Listing of patient-matched 3D-printed radiotherapy bolus on the Australian Register of Therapeutic Goods

Scott Crowe^{1,2,3,4}, Becca Murray², Tania Poroa¹, Jenna Luscombe¹, Debra Vincent¹, Alex Livingstone¹, Rachael Wilks^{1,2,3}, Tanya Kairn^{1,2,3,4}

¹Royal Brisbane & Women's Hospital; ²Herston Biofabrication Institute; ³University of Queensland; ⁴Queensland University of Technology

Metro North Hospital and Health Service

Introduction

3D-printed radiotherapy bolus meets the Australian Therapeutic Goods Administration (TGA) definition of a patientmatched medical device and is therefore subject to regulatory provisions. Specifically, a manufacturer must have the device listed on the Australian Register of Therapeutic Goods (ARTG) as a class I non-measuring, non-sterile device before it can be supplied (i.e. used clinically). This requires a statement or demonstration of compliance with Essential Principles, which define the requirements for safety and performance, the satisfaction of which is summarised for bolus devices.

Hazard and risk assessment

A risk assessment was performed by a medical physicist, and peer reviewed by an engineer, radiation therapist and physics director. Potential hazard categories were taken from the essential principles checklist, and where potential failure modes existed, controls to minimise risk were conceived and implemented (e.g. quality control tests, instructions for use, technical file documentation).

C	HERSTON BIOFABR	RICATION	STITUTE					Metro North					
isk D		1.Bid Analysis				2. Rick Evoluation		3. Risk Control 4.1		ulation of R	sidual Risk	5. Inglementation	
	Potential Harard (Source of Harr)	Autoda	Potential Falure Mode (Potential Harry)	Potential Effects of Failure (Impact of Ham)	Sauarba	Linkood	Rick Rating	Meanway to minimize hermony ship	Severa	. Likeling	Flick Endine	Varihuation of tal-control	Acceptibility of role?
	Device Inherent - Depion												
.,	Inadequacy of performance characteristics for the intended use	Yez	Modeling or manufacturing/post- processing error.	Poor conformity to patient topography or incorrect radiological attenuation, resulting in uncertainty in radiotherapy dose delivers.	3			Perform QC: medical professional review (T1), visual and mechanical inspection (T2), dimensional checks (T2), density-checks (T4), orggoing well-cation (T5).		3		Design Summary, FU.	Acceptable
z	Insdequate design parameter - Siffness	Yez	Inconnect material used for desired selfness.	Mapping of phape leading to poor conformity to patient topography or incorrect radiological attenuation, resulting in uncertainty in radiofherapy dose delivers.				Manerials have been characterised to produce acceptable, reproductile stiffness. Perform QC storal and mechanical inspection (72), development obecis (73), density obecis (74).		3		Design Summars.	Acceptable
3	Inadequate design parameter - Weight	No	Design envelope does not allow for large heavy devices.									0	
4	Inadequate design parameter-Surface roughness	Yes	Inadequate post-processing of printed device (e.g. removal of supports).	Patient docomfort, poor conformity to patient topography, resulting in uncertainty in tadiotherapy doce delivery.				Support structures are removed during post- processing. Perform GC: visual and mechanical Inspection (T2)		1	1	1 Design Summary.	Acceptable
15	Inadequate design parameter-Porosity	Yes	Device printing enorresulting in underentrusion of filament or holes.	Incorrect radiological attenuation, resulting in uncertainty in radiotherapy doce delivery.				Perform QC: visual inspection and mechanical (T2), density checks (T4).		3		3 Design Summary.	Acceptable

Design and manufacturing plan

The technical file for the type of device included a design and a manufacturing plan, informed by ISO 13485. These:

- described the device and how it differed from other solutions (e.g. sheet bolus, wax);
- identified the stakeholders in design and production;
- listed the design and manufacturing requirements (e.g. radiological, geometric, material properties);
- described the design and manufacturing processes (e.g. segmentation, printing, post-processing);
- established the responsibilities of staff members;
- described how the design or manufactured device was verified or validated as meeting the requirements (e.g. quality control tests);
- summarised the instructions for use (e.g. assessment of fit, handling, cleaning, disposal of device).

Case specific documentation

For each patient case, the documentation requirements were specified in the technical file for the type of device. The request, design approval (within contour system), fabrication and quality control was captured within our oncology information system, MOSAIQ. This approach allowed responsibilities to be assigned to specific staff or staff groups, and allowed the planning therapist ultimately responsible for the device to monitor progress.

Task	3D Device QA	Patient ID Plan name / ID	
3D Device Structure Approved	Physics results record Bolus / Moulds	Device STL file Device QA date Physicist/s	13/07/2021
SD Device Structure Approved	Version 1.1, May 2021		AL
3D STL Exported for Production	Radiological characteristics		
3D Print Preparation	ativesinger ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	n hante an an	Overall agreeme Satisfactory Difference between non- and measured RED with C 11 AND standard den In measured RED within In measured RED within
3D Print and Post Processing Complete		- 1 1	Unsatisfactory
3D Device Wax/Pb Production			⁷ Norma RED - 10, uneo otherwise specified
3D Device Visual and Manual Inspection	Dimensional characteristics		I RED atthemase between and D indicate init welling need adjustment Advice 30 printer support cart.
3D Device Physics QA	000000000000	~	Overall agreems
3D Device labelled and Packaged			volume surfaces entrein minif for most points AM within 2 mm for all point Unsatisfactory
3D Device Delivered			
3D Pre-Treatment Fitting Required			*Devices should be maged sufficient resources to active this, the boas CA protoco-
3D Device Code Capture	Comments: Some geometric difference on edges, bu notified of decreased RED. Physics QA status: III Pass III Fail	t otherwise very good agr	reement throughout. 3D printing RT Results attached in MOSAIC

Patient specific quality assurance require the acquisition of a CT image of the device, which was used for an assessment of relative electron density (by Hounsfield Unit conversion) and geometric agreement with approved model (by Hausdorff distance calculation). This process was automated through in-house developed software. Ongoing maintenance and quality control testing of the printer was implemented within the departmental QATrack+ system database. A consumable inventory system was implemented within our mould room.

Conclusion

The supply of in-house manufactured radiotherapy bolus was facilitated with the ARTG listing. The document templates and processes developed for bolus (and other Herston Biofabrication Institute devices) have subsequently been used for the ARTG listing of radiotherapy immobilisation and positioning devices manufactured and supplied at point-of-care.