array when using the jointly optimal (JO) transmission policy

described in Sections III and IV. We consider scenarios with

Gaussian and block Rayleigh-fading channels with channel

coherence time TC = 40s and identical average SNR. As a

benchmark, we consider a system in which the transmission

policy for each sensor is separately optimized (SO) as in

[1], which is suboptimal for a virtual array. The total energy

harvested by each sensor is identical (RE = 1) and the results

are shown as a function of normalized inter-sensor distance

∆d. For Gaussian channels and small ET , the throughput

attained by the JO transmission policy is approximately con-

stant for the whole range of ∆d values. On the contrary, the

performance exhibited by the SO policy degrades when inter-

sensor distance increases: since the first sensor ignores that the

second one is idle for most of the time, its harvested energy

is mostly wasted before the second sensor starts transmitting.

In other words, the JO transmission policy tends to allocate

(shift) more energy to the period of time where both sensors

are active. The beamforming gain that it entails, results into a

higher throughput. For this range of ET values, the larger the

inter-sensor distance, the more noticeable this effect becomes.

This extent is illustrated for a particular realization in Fig. 7.

On the contrary, for large ET the jointly optimal and

suboptimal transmission policies are almost identical14, as

shown in Fig. 8. This is due to the fact that throughput scales

13Ultimately, this value depends on the sensitivity of the EH device
14This might not be the case for scenarios where different sensors experi-

ence different channel gains (due e.g., to path-loss or fading).
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logarithmically in the transmit power (and, thus, on the total

harvested energy) and linearly in the transmission time. Hence,

for large ET it makes no sense for sensor 1 to wait until sensor

2 starts transmitting: the additional beamforming gain (and

instantaneous throughput) cannot compensate the saturation

effect of the concave log function and the reduced transmission

time. Instead, it is optimal to let sensor 1 transmit for most

of the time, as the SO solution does. In other words, joint

optimization of transmission policies is particularly useful in

the low-SNR regime (i.e. for small ET ). Indeed, for large

inter-sensor distances, the throughput achievable by the jointly

optimal policy decreases as well, since the contribution of the

second sensor vanishes. The larger ET , the more noticeable

this effect is for smaller values of inter-sensor distance, as Fig.

6 illustrates.

For this simulation setting, the attained throughput in the

case of Rayleigh-fading channels turns out to be higher than

for Gaussian channels. This stems from the fact that the

optimal transmission policy tends to allocate (shift) more

power when channel conditions are favorable and cancel

transmission otherwise. By doing so, time diversity can be

effectively exploited. Unsurprisingly, the gain is higher for

the JO policy since, in this case, both time diversity and the

gain associated to collaborative transmission can be optimally

exploited.
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Fig. 8. Joint and separate optimization of transmission policies for one
particular realization of energy arrivals (ET = 100J , ∆d = 0.9, I = 2,
RE = 1).
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Hereinafter, we focus on results for Gaussian channels

only. Fig. 9 provides further insights on the throughput gain

stemming from the joint optimization of transmission policies.

More precisely, we depict the throughput ratio RG =
GT,opt

GT,subopt

as a function of inter-sensor distance. The throughput gain

can be as high as 40% when the total amount of energy

harvested is small (ET = 0.1 J) and inter-sensor distance high

(∆d = 0.9). For large ET values and, in particular, in the

case of distant sensors, the gain vanishes, as discussed in the

previous paragraph.

Next, in Fig. 10, we depict the throughput gain vs. total

system energy, for a number of energy ratios RE = E1
T /E

2
T

between the first and second sensors. Interestingly enough,

the highest gain for most scenarios is attained when the

energies harvested by the first and second sensors are identical,

that is, for RE = 1. Yet in a totally different context, this

is consistent with [13] where the authors conclude that, in

order to maximize the beamforming gain, the received signal

levels from the opportunistically selected sensors must be

comparable. Conversely, when either the first or second sensor

dominate (RE ≪ 1 or RE ≫ 1, respectively) the gain from

the joint optimization becomes marginal (RG → 1) since

the signal received from the other sensor is weak. We also

observe that, in the case of unbalanced energy levels15, the

throughput gain is lower when the first sensor dominates. In

15Such an imbalance might result e.g. from differences in the transduction
efficiency of the two sensing devices.
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other words, when E1
T ≫ E2

T the transmission policy of the

second (weak) sensor has very little impact in that of the first

(strong) one, which is close to that resulting from a separate

optimization over sensors. Finally, and as it was discussed

earlier, all throughput gains vanish in the high-SNR regime

(i.e. for large ET ).

B. General case

Hereinafter, we consider a deployment scenario where the

I > 2 sensors in the network are grouped into Nc non-

overlapping and homogeneous clusters, each with I/Nc sen-

sors. The sensors in the i-th cluster are deployed in the

vicinity of the normalized location di = 0.05 + i/Nc for

i = 0 . . .Nc − 1 and, again, they harvest energy when the

passing vehicle is within a road segment centered in di and

total normalized length equal to 0.1. It is assumed that all the

sensing devices are identical and, thus, we have Ei
T = ET /I

for all i. As far as the computation of the transmission

policy for each sensor is concerned, we consider four possible

strategies, namely,

• Joint Optimization (JO): Here, again, we compute the

jointly optimal transmission policy for each sensor as

proposed in Section V. Hence, the maximum number of

active sensors in the virtual array and, thus, the maxi-

mum beamforming gain is I . All sensors are allowed to

transmit data at any time instant in [0 . . . T ] (of course, as

long as some energy has been harvested before). Clearly,

this strategy will attain the highest possible throughput.

Subsequent ones are suboptimal and will be used as

benchmarks.

• Separate Optimization (SO): As in the two-sensor case,

here the transmission policy for each sensor is separately

optimized (vs. jointly).

• Cluster-by-cluster (CbC): In this strategy, the sensors

in the i-th cluster are allowed to transmit data until the

first sensor in the i + 1-th cluster becomes active. As a

result, (i) the maximum number of simultaneously active

sensors is I/Nc; and, (ii) the maximum transmission

time for a specific sensor is, roughly, T/Nc. That is, the

beamforming gain is lower and the transmission time is

shorter than in the previous strategies.

TABLE I
OPTIMIZATION MECHANISMS AND PARAMETER SET-UP FOR EACH

STRATEGY.

Strategy Optimiz. Max. Nr. sensors Max. Tx time

Joint Optimization Joint I T
Separate Optimization Separate I T
Cluster-by-cluster Joint I/Nc T/Nc

All sensors, last cluster Joint I T/Nc
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Fig. 11. Throughput vs. number of sensors (Nc = 8, ET = 1 J).

• All sensors, last cluster (ASLC): Here, we assume that

the sensors in the first Nc − 1 clusters harvest some

energy, they store it in their respective batteries, and

postpone data transmissions until the first sensor in the

Nc cluster harvests some energy (i.e. the time instant in

which data transmission for the last cluster can start).

As a result, the maximum transmission time for a given

sensor is, again, T/Nc; and the maximum number of

active sensors equals I .

For the sake of comparison, Table I below summarizes the

mechanisms to compute the transmission policy and provides

details on the parameter set-up for each strategy. In Fig. 11, we

depict the throughput attained by the various strategies in a low

to mid-SNR scenario (ET = 1 J). Unsurprisingly, throughput

is a monotonically increasing function in the number of

sensors for all the strategies considered. When the number

of sensors increases, so does the beamforming gain and the

SNR of the received signal (and, thus, throughput) becomes

higher. In other words, by deploying more sensors, we drive

the network towards high-SNR regime. Unsurprisingly too,

the JO strategy attains the highest throughput. However and

as we will see next, the fact that some suboptimal strategies

outperform others will ultimately depend on a number of

system parameters.

Next, we show some results in terms of the throughput ratio

(i.e., loss) between the JO strategy and the suboptimal ones,

namely, LG,{SO,CbC,ASLC} = GT,{SO,CbC,ASLC}/GT,JO ≤ 1. In

Fig. 12 we depict the corresponding losses as a function of

the number of sensors, and for diverse conditions in terms of

cluster number and amount of energy harvested. In brief, by

moving from (i) the top to the bottom subplot, or (ii) from left

to right in each subplot, we drive the system towards the high-

SNR regime. By moving from the first to the second subplot,

we increase the number of clusters as well. Interestingly,
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in the low to mid-SNR regime (top and middle subplots,

left), the ASLC strategy outperforms all suboptimal ones

and, in particular, separate optimization (SO). Hence, forcing

all sensors to simultaneously transmit with those in the last

cluster (which leads to an increased beamforming gain) is

definitely better than allowing them to transmit at any time

in an uncoordinated manner (at the risk of wasting the scarce

energy harvested without really acting as a virtual array). As

already discussed in the two-sensor case, the performance gap

for the JO and SO strategies vanishes in the high-SNR regime.

Consequently, LG,SO ≈ 1 in the bottom subplot (high ET or in

the rightmost part of the top and middle ones. It is also worth

noting that, in the low-SNR regime, increasing the number

of clusters results into a wider performance gap between the

CbC and ASLC strategies (c.f. upper and middle subplots).

Since the number of sensors per cluster is lower and no inter-

cluster coordination takes place (clusters transmit one after

the other), this results into a lower beamforming gain for

CbC and, thus, poorer performance (to stress, the maximum

transmission time for each sensor is identical in the CbC and

ASLC cases). Finally, we also observe that if we sustainedly

drive the sensor network towards higher SNRs (bottom, right),

the CbC strategy finally outperforms ASLC, as the crossing

point indicates. Interestingly, this is despite of the fact that the

former exhibits a lower beamforming gain (I/Nc vs. I). This,

again, is motivated by the fact that throughput is a concave

function which increases slowly in the high-SNR regime. In

other words, it is more efficient to split the sensors into higher

number of clusters and, hence, increase the transmission time

linearly (CbC); rather than increasing the beamforming gain

and shortening the transmission time (ASLC).

Finally, Fig. 13 provides further insights into the perfor-

mance of the various strategies as a function of the total

energy harvested. The main conclusions are as follows: (i)

the JO strategy proposed in this paper is particularly useful

for the low-SNR regime; (ii) in the mid-to-high SNR regime,

on the contrary, separate optimization results into a marginal

loss (SO is virtually identical to JO); and (iii) the CbC and

ASLC strategies exhibit substantial performance losses in the

mid-to-high SNR regime.

VIII. CONCLUSIONS

In this paper, we have proposed a semi-analytical algorithm

that allows to compute the jointly optimal transmission policy

for a virtual array of energy harvesting sensors in such a

way that the throughput for a given deadline is maximized.

The optimality of the resulting policy has been rigorously

proved. We have also found that the computational complex-

ity of the proposed scheme is upper-bounded by O
(
N3

I2

)

.

Consequently, the computational savings with respect to in-

terior point methods are, at least, of an I2 factor (yet, in

practice, much higher). Performance has been assessed by

means of computer simulations in a realistic scenario where

vibrational energy is harvested from the environment. Com-

puter simulation results revealed that, in the low-SNR regime,

the gain resulting from the joint optimization (vs. separate

optimization) of the transmission policies can be as high as

40% when inter-sensor distance is high. This is achieved by
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Fig. 13. Throughput ratio (loss) vs. total energy ET (Nc = 8, I = 16) .

favoring simultaneous sensor transmissions which result into

a higher beamforming gain (and, thus, throughput). On the

contrary, in the high-SNR regime the jointly and separately

optimal transmission policies are almost identical and, hence,

such gain vanishes. This follows from the fact that throughput

scales logarithmically in the transmit power and linearly in

the transmission time. We have also concluded that, for most

scenarios, the throughput is higher when each sensor in the

virtual array harvests the same amount of total energy. As

for the other suboptimal transmissions strategies (cluster-by-

cluster, all sensors-last cluster), we have learnt that, in the

low-to-mid SNR regime the all sensors-last cluster policy out-

performs all the rest and, in particular, separate optimization.



12

Besides, the performance gap between between the cluster-

by-cluster and all sensors-last cluster strategies becomes wider

when the number of cluster increases. In the high-SNR regime,

on the contrary, the cluster-by-cluster strategy outperforms the

all sensors-last cluster one.

APPENDIX A

COMPUTATION OF THE JOINTLY OPTIMAL TRANSMISSION

POLICY FOR A BATTERY OPERATED SENSOR

Consider a scenario where one energy harvesting (EH)

plus one battery operated (BO) sensor cooperate to transmit

a common message to a distant base station. In [14], we

proved that upon finding the optimal transmission policy for

the EH sensor, {p̆Hk }Nk=1, the jointly optimal transmission

policy for the BO sensor, {p̆Bk }Nk=1, can be computed with

the iterative procedure given by Algorithm 2. Since p̆Hk is

Algorithm 2 Optimal policy for the battery operated sensor

1: choose some small δ > 0 ⊲ Step for grid search

2: r := 0 ⊲ Current iteration index

3: EB
T := Energy initially stored in the battery

4: repeat

5: r := r + 1
6: for all k = 1 . . .N do

7: Bk,r := rδ,

8: solve p̆Hk =
Bk,r(Ak,r+Bk,r−Ak,rBk,m)

Ak,r(Ak,r+Bk,r)2
for Ak,r

9: pBk,r ←
(
Ak,r

Bk,r

)2

p̆Hk
10: end for

11: EB
T,r :=

∑

k τkp
B
k,r

12: until EB
T,r = EB

T

13: p̆Bk ← pBk,r ∀k

already known, for each value of Bk,r to be tested (which

is computed in pseudo-instruction 7), the associated Ak,r can

be found by solving the corresponding third order equation

in pseudo-instruction 8 (a single real-valued and positive

root exists). From p̆Hk , Ak,r, and Bk,r, an estimate of the

optimal transmission policy for the battery operated sensor

for the current iteration, namely, {pBk,r}Nk=1, follows in pseudo-

instruction 9. If the total energy consumed until time instant T
by the battery operated sensor, computed in pseudo-instruction

11, equals the energy (initially) stored in it, EB
T , the iterative

algorithm stops. The stopping condition not only enforces

Lemma 2 but, as discussed in [14], it also guarantees that

the whole transmission policy for the battery operated sensor

{p̆Bk }Nk=1 is feasible. Clearly, the choice of δ leads to a number

of trade-offs in terms of accuracy vs. number of iterations

needed.

APPENDIX B

PROOF OF LEMMA 4

Consider two candidate transmission policies, p1 and ṗ1,

the first L or R (respectively) elements of which, namely,

p1,1:L and ṗ1,1:R with R < L, have been computed as BO-

like solutions (see Fig. 14). From the discussions in Steps 1
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Fig. 14. Lemma 4: A sub-policy consuming all the harvested energy in sR
is not feasible and, thus, is not part of the overall optimal policy.

and 2 above, we know that p1 verifies

λn = 0, n = 1, . . . , L− 1; λL > 0

and, as long as L < N ,

λn ≥ 0, n = L+ 1, . . . , N (44)

where (44) follows from the K.K.T. conditions. From this, the

corresponding sums of Lagrangian multipliers Ak verify in

turn

A1 = A2 = . . . = AL =

N∑

n=L

λn. (45)

Likewise, for ṗ1 we have

λ̇n = 0, n = 1, . . . , R− 1; λ̇R > 0

λ̇n ≥ 0, n = R+ 1, . . . , N (46)

and, hence,

Ȧ1 = Ȧ2 = . . . = ȦR =

N∑

n=R

λ̇n. (47)

Since in sR the EC curve associated to ṗ1 lies above that of

p1 (see Fig. 14), there necessarily exists at least one epoch

ko ∈ {1 . . . R} such that ṗ1,ko > p1,ko . Besides, a necessary

condition for either candidate sub-policy to qualify as optimal,

is that the corresponding derivative of the Lagrangian given by

(25) must vanish for all k ∈ {1 . . . R}, namely, ∂L1

∂p̆1,k
= 0. In

particular, for k = ko the fact that ṗ1,ko > p1,ko implies that

Ȧko < Ako (and vice-versa: if ṗ1,ko < p1,ko then Ȧko > Ako ).

Moreover, from (45) and (47), we conclude that Ȧk < Ak for

all k ∈ {1 . . . R} which, in turn, implies ṗ1,k > p1,k for

those epochs. In other words, the EC curve associated to the

candidate sub-policy ṗ1,1:R lies strictly above that of p1,1:R

for all those epochs, as Fig. 14 illustrates. This holds true in

particular for k = R, namely, ṗ1,R > p1,R. For the next epoch,

we have that either ṗ1,R+1 < p1,R+1 or ṗ1,R+1 ≥ p1,R+1. The

former would hold if (and only if)

ȦR < AR = AL (48)

ȦR+1 > AR+1 = AL (49)

which renders λ̇R = ȦR − ȦR+1 < 0. Since this contradicts

one K.K.T. condition then, necessarily, ṗ1,R+1 ≥ p1,R+1. By

applying the same reasoning to the subsequent consecutive

epoch pairs, we conclude that ṗ1,k ≥ p1,k for all k ∈ {R +
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1, L}. Hence, the EC curve associated to the candidate sub-

policy ṗ1,1:L lies strictly above that of p1,1:L not only for

the first R epochs but for all epochs k ∈ {1 . . . L}. Since,

to recall, at sL the EC associated to the candidate sub-policy

ṗ1,1:L hits the cEH curve, this means that the candidate sub-

policy ṗ1,1:L is necessarily not feasible and, thus, cannot be

part of the overall optimal policy (see Fig. 14). This concludes

the proof.
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