Yade Documentation (3w ed)

3rd Edition based on Yade version 2021-11-16.git-cbb50ba, November 16, 2021

Authors
« Vaclav Smilauer Freelance consultant (http://woodem.eu)
o Vasileios Angelidakis Newcastle University, UK
o Emanuele Catalano Univ. Grenoble Alpes, 3SR lab.
¢ Robert Caulk Univ. Grenoble Alpes, 3SR lab.
e Bruno Chareyre Univ. Grenoble Alpes, 3SR lab.
o William Chévremont Univ. Grenoble Alpes, LRP
o Sergei Dorofeenko IPCP RAS, Chernogolovka
¢ Jérome Duriez INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France
e Nolan Dyck Univ. of Western Ontario
e Jan Elias Brno University of Technology
e Burak Er Bursa Technical University
e Alexander Eulitz TU Berlin / Institute for Machine Tools and Factory Management
e Anton Gladky TU Bergakademie Freiberg
¢ Ning Guo Hong Kong Univ. of Science and Tech.
e Christian Jakob TU Bergakademie Freiberg
« Francois Kneib Univ. Grenoble Alpes, 3SR lab. / Irstea Grenoble
o Janek Kozicki Gdansk University of Technology
e Donia Marzougui Univ. Grenoble Alpes, 3SR lab.
« Raphaél Maurin Irstea Grenoble
o Chiara Modenese University of Oxford
¢ Gerald Pekmezi University of Alabama at Birmingham
e Luc Scholtés Univ. Grenoble Alpes, 3SR lab.
e Luc Sibille University of Nantes, lab. GeM
e Jan Stransky CVUT Prague
e Thomas Sweijen Utrecht University
e Klaus Thoeni The University of Newcastle (Australia)
e Chao Yuan Univ. Grenoble Alpes, 3SR lab.

Citing this document

When referring to Yade-DEM software in scientific publication please cite it "by DOI” as follows:
Smilauer V. et al. (2021) Yade Documentation 3rd ed. The Yade Project. DOI:10.5281/zenodo.5705394.
http://yade-dem.org

See also http://yade-dem.org/doc/citing.html.

Contents

1 Guided tour 1
1.1 Imtroduction e e 1
1.1.1 Getting started e e 1

1.1.2 Architecture overview L. e 6

1.2 Tutorial e e e e e e 15
1.2.1 Introduction e e e e 15

1.2.2 Hands-on e 15

1.2.3 Datamining oL L e e 25

1.2.4 Setting up a simulation L oL 30

1.2.5 Advanced & more e e e 34

1.2.6 Examples with tutorialo 35

1.2.7 More exampleso 44

2 Yade for users 51
2.1 DEM formulation e e e e e 51
2.1.1 Collision detection L e 51

2.1.2 Creating interaction between particles 55

2.1.3 Kinematic variables L Lo 57

2.1.4 Contact model (example) L e 60

2.1.5 Motion integrationo o 61

2.1.6 Periodic boundary conditions L oo 68

2.1.7 Computational aspects L e 73

2.2 User'smanual e e 74
2.2.1 Scene construction L e e e e e 74

2.2.2 Controlling simulation 93

2.2.3 Postprocessing L e e e 110

2.2.4 Python specialties and tricks Lo o 115

2.2.5 Extending Yadeo e 115

2.2.6 Troubleshootingo 115

2.3 Yade wrapper class reference 117
2.3.1 Bodies e e e e e e 117

2.3.2 Interactions L e 173

2.3.3 Global engines. e 217

2.3.4 Partial engines e e e e 319

2.3.5 Dispatchers e 448

2.3.6 Functors e e e 453

2.3.7 Bounding volume creation L L Lo 454

2.3.8 Interaction Geometry creation Lo L o 461

2.3.9 Interaction Physics creation L L o 482
2.3.10 Constitutive laws L 499
2.3.11 Imnternal forces e e e e 524
2.3.12 Callbacks e 526
2.3.13 Preprocessorso e e e e e e e e e 526
2.3.14 Rendering L e e 534
2.3.15 Simulation data L 550
2.3.16 Other classes e e e e e 560

2.4 Yade modules referenceo L e 571
2.4.1 yade.bodiesHandling module L oL oL 571

2.4.2 yadeexport module 572

24.3 yade.geom module L e LY

2.4.4 yade.gridpfacet module Lo 580

2.4.5 yadelibVersions module 584

2.4.6 yade.linterpolation moduleo Lo 587

2.4.7 yadelogmodule e 588

2.4.8 yademathmodule 589

2.4.9 yademinieigenHP module oo 614
2.4.10 yadempy moduleo 661
2.4.11 yade.pack module Lo 666
2.4.12 yade.plot module 677
2.4.13 yade.polyhedra_utils module oL 681
2.4.14 yade.post2d module. L Lo 682
2.4.15 yade.qt module 685
2.4.16 yade.timing module 687
2.4.17 yadeutilsmoduleo Lo 688
2.4.18 yade.ymport module Lo e 706

2.5 Installation oL e 710
2.5.1 Packageso e e 710

2.5.2 Docker e e 712

2.5.3 Source code e e e 712

2.5.4 Speed-up compilation 719

2.5.5 Cloud Computing« .. e 720

2.5.6 GPU Acceleration e 720

2.5.7 Special builds 720

2.5.8 Yubuntu e 721

2.6 Acknowledging Yade L e 721
3 Yade for programmers 723
3.1 Programmer’s manualo e 723
3.1.1 Buildsystem 723

3.1.2 Development tools 724

3.1.3 Debugging e e 725

3.1.4 Regression testso e e 731

315 Conventionsot e e e e e 733

3.1.6 Support framework 738

3.1.7 Simulation framework L Lo 762

3.1.8 Runtime structure Lo e 768

3.1.9 Python framework 769
3.1.10 Adding a new python/C++ module 771
3.1.11 Maintaining compatibility o oo 773

3.2 Yadeon GitLab 774
3.2.1 Fast checkout (read-only) 774

3.2.2 Brancheson GitLab L 774

3.23 Mergerequestso e e 7T

3.2.4 Guidelines for pushing L L e 778

4 Theoretical background and extensions 779
4.1 DEM formulation e 779
4.2 CFD-DEM coupled simulations with Yade and OpenFOAM 779
4.2.1 Background L 779

4.2.2 Settingup acase e 783

4.2.3 Post-Processing e 784

4.3 FEM-DEM hierarchical multiscale modeling with Yade and Escript 784
4.3.1 Introduction e 785

4.3.2 Finite element formulation oL 785

4.3.3 Multiscale solution procedure L L oL 785

434 Work on the YADE side 786

4.3.5 Work on the Escript side o 787

4.3.6 Example tests 787

4.3.7 Disclaim L e 788

4.4 Simulating Acoustic Emissions in Yade oL oo 788
441 SUMIATY . . . oo e e e e e e e 788

4.4.2 Model description e 788

4.4.3 Activating the algorithm within Yade 0. 789

4.4.4 Visualizing and post processing acoustic emissions L. 791

4.4.5 Consideration of rock heterogeneity o oL 791

4.5 Using YADE 1D vertical VANS fluid resolution 793
4.5.1 DEM-fluid coupling and fluid resolution in YADE 793

4.5.2 Application of drag and buoyancy forces (HydroForceEngine::action) 793

4.5.3 Solid phase averaging (HydroForceEngine::averageProfile) 794

4.5.4 Fluid resolution\HydroForceEngine::fluidResolution 795

4.6 Potential Particles and Potential Blockso oL 796
4.6.1 Introduction L 796

4.6.2 Potential Particles code (PP) L 797

4.6.3 Potential Blocks code (PB) 797

4.6.4 Engines e 800

4.6.5 Contact Law e 801

4.6.6 Shape definition of a PPandaPB 801

4.6.7 Body definitionof a PPandaPB. o000 803

4.6.8 Boundary Particles o 803

4.6.9 Visualization oL 804
4.6.10 Axis-Aligned Bounding Box L o o 805
4.6.11 Block Generation algorithm, 806
4.6.12 Exampleso e 806
4.6.13 Disclaimer e 806
4.6.14 References 806

5 Performance enhancements 809
5.1 Accelerating Yade’s FlowEngine with GPU 809
5. 1.1 Summary oL e e e e e e e 809

5.1.2 Hardware, Software, and Model Requirements 809

5.1.3 Install CUDA o e 810

5.1.4 Install OpenBlas, and Lapack 810

5.1.5 Imstall SuiteSparse L 810

5.1.6 Compile Yade e 810

5.1.7 Controlling the GPU e 811

5.1.8 Performance increase L e e 811

5.2 MPI parallelization L e 812
5.2.1 Conceptso e e e e 812

5.2.2 Walkthrough 813

5.2.3 MPI initialization and communications 815

5.2.4 Splitting L 820

5.2.5 Merging e e e e e 824

5.2.6 Hints and problems to expect o 824

5.2.7 Control variables 824

5.2.8 Benchmark 825

5.3 Using YADE with cloud computing on Amazon EC2. 826
5.3.1 Summary e e e e e e e e e e e 826

5.3.2 Launching an EC2 instance o 826

5.3.3 Installing YADE and managing files 826

5.3.4 Plotting output in the terminal oo oo 829

5.3.5 Comments e e e 829

5.4 High precision calculations L Lo 830

6 Literature

6.1

6.2

6.3

5.4.1 Installation e e
5.4.2 Supported modules
5.4.3 Double, quadruple and higher precisions
5.4.4 Compatibility
5.4.5 Debugging e e
Yade Technical Archive e
6.1.1 About e e
6.1.2 Contribute e e e
6.1.3 Contact e
6.1.4 Archive e
Publications on Yade
6.2.1 Citing Yade e e
6.2.2 Journal articles e e
6.2.3 Conference materials and book chapters
6.2.4 Master and PhD theses.
6.2.5 Yade Technical Archive. o
References e e

7 Indices and tables

Bibliography

Python Module Index

Vi

Chapter 1

Guided tour

1.1 Introduction

1.1.1 Getting started

Before you start moving around in Yade, you should have some prior knowledge.

¢ Basics of command line in your Linux system are necessary for running yade. Look on the web for
tutorials.

o Python language; we recommend the official Python tutorial. Reading further documents on the
topic, such as Dive into Python will certainly not hurt either.

You are advised to try all commands described yourself. Don’t be afraid to experiment.

Hint: Sometimes reading this documentation in a .pdf format can be more comfortable. For example
in okular pdf viewer clicking links is faster than a page refresh in the web browser and to go back press
the shortcut A1t Shift «. To try it have a look at the inheritance graph of PartialEngine then go back.

Starting yade

Yade is being run primarily from terminal; the name of command is yade.! (In case you did not install
from package, you might need to give specific path to the command?):

$ yade

Welcome to Yade

TCP python prompt on localhost:9001, auth cookie “sdksuy'
TCP info provider on localhost:21000

1 The executable name can carry a suffix, such as version number (yade-0.20), depending on compilation options.
Packaged versions on Debian systems always provide the plain yade alias, by default pointing to latest stable version (or
latest snapshot, if no stable version is installed). You can use update-alternatives to change this.

2 In general, Unix shell (command line) has environment variable PATH defined, which determines directories searched
for executable files if you give name of the file without path. Typically, $PATH contains /usr/bin/, /usr/local/bin, /bin
and others; you can inspect your PATH by typing echo $PATH in the shell (directories are separated by :).

If Yade executable is not in directory contained in PATH, you have to specify it by hand, i.e. by typing the path in front
of the filename, such as in /home/user/bin/yade and similar. You can also navigate to the directory itself (cd ~/bin/yade,
where ~ is replaced by your home directory automatically) and type ./yade then (the . is the current directory, so ./
specifies that the file is to be found in the current directory).

To save typing, you can add the directory where Yade is installed to your PATH, typically by editing ~/.profile (in
normal cases automatically executed when shell starts up) file adding line like export PATH=/home/user/bin:$PATH. You
can also define an alias by saying alias yade="/home/users/bin/yade" in that file.

Details depend on what shell you use (bash, zsh, tcsh, ..) and you will find more information in introductory material
on Linux/Unix.

http://docs.python.org/tutorial
http://www.diveintopython.net/
https://yade-dem.org/doc/Yade.pdf
https://okular.kde.org/

Yade Documentation, Release 3rd ed.

[[L clears screen, ~U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8,
—plot.]]
Yade [1]:

These initial lines give you some information about
e some information for Remote control, which you are unlikely to need now;
o basic help for the command-line that just appeared (Yade [1]:).

Type quit(), exit () or simply press "D (~ is a commonly used written shortcut for pressing the Ctrl
key, so here "D means Ctrl D) to quit Yade.

The command-line is ipython, python shell with enhanced interactive capabilities; it features persistent
history (remembers commands from your last sessions), searching and so on. See ipython’s documentation
for more details.

Typically, you will not type Yade commands by hand, but use scripts, python programs describing and
running your simulations. Let us take the most simple script that will just print “Hello world!”:

’ print("Hello world!")

Saving such script as hello.py, it can be given as argument to Yade:

$ yade hello.py

Welcome to Yade

TCP python prompt on localhost:9001, auth cookie “askcsu'
TCP info provider on localhost:21000

Running script hello.py ## the script is being run
Hello world! ## output from the script
[["L clears screen, ~U kills line. F12 controller, F11 3d view, F10 both, F9 generator, F8,
—plot.]]
Yade [1]:

Yade will run the script and then drop to the command-line again.? If you want Yade to quit immediately
after running the script, use the -x switch:

$ yade -x script.py

There is more command-line options than just -x, run yade -h to see all of them.
Options:
-v, --version show program’s version number and exit
-h, --help show this help message and exit

-j THREADS, --threads=THREADS Number of OpenMP threads
to run; defaults to 1. Equivalent to setting OMP_ -
NUM__THREADS environment variable.

--cores=CORES Set number of OpenMP threads (as —threads) and in
addition set affinity of threads to the cores given.

--update Update deprecated class names in given script(s) using
text search & replace. Changed files will be backed up
with ~ suffix. Exit when done without running any

simulation.

--nice=NICE Increase nice level (i.e. decrease priority) by given
number.

-X Exit when the script finishes

3 Plain Python interpreter exits once it finishes running the script. The reason why Yade does the contrary is that most
of the time script only sets up simulation and lets it run; since computation typically runs in background thread, the script
is technically finished, but the computation is running.

2 Chapter 1. Guided tour

https://ipython.org/

Yade Documentation, Release 3rd ed.

-f Set logging verbosity, default is -f3 (yade.log. WARN)
for all classes

-n Run without graphical interface (equivalent to unset-
ting the DISPLAY environment variable)

--test Run regression test suite and exit; the exists status is 0
if all tests pass, 1 if a test fails and 2 for an unspecified
exception.

--check Run a series of user-defined check tests as described

in scripts/checks-and-tests/checks/README and Re-
gresston tests

--performance Starts a test to measure the productivity.

--stdperformance Starts a standardized test to measure the productiv-
ity, which will keep retrying to run the benchmark
until standard deviation of the performance is below
1%. A common type of simulation is done: the spheres
fall down in a box and are given enough time to settle
in there. Note: better to use this with argument -j
THREADS (explained above).

--quickperformance Starts a quick test to measure the productivity.
Same as above, but only two short runs are performed,
without the attempts to find the computer perfor-
mance with small error.

--no-gdb Do not show backtrace when yade crashes (only effec-
tive with —debug)®.

Quick inline help

All of functions callable from ipython shell have a quickly accessible help by appending ? to the function
name, or calling help(..) command on them:

Yade [1]: O.run@
Docstring:
run((Omega)argl [, (int)nSteps=-1 [, (bool)wait=Falsel]]) -> None :
Run the simulation. *nSteps* how many steps to run, then stop (if positive); *wait* will,
—cause not returning to python until simulation will have stopped.
Type: method

Yade [2]: help(0.pause)
Help on method pause:

pause(...) method of yade.wrapper.Omega instance
pause((Omega)argl) -> None :
Stop simulation execution. (May be called from within the loop, and it will stop after;
—the current step).

A quick way to discover available functions is by using the tab-completion mechanism, e.g. type 0. then
press tab.

Creating simulation

To create simulation, one can either use a specialized class of type FileGenerator to create full scene,
possibly receiving some parameters. Generators are written in C++ and their role is limited to well-

4 On some linux systems stack trace will produce Operation not permitted error. See debugging section for solution.

1.1. Introduction 3

https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/checks/README
https://ipython.org/

Yade Documentation, Release 3rd ed.

defined scenarios. For instance, to create triaxial test scene:

Yade [3]: TriaxialTest (number0fGrains=200).load()

Yade [4]: len(0.bodies)
Out[4]: 206

Generators are regular yade objects that support attribute access.

It is also possible to construct the scene by a python script; this gives much more flexibility and speed of
development and is the recommended way to create simulation. Yade provides modules for streamlined
body construction, import of geometries from files and reuse of common code. Since this topic is more
involved, it is explained in the User’s manual.

Running simulation

As explained below, the loop consists in running defined sequence of engines. Step number can be queried
by 0.iter and advancing by one step is done by 0.step(). Every step advances virtual time by current
timestep, 0.dt that can be directly assigned or, which is usually better, automatically determined by a
GlobalStiffnessTimeStepper, if present:

Yade [5]: O.iter
OQut[5]: O

Yade [6]: 0.time
OQut[6]: 0.0

Yade [7]: 0.dt=1le-4
Yade [8]: O.dynDt=False #else it would be adjusted automaticaly during first iteration
Yade [9]: O.step()

Yade [10]: O.iter
OQut[10]: 1

Yade [11]: O.time
Out[11]: 0.0001

Normal simulations, however, are run continuously. Starting/stopping the loop is done by 0.run() and
0.pause(); note that 0.run() returns control to Python and the simulation runs in background; if
you want to wait for it to finish, use 0.wait (). Fixed number of steps can be run with 0.run(1000),
0.run(1000,True) will run and wait. To stop at absolute step number, 0.stopAtIter can be set and
0.run() called normally.

Yade [12]: 0.run()
Yade [13]: 0.pause()

Yade [14]: 0.iter
Out[14]: 1085

Yade [15]: 0.run(100000,True)

Yade [16]: 0.iter
Out[16]: 101085

Yade [17]: 0.stopAtIter=500000

Yade [18]: O0.run()

4 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Yade [19]: 0.wait()

Yade [20]: O.iter
Out [20]: 500000

Saving and loading

Simulation can be saved at any point to a binary file (optionaly compressed if the filename has extensions
such as “.gz” or “bz2”). Saving to a XML file is also possible though resulting in larger files and slower
save/load, it is used when the filename contains “xml”. With some limitations, it is generally possible to
load the scene later and resume the simulation as if it were not interrupted. Note that since the saved
scene is a dump of Yade’s internal objects, it might not (probably will not) open with different Yade
version. This problem can be sometimes solved by migrating the saved file using “.xml” format.

Yade [21]: O.save('/tmp/a.yade.bz2')
Yade [22]: 0.reload()

Yade [23]: 0.load('/tmp/another.yade.bz2')

The principal use of saving the simulation to XML is to use it as temporary in-memory storage for
checkpoints in simulation, e.g. for reloading the initial state and running again with different parameters
(think tension/compression test, where each begins from the same virgin state). The functions 0.
saveTmp() and 0.loadTmp() can be optionally given a slot name, under which they will be found in
memory:

Yade [24]: 0.saveTmp()
Yade [25]: 0.loadTmp()
Yade [26]: 0.saveTmp('init') ## named memory slot

Yade [27]: 0.loadTmp('init')

Simulation can be reset to empty state by 0.reset().

It can be sometimes useful to run different simulation, while the original one is temporarily suspended,
e.g. when dynamically creating packing. 0.switchWorld() toggles between the primary and secondary
simulation.

Graphical interface

Yade can be optionally compiled with QT based graphical interface (qt4 and qt5 are supported). It can
be started by pressing F12 in the command-line, and also is started automatically when running a script.

1.1. Introduction 5

http://qt.io

Yade Documentation, Release 3rd ed.

Yade = |[B][=

Simulation | Display Generate Python

Load Save Inspect
Primary view

real 00:02:20

virt 000s671m552p639n
iter #3243, 23.0/s

at O fixed

0.000207077594613

Simulation Inspection NEE]

Engines Bodies | Interactions = Cell

:memory:
i #(56 |0 e+ v » » 56 & +
Body 0x466fd80 —
| 3] bound Aabb 0x4684670
N color [1.0 [1.0 [10
clumpld | -1
flags 3
: . & groupMask | 1 *
» C . o
id |56
material FrictMat “defaultMat”
densi 1000.0
New 3D Reference density | |
Y 2 frictionAngle |D.5 |

b | b

id [0

label | defaultMat |

poisson | 0.3 |
671mM552u639n young | 10000000.0 |

Sphere 0x46845e0
color [656201236 882652506 303750713
highlight
radius | 0.0316463982726 [

Left mouse button - open documentation
Middle mouse button - copy to clipboard full
python name

The control window on the left (fig. imgQtGui) is called Controller (can be invoked by yade.qt.
Controller() from python or by pressing F12 key in terminal):

1. The Simulation tab is mostly self-explanatory, and permits basic simulation control.

2. The Display tab has various rendering-related options, which apply to all opened views (they can
be zero or more, new one is opened by the New 3D button).

3. The Python tab has only a simple text entry area; it can be useful to enter python commands while
the command-line is blocked by running script, for instance.

Inside the Inspect window (on the right in fig. imgQtGui) all simulation data can be examined and
modified in realtime.

1. Clicking left mouse button on any of the blue hyperlinks will open documentation.

2. Clicking middle mouse button will copy the fully qualified python name into clipboard, which can
be pasted into terminal by clicking middle mouse button in the terminal (or pressing Ctrl-V).

3d views can be controlled using mouse and keyboard shortcuts; help is displayed if you press the h key
while in the 3d view. Note that having the 3d view open can slow down running simulation significantly,
it is meant only for quickly checking whether the simulation runs smoothly. Advanced post-processing
is described in dedicated section Data mining.

1.1.2 Architecture overview

In the following, a high-level overview of Yade architecture will be given. As many of the features are
directly represented in simulation scripts, which are written in Python, being familiar with this language
will help you follow the examples. For the rest, this knowledge is not strictly necessary and you can
ignore code examples.

6 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Data and functions

To assure flexibility of software design, yade makes clear distinction of 2 families of classes: data com-
ponents and functional components. The former only store data without providing functionality, while
the latter define functions operating on the data. In programming, this is known as wvisitor pattern (as
functional components “visit” the data, without being bound to them explicitly).

Entire simulation, i.e. both data and functions, are stored in a single Scene object. It is accessible
through the Omega class in python (a singleton), which is by default stored in the 0 global variable:

Yade [28]: 0.bodies # some data components
Out[28]: <yade.wrapper.BodyContainer at O0x7f8aecfb93f8>

Yade [29]: len(0.bodies) # there are no bodies as of yet

Out[29]: O
Yade [30]: O.engines # functional components, empty at the moment
Out[30]: []

Data components
Bodies

Yade simulation (class Scene, but hidden inside Omega in Python) is represented by Bodies, their Inter-
actions and resultant generalized forces (all stored internally in special containers).

Each Body comprises the following;:

Shape represents particle’s geometry (neutral with regards to its spatial orientation), such as Sphere,
Facet or inifinite Wall; it usually does not change during simulation.

Material stores characteristics pertaining to mechanical behavior, such as Young’s modulus or density,
which are independent on particle’s shape and dimensions; usually constant, might be shared
amongst multiple bodies.

State contains state variables, in particular spatial position and orientation, linear and angular velocity;
it is updated by the integrator at every step. The derived classes would contain other information
related to current state of this body, e.g. its temperature, averaged damage or broken links between
components.

Bound is used for approximate (“pass 17) contact detection; updated as necessary following body’s
motion. Currently, Aabb is used most often as Bound. Some bodies may have no Bound, in which
case they are exempt from contact detection.

(In addition to these 4 components, bodies have several more minor data associated, such as Body::id or
Body::mask.)

All these four properties can be of different types, derived from their respective base types. Yade
frequently makes decisions about computation based on those types: Sphere + Sphere collision has to be
treated differently than Fucet 4+ Sphere collision. Objects making those decisions are called Dispatchers
and are essential to understand Yade’s functioning; they are discussed below.

Explicitly assigning all 4 properties to each particle by hand would be not practical; there are utility
functions defined to create them with all necessary ingredients. For example, we can create sphere
particle using wtils.sphere:

Yade [31]: s=utils.sphere(center=[0,0,0],radius=1)

Yade [32]: s.shape, s.state, s.mat, s.bound
Out [32]:

(<Sphere instance at 0x39bc0e0>,

<State instance at 0x2231220>,

1.1. Introduction 7

Yade Documentation, Release 3rd ed.

State ChainedState

- position CpmState - rank in the chain
9 | - velocity - stress tensor - chain number
8 | - mass . damage tensor
U | _inertia - average damage

ElastMat FirctMat FrictViscoMat
©
‘D | - density - friction angle - viscous damping
2 | - Young's modulus K} -
g - Poisson's ratio

Polyhedra PFacet GridConnection
©
o,
o
<=
%)
Aabb

° T
< | | T i r]
] | | ! i | i
o 1 [! L-=7 ,‘ L=
/A | | |

L\ ;" B L / L »”
/pkg/common /pkg/specialized

Fig. 1.1: Examples of concrete classes that might be used to describe a Body: State, CpmState, Chained-
State, Material, ElastMat, FrictMat, FrictViscoMat, Shape, Polyhedra, PFacet, GridConnection, Bound,

Aabb.

Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

<FrictMat instance at 0x2098£90>,
None)

Yade [33]: s.state.pos
Out [33]: Vector3(0,0,0)

Yade [34]: s.shape.radius
Out[34]: 1.0

We see that a sphere with material of type FrictMat (default, unless you provide another Material) and
bounding volume of type Aabb (axis-aligned bounding box) was created. Its position is at the origin and
its radius is 1.0. Finally, this object can be inserted into the simulation; and we can insert yet one sphere
as well.

Yade [35]: 0.bodies.append(s)
Out[35]: O

Yade [36]: 0.bodies.append(utils.sphere([0,0,2],.5))
Out[36]: 1

In each case, return value is Body.id of the body inserted.

Since till now the simulation was empty, its id is 0 for the first sphere and 1 for the second one. Saving
the id value is not necessary, unless you want to access this particular body later; it is remembered
internally in Body itself. You can address bodies by their id:

Yade [37]: 0.bodies[1].state.pos
Out[37]: Vector3(0,0,2)

Yade [38]: 0.bodies[100] # error because there are only two bodies

IndexError Traceback (most recent call last)
/builds/yade-dev/trunk/install/1ib/x86_64-linux-gnu/yade-ci/py/yade/__init__.py in <module>()
---=> 1 0.bodies[100] # error because there are only two bodies

IndexError: Body id out of range.

Adding the same body twice is, for reasons of the id uniqueness, not allowed:

Yade [39]: 0.bodies.append(s) # error because this sphere was already added

IndexError Traceback (most recent call last)
/builds/yade-dev/trunk/install/1ib/x86_64-linux-gnu/yade-ci/py/yade/__init__.py in <module>()
--—-> 1 0.bodies.append(s) # error because this sphere was already added

IndexError: Body already has id O set; appending such body (for the second time) is not
—allowed.

Bodies can be iterated over using standard python iteration syntax:

Yade [40]: for b in 0.bodies:
Lt print(b.id,b.shape.radius)

Interactions

Interactions are always between pair of bodies; usually, they are created by the collider based on spatial
proximity; they can, however, be created explicitly and exist independently of distance. Each interaction
has 2 components:

1.1. Introduction 9

Yade Documentation, Release 3rd ed.

IGeom holding geometrical configuration of the two particles in collision; it is updated automatically
as the particles in question move and can be queried for various geometrical characteristics, such
as penetration distance or shear strain.

Based on combination of types of Shapes of the particles, there might be different storage require-
ments; for that reason, a number of derived classes exists, e.g. for representing geometry of contact
between Sphere+Sphere, Cylinder+Sphere etc. Note, however, that it is possible to represent many
type of contacts with the basic sphere-sphere geometry (for instance in Ig2 Wall Sphere Sc-
Geom).

IPhys representing non-geometrical features of the interaction; some are computed from Materials of
the particles in contact using some averaging algorithm (such as contact stiffness from Young’s
moduli of particles), others might be internal variables like damage.

GenericSpheresContact PolyhedraGeom CylScGeom
(>
° 9 /rl \\\

S \ Ny
50 L \ ‘iil."“"

\\\\\Vi////

NormPhys NormShearPhys FrictPhys
o
-2 4 | - normal stiffness - shear stiffness - tangens of friction
§ i - normal force «}— - shear force <}— angle
@ =
E ~

/pkg/common /pkg/specialized

Fig. 1.2: Examples of concrete classes that might be used to describe an Interaction: [Geom, Generic-
SpheresContact, PolyhedraGeom, CylScGeom, IPhys, NormPhys, NormShearPhys, FrictPhys.

Suppose now interactions have been already created. We can access them by the id pair:

Yade [41]: 0.interactions[0,1]
Out[41]: <Interaction instance at 0x32e5ec0>

Yade [42]: O.interactions[1,0] # order of ids is not important
Out[42]: <Interaction instance at 0x32ebec0>

Yade [43]: i=0.interactions[0,1]

Yade [44]: i.id1,i.id2
Out[44]: (0, 1)

Yade [45]: i.geom
Out[45]: <ScGeom instance at 0x3494e30>

Yade [46]: i.phys
Out [46]: <FrictPhys instance at 0x38b7ab0>

Yade [47]: 0.interactions[100,10111] # asking for mon existing interaction throws exception
IndexError Traceback (most recent call last)
/builds/yade-dev/trunk/install/1ib/x86_64-linux-gnu/yade-ci/py/yade/__init__.py in <module>()
----> 1 0.interactions[100,10111] # asking for non existing interaction throws exception

IndexError: No such interaction

10 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Generalized forces

Generalized forces include force, torque and forced displacement and rotation; they are stored only tem-
porariliy, during one computation step, and reset to zero afterwards. For reasons of parallel computation,
they work as accumulators, i.e. only can be added to, read and reset.

Yade [48]: 0.forces.f(0)
Out[48]: Vector3(0,0,0)

Yade [49]: 0.forces.addF(0,Vector3(1,2,3))

Yade [50]: 0.forces.f(0)
Out[50]: Vector3(1,2,3)

You will only rarely modify forces from Python; it is usually done in c++ code and relevant documen-
tation can be found in the Programmer’s manual.

Function components

In a typical DEM simulation, the following sequence is run repeatedly:
e reset forces on bodies from previous step
« approximate collision detection (pass 1)
o detect exact collisions of bodies, update interactions as necessary
 solve interactions, applying forces on bodies
o apply other external conditions (gravity, for instance).

o change position of bodies based on forces, by integrating motion equations.

bodies

Shape reset forces update
incremént ~ Material bounds collision
tipne by At gtated detection
oun

pass 1

miscellaneous engines

(recorders, ...) interaCtionS

position update geometry
collision detegtion pass 2
velocity update strain evaluation
physics
forces — acceleration properties of new interactions

constitttive law
other forces compute forces from strains
forces .
(gravity, BC, ...)
(generalized)

Fig. 1.3: Typical simulation loop; each step begins at body-centered bit at 11 o’clock, continues with
interaction bit, force application bit, miscellanea and ends with time update.

Each of these actions is represented by an FEngine, functional element of simulation. The sequence of
engines is called simulation loop.

1.1. Introduction 11

Yade Documentation, Release 3rd ed.

Engines

Simulation loop, shown at fig. img-yade-iter-loop, can be described as follows in Python (details will be
explained later); each of the 0.engines items is instance of a type deriving from Engine:

0.engines=[

reset forces

ForceResetter(),

approxzimate collision detection, create interactions

InsertionSortCollider([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()]),

handle interactions

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),

apply other conditions

GravityEngine(gravity=(0,0,-9.81)),

update positions using Newton's equations

NewtonIntegrator ()

There are 3 fundamental types of Engines:

GlobalEngines operating on the whole simulation (e.g. ForceResetter which zeroes forces acting on
bodies or GravityEngine looping over all bodies and applying force based on their mass)

PartialEngine operating only on some pre-selected bodies (e.g. ForceEngine applying constant force
to some selected bodies)

Dispatchers do not perform any computation themselves; they merely call other functions, represented
by function objects, Functors. Each functor is specialized, able to handle certain object types, and
will be dispatched if such obejct is treated by the dispatcher.

Dispatchers and functors

For approximate collision detection (pass 1), we want to compute bounds for all bodies in the simulation;
suppose we want bound of type axis-aligned bounding box. Since the exact algorithm is different depend-
ing on particular shape, we need to provide functors for handling all specific cases. In the 0.engines=[..]
declared above, the line:

InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()])

creates InsertionSortCollider (it internally uses BoundDispatcher, but that is a detail). It traverses all
bodies and will, based on shape type of each body, dispatch one of the functors to create/update bound
for that particular body. In the case shown, it has 2 functors, one handling spheres, another facets.

The name is composed from several parts: Bo (functor creating Bound), which accepts 1 type Sphere
and creates an Aabb (axis-aligned bounding box; it is derived from Bound). The Aabb objects are used
by InsertionSortCollider itself. All Bol functors derive from BoundFunctor.

The next part, reading

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()],

),

hides 3 internal dispatchers within the InteractionLoop engine; they all operate on interactions and are,
for performance reasons, put together:

12 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

BoundFunctor
Bol Sphere Aabb Bol Facet Aabb Bol Cylinder Aabb
///'// ;\\\\\ // \\\\\\\\\\\ // /V////:\)\
// \\\\ // /// \&/:/// \\\

Fig. 1.4: Example bound functors producing Aabb accepting various different types, such as Sphere, Fucet
or Cylinder. In the case shown, the Bol functors produce Aabb instances from single specific Shape, hence
the number 1 in the functor name. Each of those functors uses specific geometry of the Shape i.e. position
of nodes in Fucet or radius of sphere to calculate the Aabb.

IGeomDispatcher which uses IGeomFunctor uses the first set of functors (Ig2), which are dis-
patched based on combination of 2 Shapes objects. Dispatched functor resolves exact collision
configuration and creates an Interaction Geometry IGeom (whence Ig in the name) associated
with the interaction, if there is collision. The functor might as well determine that there is no real
collision even if they did overlap in the approximate collision detection (e.g. the Aabb did overlap,

but the shapes did not). In that case the attribute is set to false and interaction is scheduled for
removal.

1. The first functor, Ig2 Sphere_Sphere ScGeom, is called on interaction of 2 Spheres and
creates ScGeom instance, if appropriate.

2. The second functor, g2 Facet_Sphere_ScGeom, is called for interaction of Facet with Sphere
and might create (again) a ScGeom instance.

All Ig2 functors derive from IGeomFunctor (they are documented at the same place).

Indexable Dispatcher IGeomFunctor »Functor
Shape
P Sphere PFacet
A Ig2_Sphere PFacet_
N Sphere Ig2 Sphere Sphere ScGeom " ScGridCoGeom
IGeomDispatcher % ;
is dispatching on 2 classes | .= | Wall Ig2 Wall Sphere ScGeom| |Ig2 Wall PFacet ScGeom
wn
B B L Ig2 Sphere PFacet_ Ta2 PFacet PFacet ScG
“J Pracet | o dCaceom | |!Y-Fracel et SeGuam
/pkg/ /pkg/
pkg/common pkg/common
or /pkg/specialized /pkg/common or /pkg/specialized

Fig. 1.5: Example interaction geometry functors producing ScGeom or ScGridCoGeom accepting two
various different types (hence 2 in their name Ig2), such as Sphere, Wall or PFucet. Each of those

functors uses specific geometry of the Shape i.e. position of nodes in PFucet or radius of sphere to
calculate the interaction geometry.

IPhysDispatcher which uses IPhysFunctor dispatches to the second set of functors based on com-
bination of 2 Materials; these functors return return /Phys instance (the Ip prefix). In our case,

there is only 1 functor used, Ip2 FrictMat_FrictMat FrictPhys, which create FrictPhys from 2
FrictMat’s.

Ip2 functors are derived from IPhysFunctor.

LawDispatcher which uses LawFunctor dispatches to the third set of functors, based on combina-
tions of IGeom and IPhys (wherefore 2 in their name again) of each particular interaction, created

1.1. Introduction 13

Yade Documentation, Release 3rd ed.

Indexable Dispatcher IPhysFunctor »Functor

Material

FrictMat AT e FrictMat
A
/ CpmMat . i i
FrictMat « / p Ip2 FrictMat CpmMat_FrictPhys

IPhysDispatcher

Material

is djspatching on 2 classes FrictMat Ip2_FrictMat_FrictMat_FrictPhys
FrictMat A
B B I Ip2 FrictMat FrictViscoMat
o[- ExictViscolMat _FrictViscoPhys
/pkg/common /pkg/common
or /pkg/specialized /pkg/common or /pkg/specialized

Fig. 1.6: Example interaction physics functors (Ip2_FrictMat_CpmMat_FrictPhys, Ip2 Frict-
Mat_FrictMat_FrictPhys and Ip2 FrictMat_FrictViscoMat_FrictViscoPhys) producing FrictPhys or
FrictViscoPhys accepting two various different types of Material (hence Ip2), such as CpmMat, FrictMat
or FrictViscoMat.

by preceding functors. The Law2 functors represent constitutive law; they resolve the interaction
by computing forces on the interacting bodies (repulsion, attraction, shear forces, ...) or otherwise
update interaction state variables.

Law2 functors all inherit from LawFunctor.

Indexable Dispatcher LawFunctor- Functor

IPhys

A /

FrictPhys \\ / CylScGeom Law2 CylScGeom FrictPhys CundallStrack
LawDispatcher g 4
is dispatching on 2 classes 8 ScGeom LaWZ_SCGeOm_FriCtPhyS_CundallStrack
. < @)
ScGridCoGeom A N
B B . Law2_ScGridCoGeom FrictPhys
FrictPhys i Sc(?rlfiflonaonlv _CundallStrack
/pkg/common /pkg/common
or /pkg/specialized /pkg/common or /pkg/specialized

Fig. 1.7: Example LawFunctors (Law2_CylScGeom_ FrictPhys CundallStrack, Law2_ScGeom__Frict-
Phys _CundallStrack and Law2 ScGridCoGeom_ FrictPhys CundallStrack) each of them performing
calcuation of forces according to selected constitutive law.

There is chain of types produced by earlier functors and accepted by later ones; the user is responsible
to satisfy type requirement (see img. img-dispatch-loop). An exception (with explanation) is raised in
the contrary case.

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and
facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in examples/simple-scene/simple-scene-default-engines.py.

14 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/775ae7436/py/__init__.py.in#L112
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-default-engines.py

Yade Documentation, Release 3rd ed.

Ad

(&]

®

. =

Body Interaction 2

= ©

o SE =
Sphere+Sphere »Ig2 Sphere Sphere ScGeom i =)

T P P 92 _PHCTE_SPRCTE. ngé ScGeom |- O
S| Facet+Sphere- »1g2_Facet Sphere ScGeom— @ Q o
20O)

= Ay

=

— a (&)
© O ¢ c
k= B9 =)
% FrictMat+FrictMat(» Ip2 FrictMat FrictMat FrictPhys — § @ | FrictPhys — g
s 2 5
A= O

[&]

@,

o

3

®

=

Fig. 1.8: Chain of functors producing and accepting certain types. In the case shown, the Ig2 functors
produce ScGeom instances from all handled Shapes combinations; the Ig2 functor produces FrictMat.
The constitutive law functor Law2 accepts the combination of types produced. Note that the types are
stated in the functor’s class names.

1.2 Tutorial

This tutorial originated as handout for a course held at Technische Universitdt Dresden / Fakultit
Bauingenieurwesen / Institut fiir Geotechnik in Jaunary 2011. The focus was to give quick and rather
practical introduction to people without prior modeling experience, but with knowledge of mechanics.
Some computer literacy was assumed, though basics are reviewed in the Hands-on section.

The course did not in reality follow this document, but was based on interactive writing and commenting
simple Ezxamples, which were mostly suggested by participants; many thanks to them for their ideas and
suggestions.

1.2.1 Introduction

The chapter Introduction is summarized in following presentation Yade: past, present and future with
some additional different examples. This presentation is from year 2011 and does not include latest
additions. As of year 2019 it is factually correct.

1.2.2 Hands-on

Shell basics

Directory tree

Directory tree is hierarchical way to organize files in operating systems. A typical (reduced) tree in linux
looks like this:

/ Root
boot System startup
bin Low-level programs
1ib Low-level libraries
dev Hardware access
sbin Administration programs

1.2. Tutorial 15

http://www.tu-dresden.de/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/
http://www.tu-dresden.de/biw/geotechnik/
https://yade-dem.org/w/images/b/b5/Eudoxos2011-yade-past-present-future-updated-version.pdf

Yade Documentation, Release 3rd ed.

proc System information
var Files modified by system services
root Root (administrator) home directory
etc Configuration files
media External drives
tmp Temporary files
usr Everything for normal operation (usr = UNIX system resources)
bin User programs
sbin Administration programs
include Header files for c/c++
1ib Libraries
local Locally installed software
doc Documentation
home Contains the user's home directories
user Home directory for user
userl Home directory for userl

Note that there is a single root /; all other disks (such as USB sticks) attach to some point in the tree
(e.g. in /media).

Shell navigation

Shell is the UNIX command-line, interface for conversation with the machine. Don’t be afraid.

Moving around

The shell is always operated by some user, at some concrete machine; these two are constant. We can
move in the directory structure, and the current place where we are is current directory. By default, it
is the home directory which contains all files belonging to the respective user:

user@machine: ~$ # user operating at machine, in the directory ~ (= user
< 's home directory)

user@machine:~$ 1s . # list contents of the current directory
user@machine:~$ 1s foo # list contents of directory foo, relative to they

—dcurrent directory ~ (= 1ls ~/foo = ls /home/user/foo)

user@machine:~$ 1s /tmp list contents of /tmp

user@machine:~$ cd foo change directory to foo

user@machine:~/foo$ 1s ~ list home directory (= 1ls /home/user)
user@machine:~/foo$ cd bar change to bar (= cd ~/foo/bar)
user@machine:~/foo/bar$ cd ../../foo2 # go to the parent directory twice, then to foo2 (cd ~/
—foo/bar/../../fo02 = cd ~/foo2 = cd /home/user/foo2)

user@machine:~/f002$ cd # go to the home directory (= 1ls ~ = 1s /home/user)
user@machine: ~$

#
#
#
#

Users typically have only permissions to write (i.e. modify files) only in their home directory (abbreviated
~, usually is /home/user) and /tmp, and permissions to read files in most other parts of the system:

user@machine:~$ 1ls /root # see what files the administrator has
1ls: cannot open directory /root: Permission denied

Keys

Useful keys on the command-line are:

16 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

<tab> show possible completions of what is being typed (use abundantly!)

“C (=Ctrl+C) | delete current line

“D exit the shell

T move up and down in the command history

~C interrupt currently running program

~\ kill currently running program

Shift-PgUp scroll the screen up (show past output)

Shift-PgDown | scroll the screen down (show future output; works only on quantum computers)

Running programs

When a program is being run (without giving its full path), several directories are searched for program
of that name; those directories are given by $PATH:

user@machine:~$ echo $PATH # show the value of $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
user@machine:~$ which 1s # say what is the real path of 1s

The first part of the command-line is the program to be run (which), the remaining parts are arguments
(1s in this case). It is up to the program which arguments it understands. Many programs can take
special arguments called options starting with - (followed by a single letter) or -- (followed by words);
one of the common options is ~h or --help, which displays how to use the program (try 1s --help).

Full documentation for each program usually exists as manual page (or man page), which can be shown
using e.g. man 1s (q to exit)

Starting yade

If yade is installed on the machine, it can be (roughly speaking) run as any other program; without any
arguments, it runs in the “dialog mode”, where a command-line is presented:

user@machine:~$ yade

Welcome to Yade 2019.01a

TCP python prompt on localhost:9002, auth cookie “adcusk'

XMLRPC info provider on http://localhost:21002

[["L clears screen, ~U kills line. F12 controller, Fil 3d view, F10 both, F9 generator, F8,
—plot. 1]

Yade [1]: #### hit "D to exit

Do you really want to exit ([y]l/n)?

Yade: normal exit.

The command-line is in fact python, enriched with some yade-specific features. (Pure python interpreter
can be run with python or ipython commands).

Instead of typing commands on-by-one on the command line, they can be be written in a file (with the
.py extension) and given as argument to Yade:

user@machine:~$ yade simulation.py

For a complete help, see man yade

Exercises

1. Open the terminal, navigate to your home directory
2. Create a new empty file and save it in ~/first.py

3. Change directory to /tmp; delete the file ~/first.py

1.2. Tutorial 17

Yade Documentation, Release 3rd ed.

4. Run program xeyes
5. Look at the help of Yade.
6. Look at the manual page of Yade

7. Run Yade, exit and run it again.

Python basics

We assume the reader is familar with Python tutorial and only briefly review some of the basic capabili-
ties. The following will run in pure-python interpreter (python or ipython), but also inside Yade, which
is a super-set of Python.

Numerical operations and modules:

Yade [1]: (1+3%4)**2 # usual rules for operator precedence, ** is exponentiation
Out[1]: 169

Yade [2]: import math # gain access to "module"” of functions

Yade [3]: math.sqrt(2) # use a function from that module

Out[3]: 1.4142135623730951
Yade [4]: import math as m # use the module under a different name

Yade [5]: m.cos(m.pi)
Qut[5]: -1.0

Yade [6]: from math import * # import everything so that it can be used without module name

Yade [7]: cos(pi)
Out[7]: -1.0

Variables:

Yade [8]: a=1; b,c=2,3 # multiple commands separated with ;, multiple assignment

Yade [9]: a+b+c

Out[9]: 6
Sequences
Lists

Lists are variable-length sequences, which can be modified; they are written with braces [...], and their
elements are accessed with numerical indices:

Yade [10]: a=[1,2,3] # list of numbers

Yade [11]: a[o0] # first element has index O

Out[11]: 1

Yade [12]: a[-1] # negative counts from the end

Out[12]: 3

Yade [13]: a[3] # error

IndexError Traceback (most recent call last)
/builds/yade-dev/trunk/install/1ib/x86_64-1linux-gnu/yade-ci/py/yade/__init__.py in <module>()
-—-> 1 a[3] # error

18 Chapter 1. Guided tour

http://docs.python.org/tutorial/index.html

Yade Documentation, Release 3rd ed.

IndexError: list index out of range

Yade [14]: len(a) # number of elements
Out[14]: 3
Yade [15]: a[1:] # from second element to the end

Out[15]: [2, 3]
Yade [16]: a+=[4,5] # extend the list
Yade [17]: a+=[6]; a.append(7) # exztend with single value, both have the same effect

Yade [18]: 9 in a # test presence of an element
Out[18]: False

Lists can be created in various ways:

Yade [19]: range(10)
Out[19]: range(0, 10)

Yade [20]: range(10) [-1]
Out[20]: 9

List of squares of even number smaller than 20, i.e. {a®Va €{0,---,19}|2||a} (note the similarity):

Yade [21]: [a**2 for a in range(20) if a%2==0]
Out[21]: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Tuples

Tuples are constant sequences:

Yade [22]: b=(1,2,3)

Yade [23]: b[0]

Out[23]: 1

Yade [24]: b[0]=4 # error

TypeError Traceback (most recent call last)
/builds/yade-dev/trunk/install/1ib/x86_64-linux-gnu/yade-ci/py/yade/__init__.py in <module>()
---=> 1 b[0]=4 # error

TypeError: 'tuple' object does not support item assignment

Dictionaries

Mapping from keys to values:

Yade [25]: ende={'one':'ein' , 'two':'zwei' , 'three':'drei'}
Yade [26]: de={1:'ein' , 2:'zwei' , 3:'drei'}; en={1:'one' , 2:'two' , 3:'three'}

Yade [27]: ende['one'] ## access walues
OQut[27]: 'ein'

Yade [28]: del[1], en[2]
OQut[28]: ('ein', 'two')

1.2. Tutorial 19

Yade Documentation, Release 3rd ed.

Functions, conditionals

Yade [29]: 4==5
Out[29]: False

Yade [30]: a=3.1

Yade [31]: if a<10:

Yade [32]: c=0 if a<l else 1

Yade [33]: b,c
Out[33]: (-2, 1)

Yade [34]: def square(x): return x**2

Yade [35]: square(2)
Out [35]: 4

conditional statement

trenary conditional expression

define a new function

and call that function

Exercises

1. Read the following code and say what wil be the values of a and b:

a=range(5)

b=[(aa**2 if aa),2==0 else -aa**2) for aa in a]

Yade basics

Yade objects are constructed in the following manner (this process is also called “instantiation”; since we
create concrete instances of abstract classes: one individual sphere is an instance of the abstract Sphere,

like Socrates is an instance of “man”):

Yade [36]: Sphere

Out[36]: yade.wrapper.Sphere

Yade [37]: s=Sphere()
Yade [38]: s.radius
—defined)

Out[38]: nan

Yade [39]: s.radius=2

Yade [40]: s.radius
Out[40]: 2.0

Yade [41]: ss=Sphere(radius=3)

Yade [42]: s.radius, ss.radius

Out[42]: (2.0, 3.0)

try also Sphere?

create a Sphere, without specifying any attridbutes

'man’' is a special value meaning "not a number"” (i.e. not,

set radius of an existing object

create Sphere, giving radius directly

also try typing s.<tab> to see defined attridbutes

20

Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Particles

Particles are the “data” component of simulation; they are the objects that will undergo some processes,
though do not define those processes yet.

Singles

There is a number of pre-defined functions to create particles of certain type; in order to create a sphere,
one has to (see the source of utils.sphere for instance):

1. Create Body

2. Set Body.shape to be an instance of Sphere with some given radius

3. Set Body.material (last-defined material is used, otherwise a default material is created)
4

. Set position and orientation in Body.state, compute mass and moment of inertia based on Material
and Shape

In order to avoid such tasks, shorthand functions are defined in the wutils module; to mention a few of
them, they are wtils.sphere, utils.facet, utils.wall.

Yade [43]: s=utils.sphere((0,0,0),radius=1) # create sphere particle centered at (0,0,0),
—with radius=1

Yade [44]: s.shape # s.shape describes the geometry of the particle
Out[44]: <Sphere instance at 0x3d47590>

Yade [45]: s.shape.radius # we already know the Sphere class
Out[45]: 1.0

Yade [46]: s.state.mass, s.state.inertia # inertia is computed from density and geometry
Out [46] :

(4188.790204786391,
Vector3(1675.516081914556253,1675.516081914556253,1675.516081914556253))

Yade [47]: s.state.pos # position is the one we prescribed
Out[47]: Vector3(0,0,0)

Yade [48]: s2=utils.sphere((-2,0,0),radius=1,fixed=True) # explanation below

In the last example, the particle was fixed in space by the fixed=True parameter to utils.sphere; such a
particle will not move, creating a primitive boundary condition.

A particle object is not yet part of the simulation; in order to do so, a special function O.bodies.append
(also see Omega::bodies and Scene) is called:

Yade [49]: 0.bodies.append(s) # adds particle s to the simulation; returns id of,
—the particle(s) added
Out [49]: 24

Packs

There are functions to generate a specific arrangement of particles in the pack module; for instance, cloud
(random loose packing) of spheres can be generated with the pack.SpherePack class:

Yade [50]: from yade import pack

Yade [51]: sp=pack.SpherePack() # create an empty cloud; SpherePack contains,
—only geometrical information

1.2. Tutorial 21

Yade Documentation, Release 3rd ed.

Yade [52]: sp.makeCloud((1,1,1),(2,2,2),rMean=.2) # put spheres with defined radius inside bowz,
—gtven by corners (1,1,1) and (2,2,2)
Out[52]: 7

Yade [63]: for c,r in sp: print(c,r) # print center and radius of all particlesy
< (SpherePack is a sequence which can be iterated over)

Vector3(1.576136453779724667,1.570330048534343659,1.407209206552916925) 0.2
Vector3(1.243000825903706641,1.357787829179026851,1.330377685324789505) 0.2
Vector3(1.418023782236154551,1.280207352735887705,1.782337496226209961) 0.2
Vector3(1.71898218746694087,1.657470908716595082,1.778295165646064602) 0.2
Vector3(1.259918098644315032,1.716754504197620435,1.684028621450538665) 0.2
Vector3(1.231208870354687734,1.755187272083380989,1.206080263043185719) 0.2
Vector3(1.770250104588739104,1.228330426907409123,1.538102161214549346) 0.2

Yade [54]: sp.toSimulation() # create particles and add them to they,
—simulation
Out[54]: [25, 26, 27, 28, 29, 30, 31]

Boundaries

utils. facet (triangle Facet) and utils.wall (infinite axes-aligned plane Wall) geometries are typically used
to define boundaries. For instance, a “floor” for the simulation can be created like this:

Yade [55]: O.bodies.append(utils.wall(-1,axis=2))
Out [55]: 32

There are other conveinence functions (like utils.facetBox for creating closed or open rectangular box, or
family of ymport functions)

Look inside

The simulation can be inspected in several ways. All data can be accessed from python directly:

Yade [56]: len(0.bodies)
Out[56]: 33

Yade [57]: 0.bodies[10].shape.radius # radius of body #10 (will give error if not sphere,
wsince only spheres have radius defined)
Out[57]: 0.16

Yade [58]: 0.bodies[12].state.pos # position of body #12
Out [568]: Vector3(1.105372833849602499,1.223172529462099423,1.545710406161150408)

Besides that, Yade says this at startup (the line preceding the command-line):

[["L clears screen, “U kills line. F12 controller, Fi11 3d view, F10 both, F9 generator, F8,
—plot. 1]

Controller Pressing F12 brings up a window for controlling the simulation. Although typically no
human intervention is done in large simulations (which run “headless”, without any graphical
interaction), it can be handy in small examples. There are basic information on the simulation
(will be used later).

3d view The 3d view can be opened with F11 (or by clicking on button in the Controller — see below).
There is a number of keyboard shortcuts to manipulate it (press h to get basic help), and it can
be moved, rotated and zoomed using mouse. Display-related settings can be set in the “Display”
tab of the controller (such as whether particles are drawn).

22 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

Inspector Inspector is opened by clicking on the appropriate button in the Controller. It shows (and
updates) internal data of the current simulation. In particular, one can have a look at engines,
particles (Bodies) and interactions (Interactions). Clicking at each of the attribute names links to
the appropriate section in the documentation.

Exercises

1. What is this code going to do?

Yade [59]: 0.bodies.append([utils.sphere((2*i,0,0),1) for i in range(1,20)])
Out[59]: [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]

2. Create a simple simulation with cloud of spheres enclosed in the box (0,0,0) and (1,1,1) with
mean radius .1. (hint: pack.SpherePack.makeCloud)

3. Enclose the cloud created above in box with corners (0,0,0) and (1,1,1); keep the top of the
box open. (hint: wutils.facetBox; type utils.facetBox? or utils.facetBox?? to get help on the
command line)

4. Open the 3D view, try zooming in/out; position axes so that z is upwards, y goes to the right and
x towards you.

Engines

Engines define processes undertaken by particles. As we know from the theoretical introduction, the
sequence of engines is called simulation loop. Let us define a simple interaction loop:

Yade [60]: 0.engines=[# newlines and indentations are not timportant until,
—the brace ts closed

Lo ForceResetter(),

o InsertionSortCollider ([Bol_Sphere_Aabb() ,Bol_Wall_Aabb()]),

Lt InteractionLoop(# dtto for the parenthesis here

L [Ig2_Sphere_Sphere_ScGeom() ,Ig2_Wall_Sphere_ScGeom()],

o [Ip2_FrictMat_FrictMat_FrictPhys()],

R [Law2_ScGeom_FrictPhys_CundallStrack()]

o),
Lt NewtonIntegrator (damping=.2,label="'newtonCustomLabel') # define a label,
—newtonCustomlLabel under which we can access this engine easily

Yade [61]: O.engines

Out [61] :

[<ForceResetter instance at 0x3232bb0>,
<InsertionSortCollider instance at 0x3d1d050>,
<InteractionLoop instance at 0x3c344f0>,
<NewtonIntegrator instance at 0x2dd65c0>]

Yade [62]: 0.engines[-1]==newtonCustomLabel # is it the same object?
Out[62]: True

Yade [63]: newtonCustomLabel.damping
Out[63]: 0.2

Instead of typing everything into the command-line, one can describe simulation in a file (script) and
then run yade with that file as an argument. We will therefore no longer show the command-line unless
necessary; instead, only the script part will be shown. Like this:

1.2. Tutorial 23

Yade Documentation, Release 3rd ed.

0.engines=[# newlines and indentations are not important until the brace s,
—closed

ForceResetter(),

InsertionSortCollider([Bol_Sphere_Aabb() ,Bol_Wall_Aabb()]),

InteractionLoop(# dtto for the parenthesis here

[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Wall_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]
),
GravityEngine(gravity=(0,0,-9.81)), # 9.81 1is the gravity,
—acceleration, and we say that
NewtonIntegrator (damping=.2,label='newtonCustomLabel') # define a label under which we
—can access this engine easily

]

Besides engines being run, it is likewise important to define how often they will run. Some engines can
run only sometimes (we will see this later), while most of them will run always; the time between two
successive runs of engines is timestep (At). There is a mathematical limit on the timestep value, called
critical timestep, which is computed from properties of particles. Since there is a function for that, we
can just set timestep using utils. PWave TimeStep:

0.dt=utils.PWaveTimeStep()

Each time when the simulation loop finishes, time 0.time is advanced by the timestep 0.dt:

Yade [64]: 0.dt=0.01

Yade [65]: 0.time
Out[65]: 0.0

Yade [66]: 0.step()

Yade [67]: 0.time
Out[67]: 0.01

For experimenting with a single simulations, it is handy to save it to memory; this can be achieved, once
everything is defined, with:

0.saveTmp()

Exercises

1. Define engines as in the above example, run the Inspector and click through the engines to see
their sequence.

2. Write a simple script which will
(a) define particles as in the previous exercise (cloud of spheres inside a box open from the top)
(b) define a simple simulation loop, as the one given above
(¢) set At equal to the critical P-Wave At
(d) save the initial simulation state to memory

3. Run the previously-defined simulation multiple times, while changing the value of timestep (use
the button to reload the initial configuration).

(a) See what happens as you increase At above the P-Wave value.
(b) Try changing the gravity parameter, before running the simulation.

(¢) Try changing damping

24 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

5.

Reload the simulation, open the 3d view, open the Inspector, select a particle in the 3d view (shift-
click). Then run the simulation and watch how forces on that particle change; pause the simulation
somewhere in the middle, look at interactions of this particle.

At which point can we say that the deposition is done, so that the simulation can be stopped?

See also:

The Bouncing sphere example shows a basic simulation.

1.2.3 Data mining

Read

Local data

All data of the simulation are accessible from python; when you open the Inspector, blue labels of various
data can be clicked — left button for getting to the documentation, middle click to copy the name of the
object (use Ctrl-V or middle-click to paste elsewhere). The interesting objects are among others (see
Omega for a full list):

1.

O.engines

Engines are accessed by their index (position) in the simulation loop:

0.engines[0] # first engine
0.engines[-1] # last engine

Note: The index can change if O.engines is modified. Labeling introduced in the section below
is a better solution for reliable access to a particular engine.

O.bodies

Bodies are identified by their id, which is guaranteed to not change during the whole simulation:

0.bodies[0] # first body
[b.shape.radius for b in 0.bodies if isinstance(b.shape,Sphere)] # list of radii of,
—all spherical bodies

sum([b.state.mass for b in 0.bodies]) # sum of masses of
—all bodies

numpy . average([b.state.vel[0] for b in 0.bodies]) # average velocity iny
—Z direction

Note: Uniqueness of Body.id is not guaranteed, since newly created bodies might recycle ids of
deleted ones.

. O.forces

Generalized forces (forces, torques) acting on each particle. They are (usually) reset at the begin-
ning of each step with ForceResetter, subsequently forces from individual interactions are accumu-
lated in InteractionLoop. To access the data, use:

0.forces.f(0) # force on #0
0.forces.t(1) # torque on #1

. O.interactions

Interactions are identified by ids of the respective interacting particles (they are created and deleted
automatically during the simulation):

1.2.

Tutorial 25

Yade Documentation, Release 3rd ed.

0.interactions[0,1] # interactions of #0 with #1
0.interactions[1,0] # the same object
0.bodies[0] .intrs() # all interactions of body #0

for i in 0.bodies[12].intrs(): print (i.isReal,i.id1,i.id2) # get some info about,

—interactions of body #12

[(i.isReal,i.id1,i.id2) for i in 0.bodies[12].intrs()] # same thing, but make ay
Labels

Engines and functors can be labeled, which means that python variable of that name is automatically
created.

Yade [1]: 0.engines=[
NewtonIntegrator (damping=.2,label='newtonCustomLabel')

o]

Yade [2]: newtonCustomLabel.damping=.4

Yade [3]: 0.engines[0].damping # 0.engines[0] and newtonCustomLabel are the same,
—objects
Out[3]: 0.4

Yade [4]: newtonCustomLabel==0.engines[0] # 0.engines[0] and newtonCustomLabel are the samey
—objects
Out[4]: True

Exercises

1. Find meaning of this expression:

’max([b.state.vel.norm() for b in 0.bodies])

2. Run the Gravity deposition script, pause after a few seconds of simulation. Write expressions that
compute
(a) kinetic energy Y Tmilvil?
(b) average mass (hint: use numpy.average)
(¢) maximum z-coordinate of all particles
)

(d) number of interactions of body #1

Global data

Useful measures of what happens in the simulation globally:

unbalanced force ratio of maximum contact force and maximum per-body force; measure of staticity,
computed with unbalancedForce.

porosity ratio of void volume and total volume; computed with porosity.
coordination number average number of interactions per particle, avgNumlInteractions

stress tensor (periodic boundary conditions) averaged force in interactions, computed with nor-
malShearStressTensors

fabric tensor distribution of contacts in space (not yet implemented); can be visualized with plotDi-
rections

26 Chapter 1. Guided tour

http://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html

Yade Documentation, Release 3rd ed.

Energies

Evaluating energy data for all components in the simulation (such as gravity work, kinetic energy, plastic
dissipation, damping dissipation) can be enabled with

0.trackEnergy=True

Subsequently, energy values are accessible in the O.energy; it is a dictionary where its entries can be
retrived with keys () and their values with 0.energy [key].

Save

PyRunner

To save data that we just learned to access, we need to call Python from within the simulation loop.
PyRunner is created just for that; it inherits periodicy control from PeriodicEngine and takes the code
to run as text (must be quoted, i.e. inside '...") attribute called command. For instance, adding this
to O.engines will print the current step number every one second wall clock time:

0.engines=0.engines+[PyRunner(command='print(0.iter)',realPeriod=1)]

Writing complicated code inside command is awkward; in such case, we define a function that will be
called:

def myFunction():
""'Print step number, and pause the simulation %is unbalanced force is smaller than O.
<05, ""!
print(0.iter)
if utils.unbalancedForce()<0.05:
print('Unbalanced force is smaller than 0.05, pausing.')
0.pause()

Now this function can be added to O.engines:

0.engines+=[PyRunner (command='myFunction()',iterPeriod=100)]

or, in general, like that:

0.engines=[
...
PyRunner (command="'myFunction()',iterPeriod=100) # call myFunction every 100 steps

Warning: If a function was declared inside a live yade session (ipython) and PyRunner attribute
updateGlobals is set to False then an error NameError: name 'myFunction' is not defined will
occur unless python globals() are updated with command

globals() .update(locals())

Exercises

1. Run the Gravity deposition simulation, but change it such that:
(a) wutils.unbalancedForce is printed every 2 seconds.
(b) check every 1000 steps the value of unbalanced force
o if smaller than 0.2, set damping to 0.8 (hint: use labels)

1.2. Tutorial 27

http://ipython.org

Yade Documentation, Release 3rd ed.

o if smaller than 0.1, pause the simulation

Keeping history

Yade provides the plot module used for storing and plotting variables (plotting itself will be discussed
later). Let us start by importing this module and declare variable names that will be plotted:

from yade import plot
plot.plots={'t"':('coordNum', 'unForce',None, 'Ek')} # kinetic energy will have,
—legend on the right as indicated by None separator.

Periodic storing of data is done with PyRunner and the plot.addData function. Also let’s enable energy
tracking:

0.trackEnergy=True
def addPlotData():
this function adds current values to the history of data, under the names specified
plot.addData(t=0.time,Ek=utils.kineticEnergy(),coordNum=utils.avgNumInteractions(),
—unForce=utils.unbalancedForce())

Now this function can be added to O.engines:

0.engines+=[PyRunner (command="'addPlotData() ',iterPeriod=20)]

or, in general, like that:

0.engines=[# ...,
PyRunner (command='addPlotData() ', iterPeriod=20) # call the addPlotData,
—function every 20 tterations

]

History is stored in plot.data, and can be accessed using the variable name, e.g. plot.datal['Ek'], and
saved to text file (for post-processing outside yade) with plot.saveDataTxt.

Plot

plot provides facilities for plotting history saved with plot.addData as 2d plots. Data to be plotted are
specified using dictionary plot.plots

plot.plots={'t':('coordNum', 'unForce',None, 'Ek')}

History of all values is given as the name used for plot.addData; keys of the dictionary are x-axis values,
and values are sequence of data on the y axis; the None separates data on the left and right axes (they
are scaled independently). The plot itself is created with

’plot.plot() # on the command line, F8 can be used as shorthand

While the plot is open, it will be updated periodically, so that simulation evolution can be seen in
real-time.

Energy plots

Plotting all energy contributions would be difficult, since names of all energies might not be known in
advance. Fortunately, there is a way to handle that in Yade. It consists in two parts:

1. plot.addData is given all the energies that are currently defined:

28 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

plot.addData(i=0.iter,total=0.energy.total(),**0.energy)

The O.energy.total functions, which sums all energies together. The **0.energy is special python
syntax for converting dictionary (remember that O.energy is a dictionary) to named functions
arguments, so that the following two commands are identical:

function(a=3,b=34) # gtve arguments as arguments
function(**{'a':3,'b':34}) # create arguments from dictionary

2. Data to plot are specified using a function that gives names of data to plot, rather than providing
the data names directly:

plot.plots={'i':['total']+0.energy.keys()}

where total is the name we gave to 0.energy.total() above, while 0.energy.keys () will always
return list of currently defined energies.

Energy plot example

Plotting energies inside a live yade session, for example by launching examples/test/triax-basic-without-
plots.py would look following:

from yade import plot

0.trackEnergy=True

0.step() # performing a single simulation step ©s nmecessary toy
—populate 0.energy.keys()

plot.plots={'t':0.energy.keys()+['total']}

def addPlotData():
this function adds current values to the history of data, under the names specified
plot.addData(t=0.time , total=0.energy.total() , **0.energy)

0.engines+=[PyRunner (command="'addPlotData()',iterPeriod=20)]

globals() .update(locals()) # do this only because this is an example of a live yade,
—Session

Press F8 to show plot window and F11 to show 3D view, then press to start simulation.

Using multiple plots

It is also possible to make several separate plots, for example like this:

plot.plots={ 't':('total', 'kinetic') , 't ':['elastPotential', 'gravWork'] , 't ':('nonviscDamp
~') %

Warning: There cannot be duplicate names declared in separate plots. This is why spaces were
used above to indicate the same variable t.

With the caveat above, a following example inside a live yade session launched on examples/test /triax-
basic-without-plots.py would look following:

from yade import plot

0.trackEnergy=True

plot.plots={ 't':('total','kinetic') , 't ':['elastPotential','gravWork'] , 't ':('nonviscDamp
<') %

1.2. Tutorial 29

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py

Yade Documentation, Release 3rd ed.

def addPlotData():
assign value to all three: 't', 't ' and 't ' with single t=... assignment
plot.addData(t=0.time , total=0.energy.total() , **0.energy)

0.engines+=[PyRunner (command='addPlotData() ',iterPeriod=20)]

globals() .update(locals()) # do this only because this is an example of a live yadey,
—Session

plot.plot(subPlots=False) # show plots in separate windows

plot.plot(subPlots=True) # same as pressing F8: close current plot windows and Teopeny

—a single new one

Press F8 to show plot window and F11 to show 3D view, then press to start simulation, see video below:

Exercises

1. Calculate average momentum in y direction.
2. Run the Gravity deposition script, plotting unbalanced force and kinetic energy.

3. While the script is running, try changing the NewtonlIntegrator.damping parameter (do it from both
Inspector and from the command-line). What influence does it have on the evolution of unbalanced
force and kinetic energy?

4. Think about and write down all energy sources (input); write down also all energy sinks (dissipa-
tion).
5. Simulate Gravity deposition and plot all energies as they evolve during the simulation.

See also:

Most Ezamples with tutorial use plotting facilities of Yade, some of them also track energy of the
simulation.

1.2.4 Setting up a simulation

See also:

Examples Gravity deposition, Oedometric test, Periodic simple shear, Periodic triaxial test deal with
topics discussed here.

Parametric studies

Input parameters of the simulation (such as size distribution, damping, various contact parameters, ...)
influence the results, but frequently an analytical relationship is not known. To study such influence,
similar simulations differing only in a few parameters can be run and results compared. Yade can be run
in batch mode, where one simulation script is used in conjunction with parameter table, which specifies
parameter values for each run of the script. Batch simulation are run non-interactively, i.e. without user
intervention; the user must therefore start and stop the simulation explicitly.

Suppose we want to study the influence of damping on the evolution of kinetic energy. The script has to
be adapted at several places:

1. We have to make sure the script reads relevant parameters from the parameter table. This is done
using wtils.readParamsFromTable; the parameters which are read are created as variables in the
yade.params.table module:

readParamsFromTable (damping=.2) # yade.params.table.damping variable will be created
from yade.params import table # typing table.damping is easier than yade.

SPOTamS. tavte. damping

30 Chapter 1. Guided tour

https://youtu.be/AALiZ7G7yNM

Yade Documentation, Release 3rd ed.

Note that utils.readParamsFromTable takes default values of its parameters, which are used if the
script is not run in non-batch mode.

2. Parameters from the table are used at appropriate places:

NewtonIntegrator (damping=table.damping) ,

3. The simulation is run non-interactively; we must therefore specify at which point it should stop:

0.engines+=[PyRunner (iterPeriod=1000, command='checkUnbalancedForce()')] # call oury
—function defined below periodically

def checkUnbalancedForce():

if unbalancedForce<0.05: # extt Yade 7f unbalanced force,
—drops below 0.05
plot.saveDataTxt(0.tags['d.id']+' .data.bz2") # save all data into a unique filey,

—before exiting
import sys
sys.exit(0) # exit the program

4. Finally, we must start the simulation at the very end of the script:

0.run() # run forever, until stopped by checkUnbalancedForce()
waitIfBatch() # do not finish the script until the stmulation ends; does mothingy,
—1n non-batch mode

The parameter table is a simple text-file (e.g. params.txt), where each line specifies a simulation to
run:

comments start with # as in python

damping # first non-comment line is wvariable name
.2

.4

.6

Finally, the simulation is run using the special batch command:

user@machine:~$ yade-batch params.txt simulation.py

Exercises

1. Run the Gravity deposition script in batch mode, varying damping to take values of .2, .4, .6.

2. See the http://localhost:9080 overview page while the batch is running (fig. imgBatchExample).

1.2. Tutorial 31

http://localhost:9080

Yade Documentation, Release 3rd ed.

i~ Yade-batch overview g X
File Edit View History Bookmarks Tools Help
<A E:} e Bf httpilocalhost:a020/) |
32 cores available, 3 used + 29 free. =
Jobs
3 total, 3 running, O HEHE
id status info cores plots
lel lez
14 =" \nbalanced —— claztpotential |
—— gravivork
— EiRetic
12 4 —— nonviscoamp | %
— plastDissip
10 \._ !
00:00:04|step 12929 o8
damping=.2 speed 3405.9/sec 1 g S|[YADE BATCH=g
pmg=. 352 bodies 3 examples/bin/ys

Stop 1459 intrs 1

e -

o4

0.2

|
'S

g
| | =
w -
elastPotential, graviWork, kinctic, nonviscDoamp, plastDissip

0.0 4
=5

0.0 0.5 10 15 20 25

le—1 lez

1.5 4 — unbalanced — elastPotential
—— graviiork
— inetic
—— nanviscDamp
a5
£ — plastDissip f
13 — -

localhost (::1) B

Boundary

Particles moving in infinite space usually need some constraints to make the simulation meaningful.

Supports

So far, supports (unmovable particles) were providing necessary boundary: in the Gravity deposition
script the geom.facetBox is internally composed of facets (triangulation elements), which are fixed in
space; facets are also used for arbitrary triangulated surfaces (see relevant sections of the User’s manual).
Another frequently used boundary is utils.wall (infinite axis-aligned plane).

Periodic

Periodic boundary is a “boundary” created by using periodic (rather than infinite) space. Such boundary
is activated by O.periodic=True , and the space configuration is decribed by O.cell . It is well suited for
studying bulk material behavior, as boundary effects are avoided, leading to smaller number of particles.
On the other hand, it might not be suitable for studying localization, as any cell-level effects (such as
shear bands) have to satisfy periodicity as well.

32 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

The periodic cell is described by its reference size of box aligned with global axes, and current transfor-
mation, which can capture stretch, shear and rotation. Deformation is prescribed via velocity gradient,
which updates the transformation before the next step. Homothetic deformation can smear wvelocity
gradient accross the cell, making the boundary dissolve in the whole cell.

Stress and strains can be controlled with PeriTriaxController; it is possible to prescribe mixed
strain/stress goal state using PeriTriaxController.stressMask.

The following creates periodic cloud of spheres and compresses to achieve ox=-10 kPa, oy=-10kPa and
€,=-0.1. Since stress is specified for y and z, stressMask is binary 0b011 (x—1, y—2, z—4, in decimal
142=3).

Yade [1]: sp=pack.SpherePack()

Yade [2]: sp.makeCloud((1,1,1),(2,2,2),rMean=.16,periodic=True)
Out [2]: 20

Yade [3]: sp.toSimulation() # implicitly sets O.periodic=True, and 0.cell.refSize,
—to the packing period size
Qut[3]: [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]

Yade [4]: 0.engines+=[PeriTriaxController(goal=(-1le4,-1e4,-.1),stressMask=0b011,maxUnbalanced=.
2 ,doneHook="functionToRunWhenFinished () ')]

When the simulation runs, PeriTriazController takes over the control and calls doneHook when goal is
reached. A full simulation with PeriTriaxController might look like the following:

from __future__ import print_function
from yade import pack, plot
sp = pack.SpherePack()
rMean = .05
sp.makeCloud((0, 0, 0), (1, 1, 1), rMean=rMean, periodic=True)
sp.toSimulation()
0.engines = [
ForceResetter(),
InsertionSortCollider([Bol_Sphere_Aabb()], verletDist=.05 * rMean),
InteractionLoop([Ig2_Sphere_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()],
< [Law2_ScGeom_FrictPhys_CundallStrack()]),
NewtonIntegrator (damping=.6),
PeriTriaxController(
goal=(-1e6, -1e6, -.1), stressMask=0b011, maxUnbalanced=.2, doneHook=
< 'goalReached()', label='triax', maxStrainRate=(.1, .1, .1), dynCell=True
),
PyRunner (iterPeriod=100, command='addPlotData()')
]
0.dt = .5 * utils.PWaveTimeStep()
0.trackEnergy = True

def goalReached():
print('Goal reached, strain', triax.strain,
0.pause()

stress', triax.stress)

def addPlotData():
plot.addData(
sx=triax.stress[0],
sy=triax.stress[1],
sz=triax.stress[2],
ex=triax.strain[0],
ey=triax.strain[1],
ez=triax.strain[2],
i=0.iter,

1.2. Tutorial 33

Yade Documentation, Release 3rd ed.

unbalanced=utils.unbalancedForce(),
totalEnergy=0.energy.total(),
**0.energy # plot all energies

plot.plots = {
'i': (('unbalanced', 'go'), None, 'kinetic'),
"'i': ('ex', 'ey', 'ez', None, 'sx', 'sy', 'sz'),
'i ': (0.energy.keys, None, ('totalEnergy', 'bo'))

}

plot.plot()

0.saveTmp()

0.run()

1.2.5 Advanced & more

Particle size distribution

See Periodic triazial test and examples/test/psd.py

Clumps

Clump; see Periodic triazial test

Testing laws

LawTester, scripts/checks-and-tests/law-test.py

New law
Visualization

See the example 3d-postprocessing and video recording
e VTKRecorder & Paraview
o makeVideo
e SnapshotEngine
 doc/sphinx/tutorial /05-3d-postprocessing.py
o examples/test/force-network-video.py

o doc/sphinx/tutorial /make-simulation-video.py

Convert python 2 scripts to python 3

Below is a non-exhaustive list of common things to do to convert your scripts to python 3.

Mandatory:

e print ... becomes print(...),

e myDict.iterkeys(), myDict.itervalues(), myDict.iteritems() becomes myDict.keys(),
myDict.values(), myDict.items(),

34 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/psd.py
https://gitlab.com/yade-dev/trunk/blob/master/scripts/checks-and-tests/law-test.py
http://www.paraview.org
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/05-3d-postprocessing.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/force-network-video.py
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/make-simulation-video.py

Yade Documentation, Release 3rd ed.

e import cPickle becomes import pickle,

e ‘“and <> operators are no longer recognized,

e inconsistent use of tabs and spaces in indentation is prohibited, for this reason all scripts in yade

use tabs for indentation.

Should be checked, but not always mandatory:

« (euclidian) division of two integers: i1/i2 becomes 11//i2,

e myDict.keys(), myDict.values(), myDict.items() becomes sometimes list (myDict.keys()),

list(myDict.values()), list(myDict.items()) (depending on your usage),

e map(), filter(), zip() becomes sometimes list(map()), list(filter()), list(zip()) (de-

pending on your usage),

o string encoding is now UTFS8 everywhere, it may cause problems on user inputs/outputs (keyboard,

file...) with special chars.

Optional:

e # encoding: utf-8 no longer needed

1.2.6 Examples with tutorial

The online version of this tutorial contains embedded videos.

Bouncing sphere

Following example is in file doc/sphinx/tutorial/01-bouncing-sphere.py.

bastic simulation showing sphere falling ball gravity,
bouncing against another sphere representing the support

DATA COMPONENTS
add 2 particles to the simulation

they the default material (utils.defaultMat)
0.bodies.append(

L
fized: particle's position in space will not change (support)
sphere(center=(0, 0, 0), radius=.5, fixed=True),
this particles is free, subject to dynamics
sphere((0, 0, 2), .5)
]

FUNCTIONAL COMPONENTS

simulation loop —— see presentation for the explanation
0.engines = [
ForceResetter(),
InsertionSortCollider ([Bol_Sphere_Aabb()]1),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom()], # collision geometry
[Ip2_FrictMat_FrictMat_FrictPhys()], # collision "physics"

[Law2_ScGeom_FrictPhys_CundallStrack()] # contact law —- apply forces

1.2. Tutorial

35

https://yade-dem.org/doc/tutorial-examples.html
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/01-bouncing-sphere.py

Yade Documentation, Release 3rd ed.

Apply gravity force to particles. damping: numerical dissipation of energy.
NewtonIntegrator (gravity=(0, 0, -9.81), damping=0.1)

set timestep to a fraction of the critical timestep

the fraction is wvery small, so that the simulation is not too fast
and the motion can be observed

0.dt = .5e-4 * PWaveTimeStep()

save the simulation, so that it can be reloaded later, for experimentation
0.saveTmp()

Gravity deposition

Following example is in file doc/sphinx/tutorial /02-gravity-deposition.py.

gravity deposition in box, showing how to plot and save history of data,
and how to control the simulation while 4t is running by calling
python functions from within the simulation loop

import yade modules that we will use below
from yade import pack, plot

create rectangular box from facets
0.bodies.append(geom.facetBox((.5, .5, .5), (.5, .5, .5), wallMask=31))

create empty sphere packing

sphere packing is not equivalent to particles in simulation, it contains only the pure,
—geometry

sp = pack.SpherePack()

generate randomly spheres with uniform radius distribution

sp.makeCloud((0, 0, 0), (1, 1, 1), rMean=.05, rRelFuzz=.5)

add the sphere pack to the simulation

sp.toSimulation()

0.engines = [

ForceResetter(),

InsertionSortCollider([Bol_Sphere_Aabb(), Bol_Facet_Aabb()]),

InteractionLoop(
handle sphere+sphere and facet+sphere collisions
[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]

),

NewtonIntegrator (gravity=(0, 0, -9.81), damping=0.4),

call the checkUnbalanced function (defined below) every 2 seconds

PyRunner (command='checkUnbalanced() ', realPeriod=2),

call the addPlotData function every 200 steps

PyRunner (command='addPlotData() ', iterPeriod=100)

o —

.dt = .5 * PWaveTimeStep()

enable energy tracking; any simulation parts supporting it
can create and update arbitrary energy types, which can be
accessed as 0.energyl['energyName'] subsequently
.trackEnergy = True

O % & %

1f the unbalanced forces goes below .05, the packing
is considered stabilized, therefore we stop collected
data history and stop

36 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/02-gravity-deposition.py

Yade Documentation, Release 3rd ed.

def checkUnbalanced():
if unbalancedForce() < .05:
0.pause()
plot.saveDataTxt('bbb.txt.bz2")
plot.saveGnuplot ('bbb') is also possible

collect history of data which will be plotted

def addPlotData():
each i1tem is given a mames, by which it can be the unsed in plot.plots
the *x*0.energy converts dictionary-like 0.energy to plot.addData arguments
plot.addData(i=0.iter, unbalanced=unbalancedForce(), **0.energy)

define how to plot data: 'i' (step number) on the z-azis, unbalanced force
on the left y-azis, all energies on the right y-azis

(0.energy.keys is function which will be called to get all defined energies)
None separates left and right y-axis

plot.plots = {'i': ('unbalanced', None, 0.energy.keys)}

show the plot on the screen, and update while the simulation runs
plot.plot()

0.saveTmp()

Oedometric test

Following example is in file doc/sphinx/tutorial/03-oedometric-test.py.

E3

gravity deposition, continuing with oedometric test after stabilization
shows also how to run parametric studies with yade-batch

H*

The components of the batch are:

1. table with parameters, one set of parameters per line (ccc.table)

2. readParamsFromTable which reads respective line from the parameter file
3. the simulation muse be run using yade-batch, not yade

$ yade-batch --job-threads=1 03-oedometric-test.table 03-oedometric-test.py

H oW oW R R R R

load parameters from file i1f run in batch

default values are used if not run from batch

readParamsFromTable (rMean=.05, rRelFuzz=.3, maxLoad=1e6, minLoad=1e4)
make rMean, TRelFuzz, maxLoad accessible directly as variables later
from yade.params.table import *

create box with free top, and ceate loose packing inside the box
from yade import pack, plot

0.bodies.append(geom.facetBox((.5, .5, .5), (.5, .5, .5), wallMask=31))
sp = pack.SpherePack()

sp.makeCloud((0, 0, 0), (1, 1, 1), rMean=rMean, rRelFuzz=rRelFuzz)
sp.toSimulation()

0.engines = [
ForceResetter(),
sphere, facet, wall
InsertionSortCollider ([Bol_Sphere_Aabb(), Bol_Facet_Aabb(), Bol_Wall_Aabb()]),
InteractionLoop(

the loading plate is a wall, we need to handle sphere+sphere, sphere+facet,

—sphere+wall

[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom(), Ig2_Wall_Sphere_

ScGeom ()]
e

1.2. Tutorial

37

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/03-oedometric-test.py

Yade Documentation, Release 3rd ed.

[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]
),
NewtonIntegrator (gravity=(0, 0, -9.81), damping=0.5),
the label creates an automatic variable referring to this engine
we use tt below to change its attridbutes from the functions called
PyRunner (command="'checkUnbalanced()', realPeriod=2, label='checker'),
]
0.dt = .5 * PWaveTimeStep()

the following checkUnbalanced, unloadPlate and stopUnloading functions are all called by the
— 'checker’

(the last engine) one after another; this sequence defines progression of different stagesy,
—of the

simulation, as each of the functions, when the condition is satisfied, updates 'checker' to,
—call

the next function when it is run from within the simulation next time

check whether the gravity deposition has already finished
1f so, add wall on the top of the packing and start the oedometric test
def checkUnbalanced():

at the very start, unbalanced force can be low as there is only few contacts, but ity
—does not mean the packing is stable

if 0.iter < 5000:

return
the rest will be run only if unbalanced is < .1 (stabilized packing)
if unbalancedForce() > .1:
return

add plate at the position on the top of the packing

the mazimum finds the z-coordinate of the top of the topmost particle

0.bodies.append(wall(max([b.state.pos[2] + b.shape.radius for b in 0.bodies ify,
—isinstance(b.shape, Sphere)]), axis=2, sense=-1))

global plate # without this line, the plate vartable would only exist inside this,
< function

plate = 0.bodies[-1] # the last particles is the plate

Wall objects are "fized" by default, <.e. mot subject to forces

prescribing a velocity will therefore make %t move at constant wvelocity (downwards)

plate.state.vel = (0, 0, -.1)

start plotting the data now, it was not interesting before

0.engines = 0.engines + [PyRunner(command='addPlotData()', iterPeriod=200)]

next time, do nmot call this function anymore, but the next one (unloadPlate) instead

checker.command = 'unloadPlate()'

def unloadPlate():
if the force on plate exceeds maximum load, start unloading
if abs(0.forces.f(plate.id) [2]) > maxLoad:
plate.state.vel *= -1
next time, do not call this function anymore, but the next one,
< (stopUnloading) instead
checker.command = 'stopUnloading()'

def stopUnloading():
if abs(0.forces.f(plate.id)[2]) < minLoad:

0.tags can be used to retrieve unique tdentifiers of the simulation
if running <n batch, subsequent simulation would overwrite each other'sy

—output files otherwise
d (or description) ts simulation description (composed of parameter values)
while the id is composed of time and process number
plot.saveDataTxt(0.tags['d.id'] + '.txt')
0.pause()

38 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

def addPlotData():
if not isinstance(0.bodies[-1].shape, Wall):
plot.addData()
return
Fz = 0.forces.f(plate.id) [2]
plot.addData(Fz=Fz, w=plate.state.pos[2] - plate.state.refPos[2],
< sunbalanced=unbalancedForce(), i=0.iter)

bestdes unbalanced force evolution, also plot the displacement-force diagram
plot.plots = {'i': ('unbalanced',), 'w': ('Fz',)}
plot.plot()

0.run()

when running with yade-batch, the script must not finish until the simulation is done fully
this command will wait for that (has no influence in the non-batch mode)

waitIfBatch()

Batch table

To run the same script doc/sphinx/tutorial /03-oedometric-test.py in batch mode to test different param-
eters, execute command yade-batch 03-oedometric-test.table 03-oedometric-test.py, also visit
page http://localhost:9080 to see the batch simulation progress.

rMean rRelFuzz maxLoad

.05 .1 1e6
.05 .2 1le6
.05 .3 1e6

Periodic simple shear

Following example is in file doc/sphinx/tutorial /04-periodic-simple-shear.py.

encoding: utf-8

script for periodic simple shear test, with periodic boundary
first compresses to attain some isotropic stress (checkStress),
then loads in shear (checkDistorsion)

the initial packing is either regular (hezagonal), with empty bands along the boundary,
or periodic random cloud of spheres

material friction angle is initially set to zero, so that the resulting packing is dense
(sphere rearrangement is easier if there is no friction)

HOH oW W R R R R R R

setup the periodic boundary

from __future import print_function

0.periodic = True

0.cell.hSize = Matrix3(2, 0, 0, 0, 2, 0, 0, 0, 2)

from yade import pack, plot

the "if 0:" block will be never executed, therefore the "else:" block will be
to use cloud instead of regular packing, change to "if 1:" or something similar
if 0:

create cloud of spheres and insert them into the simulation

1.2. Tutorial 39

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/03-oedometric-test.py
http://localhost:9080
https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/04-periodic-simple-shear.py

Yade Documentation, Release 3rd ed.

we give corners, mean radius, rTadius variation

sp = pack.SpherePack()

sp.makeCloud((0, 0, 0), (2, 2, 2), rMean=.1, rRelFuzz=.6, periodic=True)

insert the packing into the simulation

sp.toSimulation(color=(0, 0, 1)) # pure blue
else:

in this case, add dense packing

0.bodies.append(pack.regularHexa(pack.inAlignedBox((0, 0, 0), (2, 2, 2)), radius=.1,
—gap=0, color=(0, 0, 1)))

create "dense" packing by setting friction to zero initially
0.materials[0].frictionAngle = 0

simulation loop (will be run at every step)
0.engines = [
ForceResetter(),
InsertionSortCollider ([Bol_Sphere_Aabb()]),
InteractionLoop(
interaction loop
[Ig2_Sphere_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]
)’
NewtonIntegrator (damping=.4),
run checkStress function (defined below) every second
the label is arbitrary, and is used later to refer to this engine
PyRunner (command="'checkStress() ', realPeriod=1, label='checker'),
record data for plotting every 100 steps; addData function is defined below
PyRunner (command='addData() ', iterPeriod=100)

set the integration timestep to be 1/2 of the "critical” timestep
0.dt = .5 * PWaveTimeStep()

prescribe isotropic mormal deformation (constant strain rate)
of the periodic cell
0.cell.velGrad = Matrix3(-.1, 0, 0, 0, -.1, 0, 0, 0, -.1)

when to stop the isotropic compression (used inside checkStress)
limitMeanStress = -5eb

called every second by the PyRunner engine
def checkStress():
stress tensor as the sum of normal and shear contributions
Matriz3.Zero is the intial value for sum(...)
stress = getStress().trace() / 3.
print('mean stress', stress)
if mean stress is below (bigger in absolute wvalue) limitMeanStress, start shearing
if stress < limitMeanStress:
apply constant-rate distorsion on the periodic cell
0.cell.velGrad = Matrix3(0, 0, .1, 0, 0, 0, 0, 0, 0)
change the function called by the checker engine
(checkStress will not be called anymore)
checker.command = 'checkDistorsion()'
block rotations of particles to increase tanPhi, if desired
disabled by default
if O:
for b in O.bodies:
block X,Y,Z rotations, translations are free
b.state.blockedDOFs = 'XYZ'
stop rotations if any, as blockedDOFs block accelerationsy
—really

40 Chapter 1. Guided tour

Yade Documentation, Release 3rd ed.

b.state.angVel = (0, 0, 0)
set friction angle back to non-zero wvalue
tangensOfFrictiondngle is computed by the Ip2_ * functor from material
for future contacts change material (there is only one material for ally
wparticles)
0.materials[0] .frictionAngle = .5 # radians
for existing contacts, set contact friction directly
for i in O.interactions:
i.phys.tangensOfFrictionAngle = tan(.5)

called from the 'checker' engine pertodically, during the shear phase
def checkDistorsion():
i1f the distorsion value is >.3, exit; otherwise do nothing
if abs(0.cell.trsf[0, 2]) > .5:
save data from addData(...) before exiting into file
use O0.tags['td'] to distinguish individual runs of the same simulation
plot.saveDataTxt(0.tags['id'] + '.txt')
exit the program
#import sys
#sys.exit (0) # no error (0)
0.pause()

called periodically to store data history
def addData():
get the stress tensor (as 3z3 matriz)
stress = sum(normalShearStressTensors(), Matrix3.Zero)
give names to values we are interested in and save them
plot.addData(exz=0.cell.trsf [0, 2], szz=stress[2, 2], sxz=stress[0, 2],
< tanPhi=(stress[0, 2] / stress[2, 2]) if stress[2, 2] != 0 else 0, i=0.iter)
color particles based on rotation amount
for b in 0.bodies:
rot() gives rotation vector between reference and current position
b.shape.color = scalarOnColorScale(b.state.rot().norm(), 0, pi / 2.)

define what to plot (3 plots in total)

exz(i), [left y azis, separate by None:] szz(i), szz(i)

szz(exz), szz(exz)

tanPhi (i)

note the space in entry

plot.plots = {'i': ('exz', None, 'szz', 'sxz'), 'exz': ('szz', 'sxz'), 'i ': ('tanPhi',)}

] [1g

7 so that it does mot overwrite the '3

better show rotation of particles
Gl1_Sphere.stripes = True

open the plot on the screen
plot.plot()

0.saveTmp()

3d postprocessing

Following example is in file doc/sphinx/tutorial/05-3d-postprocessing.py. This example will run for
20000 iterations, saving *.png snapshots, then it will make a video 3d.mpeg out of those snapshots.

demonstrate 3d postprocessing with yade

#
1. qt.SnapshotEngine saves images of the 3d view as it appears on the screen periodically
makeVideo is then used to make real movie from those images

1.2. Tutorial 41

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/05-3d-postprocessing.py

Yade Documentation, Release 3rd ed.

2. VIKRecorder saves data in files which can be opened with Paraview
see the User's manual for an intro to Paraview

generate loose packing

from yade import pack, qt

sp = pack.SpherePack()

sp.makeCloud((0, 0, 0), (2, 2, 2), rMean=.1, rRelFuzz=.6, periodic=True)
add to scene, make it periodic

sp.toSimulation()

0.engines = [
ForceResetter(),
InsertionSortCollider([Bol_Sphere_Aabb()]),
InteractionLoop(
interaction loop
[Ig2_Sphere_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]
),
NewtonIntegrator (damping=.4),
save data for Paraview
VTKRecorder (fileName='3d-vtk-', recorders=['all'], iterPeriod=1000),
save data from Yade's own 3d view
qt.SnapshotEngine(fileBase='3d-', iterPeriod=200, label='snapshot'),
this engine will be called after 20000 steps, only once
PyRunner (command='finish() ', iterPeriod=20000)
]
0.dt = .5 * PWaveTimeStep()

prescribe constant-strain deformation of the cell
0.cell.velGrad = Matrix3(-.1, 0, 0, 0, -.1, 0, 0, 0, -.1)

we must open the view explicitly (limitation of the qt.SnapshotEngine)
qt.View()

this function is called when the simulation is finished

def finish():
snapshot ts label of gt.SnapshotEngine
the 'snapshots' attribute contains list of all saved files
makeVideo (snapshot.snapshots, '3d.mpeg', fps=10, bps=10000)
0.pause()

set parameters of the renderer, to show network chains rather than particles

these settings are accessible from the Controller window, on the second tab ("Display") asy,
—well

rr = yade.qt.Renderer()

rr.shape = False

rr.intrPhys = True

Periodic triaxial test

Following example is in file doc/sphinx/tutorial /06-periodic-triaxial-test.py.

encoding: utf-8

pertodic triazial test simulation
#

The wnitial packing is either

#

42 Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/doc/sphinx/tutorial/06-periodic-triaxial-test.py

Yade Documentation, Release 3rd ed.

1.
2.
3.

random cloud with uniform distribution, or
cloud with specified granulometry (radii and percentages), or
cloud of clumps, i.e. rigid aggregates of several particles

The triazial consists of 2 stages:

1. 4sotropic compaction, until sigmalso s rTeached in all directions;
this stage is ended by calling compactionFinished()

constant-strain deformation along the z-azis, while maintaining
constant stress (sigmalso) laterally; this stage is ended by calling
triazFinished()

Controlling of strain and stresses is performed via PeriTriazController,
of which parameters determine type of control and also stability
condition (mazUnbalanced) so that the packing is considered stabilized
and the stage is done.

oW R OB R R R W W W oW W RRERERR
[\

from __future import print_function

sigmalso = -1eb

#import matplotlid
#matplotlib.use('4gg')

generate loose packing
from yade import pack, qt, plot

0.periodic = True
sp = pack.SpherePack()
if O:
uniform distribution
sp.makeCloud((0, 0, 0), (2, 2, 2), rMean=.1, rRelFuzz=.3, periodic=True)
else:
create packing from clumps
configuration of one clump
cl = pack.SpherePack([((0, 0, 0), .03333), ((.03, 0, 0), .017), ((0, .03, 0), .017)1)
make cloud using the configuration cl (there could c2, c3, ...; selection betweeny
< them would be random)
sp .makeClumpCloud((0, 0, 0), (2, 2, 2), [c1], periodic=True, num=500)

setup periodic boundary, insert the packing
sp.toSimulation()

0.engines = [
ForceResetter(),
InsertionSortCollider ([Bol_Sphere_Aabb()]),
InteractionLoop([Ig2_Sphere_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()],
< [Law2_ScGeom_FrictPhys_CundallStrack()]),
PeriTriaxController (
label="'triax"',
spectify target wvalues and whether they are strains or stresses
goal=(sigmalso, sigmalso, sigmalso),
stressMask=7,
type of servo-control
dynCell=True,
maxStrainRate=(10, 10, 10),
watt unttl the unbalanced force goes below this value
maxUnbalanced=.1,
relStressTol=1e-3,
call this function when goal %s reached and the packing ts stable
doneHook="'compactionFinished ()"
),
NewtonIntegrator (damping=.2),

1.2. Tutorial

43

Yade Documentation, Release 3rd ed.

PyRunner (command="'addPlotData() ', iterPeriod=100),

]
0.dt = .5 * PWaveTimeStep()

def addPlotData():
plot.addData(

unbalanced=unbalancedForce(),
i=0.iter,
sxx=triax.stress[0],
syy=triax.stress[1],
szz=triax.stress[2],
exx=triax.strain[0],
eyy=triax.strain[1],
ezz=triax.strain[2],
save all available energy data
Etot=0.energy.total(),
**(0.energy

enable energy tracking in the code
0.trackEnergy = True

define what to plot
plot.plots = {

i': ('unbalanced',),
'i ' ('sxx', 'syy', 'szz'),
"i': ('exx', 'eyy', 'ezz'),

energy plot

'"'i ': (0.energy.keys, None, 'Etot'),
}
show the plot
plot.plot()

def compactionFinished():
set the current cell configuration to be the reference one
0.cell.trsf = Matrix3.Identity
change control type: keep constant confinement in z,y, 20/ compression in 2z
triax.goal = (sigmalso, sigmalso, -.2)
triax.stressMask = 3
allow faster deformation along =,y to better maintain stresses
triax.maxStrainRate = (1., 1., .1)
next time, call triazFinished instead of compactionFinished
triax.doneHook = 'triaxFinished()'
do not wait for stabilization before calling triazFinished
triax.maxUnbalanced = 10

def triaxFinished():
print ('Finished')
0.pause ()

1.2.7 More examples

The same list with embedded videos is available online, but not recommended for viewing on slow internet
connection.

A full list of examples is in file examples/list of examples.txt. Videos of some of those examples are
listed below.

44 Chapter 1. Guided tour

https://yade-dem.org/doc/tutorial-more-examples.html
https://gitlab.com/yade-dev/trunk/blob/master/examples/list_of_examples.txt

Yade Documentation, Release 3rd ed.

FluidCouplingLBM

refFastBuoyancy, source file, video.

FluidCouplingPFV

refFastOedometer, source file, video.

HydroForceEngine

refFastBuoyantParticles, source file, video.
refFastFluidizedBed, source file, video.
refFastSediment TransportExample, source file, video.
refFastLaminarShearFlow, source file, video.
refFastPostProcess ValidMaurin2015, source file, video.
refFast ValidMaurin2015, source file, video.

PeriodicBoundaries

refFastCellFlipping, source file, video.
refFastPeri3dController-examplel, source file, video.

refFastPeri3dController-shear, source file, video.

refFastPeri3dController-triazial Compression, source file, video.

refFastPeriodic-compress, source file, video.
refFastPeriodic-shear, source file, video.
refFastPeriodic-simple-shear, source file, video.
refFastPeriodic-simple, source file, video.
refFastPeriodic-triax-settingHsize, source file, video.
refFastPeriodic-triax, source file, video.

refFastPeriodicSandPile, source file, video.

PotentialBlocks

refFast Wedge YADE, source file, video.
refFastCubePBscaled, source file, video.

PotentialParticles

refFastCubePPscaled, source file, video.

WireMatPM

refFast Wirecontacttest, source file, video.
refFast Wirepackings, source file, video.

refFast Wiretensiltest, source file, video.

1.2.

Tutorial

45

https://gitlab.com/yade-dev/trunk/blob/master/examples/FluidCouplingLBM/buoyancy.py
https://youtu.be/bohwFU328NA
https://gitlab.com/yade-dev/trunk/blob/master/examples/FluidCouplingPFV/oedometer.py
https://youtu.be/Oq4KyNDkMYA
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/oneWayCoupling/buoyantParticles.py
https://youtu.be/AjFtdbaorE4
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/oneWayCoupling/fluidizedBed.py
https://youtu.be/_sFdHmc2kf8
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/oneWayCoupling/sedimentTransportExample.py
https://youtu.be/W6h-k7gGwTo
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/twoWayCoupling/laminarShearFlow.py
https://youtu.be/E2IOd9k47KM
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/validations/DEMCoupling/Maurinetal2015/postProcessValidMaurin2015.py
https://youtu.be/H_6CcrA3dSE
https://gitlab.com/yade-dev/trunk/blob/master/examples/HydroForceEngine/validations/DEMCoupling/Maurinetal2015/validMaurin2015.py
https://youtu.be/__8jcD7It0w
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/cellFlipping.py
https://youtu.be/MOwatO13pgI
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/peri3dController_example1.py
https://youtu.be/PWbri2_SR4w
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/peri3dController_shear.py
https://youtu.be/jMqqEF5LWTY
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/peri3dController_triaxialCompression.py
https://youtu.be/Jlq0V2jaQx0
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-compress.py
https://youtu.be/1_6Umjgia2k
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-shear.py
https://youtu.be/XY_CwJcrsTE
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-simple-shear.py
https://youtu.be/JXK9FwuU0WM
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-simple.py
https://youtu.be/q1yYLxZZU-Y
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-triax-settingHsize.py
https://youtu.be/8b_lJm4GhYs
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodic-triax.py
https://youtu.be/Hp1W8WhmQZU
https://gitlab.com/yade-dev/trunk/blob/master/examples/PeriodicBoundaries/periodicSandPile.py
https://youtu.be/_SeA5KDzxpg
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/WedgeYADE.py
https://youtu.be/GYrFkhFV-0E
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialBlocks/cubePBscaled.py
https://youtu.be/Slnj-KeG-0w
https://gitlab.com/yade-dev/trunk/blob/master/examples/PotentialParticles/cubePPscaled.py
https://youtu.be/gOgjwMavjuk
https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wirecontacttest.py
https://youtu.be/Kc0R6ZaSIa0
https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wirepackings.py
https://youtu.be/VaW6gDdyiIc
https://gitlab.com/yade-dev/trunk/blob/master/examples/WireMatPM/wiretensiltest.py
https://youtu.be/mC2Rj-MK2TE

Yade Documentation, Release 3rd ed.

Adaptiveintegrator

o refFastSimple-scene-plot-NewtonlIntegrator, source file, video.

o refFastSimple-scene-plot-Runge KuttaCashKarpb4, source file, video.

Agglomerate

o refFastCompress, source file, video.

o refFastSimulation, source file, video.

Baraban

e refFastBicyclePedal Engine, source file, video.
e refFastBaraban, source file, video.

o refFastRotating-cylinder, source file, video.

Bulldozer

e refFastBulldozer, source file, video.

Capillary

o refFastCapillar, source file, video.

CapillaryLaplaceYoung

e refFastCapillaryPhys-example, source file, video.
o refFastCapillaryBridge, source file, video.

Chained-cylinders

o refFastCohesiveCylinderSphere, source file, video.
e refFastChained-cylinder-roots, source file, video.

e refFastChained-cylinder-spring, source file, video.

Clumps

o refFastAddToClump-example, source file, video.

o refFastApply-buoyancy-clumps, source file; video.

o refFastClump-hopper-test, source file, video.

e refFastClump-hopper-viscoelastic, source file, video.

o refFastClump-inbox-viscoelastic, source file, video.

o refFastClump-viscoelastic, source file, video.

o refFastRelease FromClump-example, source file, video.
o refFastReplace ByClumps-exzample, source file, video.

o refFastTriaz-basic-with-clumps, source file, video.

46

Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/adaptiveintegrator/simple-scene-plot-NewtonIntegrator.py
https://youtu.be/gRkKQKhwl5w
https://gitlab.com/yade-dev/trunk/blob/master/examples/adaptiveintegrator/simple-scene-plot-RungeKuttaCashKarp54.py
https://youtu.be/57LmSgbSFZI
https://gitlab.com/yade-dev/trunk/blob/master/examples/agglomerate/compress.py
https://youtu.be/u_Wua_JnYE4
https://gitlab.com/yade-dev/trunk/blob/master/examples/agglomerate/simulation.py
https://youtu.be/QOhpCAJ5ypw
https://gitlab.com/yade-dev/trunk/blob/master/examples/baraban/BicyclePedalEngine.py
https://youtu.be/tF9Qe9ayklo
https://gitlab.com/yade-dev/trunk/blob/master/examples/baraban/baraban.py
https://youtu.be/OCcjDf1rluw
https://gitlab.com/yade-dev/trunk/blob/master/examples/baraban/rotating-cylinder.py
https://youtu.be/Hh6nGzIU1vU
https://gitlab.com/yade-dev/trunk/blob/master/examples/bulldozer/bulldozer.py
https://youtu.be/6cTyE-KfgcQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillary/capillar.py
https://youtu.be/gtpNKGJZpyc
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/CapillaryPhys-example.py
https://youtu.be/H0bPKX-jwu8
https://gitlab.com/yade-dev/trunk/blob/master/examples/capillaryLaplaceYoung/capillaryBridge.py
https://youtu.be/ds6zXTxaIY0
https://gitlab.com/yade-dev/trunk/blob/master/examples/chained-cylinders/CohesiveCylinderSphere.py
https://youtu.be/F2eStgTSgp0
https://gitlab.com/yade-dev/trunk/blob/master/examples/chained-cylinders/chained-cylinder-roots.py
https://youtu.be/wwkUIpVBL8k
https://gitlab.com/yade-dev/trunk/blob/master/examples/chained-cylinders/chained-cylinder-spring.py
https://youtu.be/wYp0XA_Q3ds
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/addToClump-example.py
https://youtu.be/uP19j2yZltg
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/apply-buoyancy-clumps.py
https://youtu.be/fwsx_c1ibkM
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-hopper-test.py
https://youtu.be/ESzQ3t7RHeM
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-hopper-viscoelastic.py
https://youtu.be/cX7Ewoz9wy8
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-inbox-viscoelastic.py
https://youtu.be/rpOYcwoDihE
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/clump-viscoelastic.py
https://youtu.be/VSovZDU8Kb8
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/releaseFromClump-example.py
https://youtu.be/inER1NuyM-0
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/replaceByClumps-example.py
https://youtu.be/zjeN-OUj18A
https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/triax-basic-with-clumps.py
https://youtu.be/kqisX2LfwIg

Yade Documentation, Release 3rd ed.

Concrete

refFastBrazilian, source file, video.

e refFastInteraction-histogram, source file, video.
o refFastPeriodic, source file, video.

e refFastTriaz, source file, video.

o refFastUniax-post, source file, video.

o refFastUniaz, source file, video.

Conveyor

o refFastConveyor, source file, video.

Cylinders

o refFastBendingbeams, source file, video.
o refFastCylinder-cylinder, source file, video.
o refFastCylinderconnection-roots, source file, video.

o refFastMikado, source file, video.

Deformableelem

o refFastMinimal TensileTest, source file, video.
e refFastTestDeformableBodies, source file, video.

o refFastTestDeformableBodies-pressure, source file, video.

Grids

o refFastCohesive GridConnectionSphere, source file, video.
e refFastGridConnection-Spring, source file, video.
o refFastSimple-GridConnection-Falling, source file, video.

e refFastSimple-Grid-Falling, source file, video.

Gts-horse

o refFustGts-horse, source file, video.
o refFastGts-operators, source file, video.
e refFastGts-random-pack-obb, source file, video.

e refFastGts-random-pack, source file, video.

Hourglass

e refFastHourglass, source file, video.

1.2. Tutorial

47

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/brazilian.py
https://youtu.be/KCq336lbw7w
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/interaction-histogram.py
https://youtu.be/59f8gSLu6DA
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/periodic.py
https://youtu.be/DOptBIIp73U
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/triax.py
https://youtu.be/BEB88z1EztA
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax-post.py
https://youtu.be/iXYD9kMB9kA
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py
https://youtu.be/Z1VQ14m0riM
https://gitlab.com/yade-dev/trunk/blob/master/examples/conveyor/conveyor.py
https://youtu.be/bLULZ2a_thk
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/bendingbeams.py
https://youtu.be/DO_ab64sUJc
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/cylinder-cylinder.py
https://youtu.be/IEzbwudIwGA
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/cylinderconnection-roots.py
https://youtu.be/h-6z79VXWA8
https://gitlab.com/yade-dev/trunk/blob/master/examples/cylinders/mikado.py
https://youtu.be/j2aNyUSaWps
https://gitlab.com/yade-dev/trunk/blob/master/examples/deformableelem/MinimalTensileTest.py
https://youtu.be/sa0yVUKytN0
https://gitlab.com/yade-dev/trunk/blob/master/examples/deformableelem/testDeformableBodies.py
https://youtu.be/L0q-1QMmw8Q
https://gitlab.com/yade-dev/trunk/blob/master/examples/deformableelem/testDeformableBodies_pressure.py
https://youtu.be/QPAtlnptjvk
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/CohesiveGridConnectionSphere.py
https://youtu.be/H8VCdsW6wVA
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/GridConnection_Spring.py
https://youtu.be/NQL5y7bz9XU
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/Simple_GridConnection_Falling.py
https://youtu.be/ede8_SQkkeM
https://gitlab.com/yade-dev/trunk/blob/master/examples/grids/Simple_Grid_Falling.py
https://youtu.be/g8HVsbJB4fU
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-horse.py
https://youtu.be/xteVeQlMrYM
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-operators.py
https://youtu.be/eZ9jBEiKUnk
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-random-pack-obb.py
https://youtu.be/L04jwnz5Ujg
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-random-pack.py
https://youtu.be/1dMVlf2u0zM
https://gitlab.com/yade-dev/trunk/blob/master/examples/hourglass/hourglass.py
https://youtu.be/wS_x4UPROOE

Yade Documentation, Release 3rd ed.

Packs

refFastPacks, source file, video.

Pfacet

refFastGts-pfacet, source file, video.
refFastMesh-pfacet, source file, video.

refFastPFacets-grids-spheres-interacting, source file, video.

refFastPfacetcreators, source file, video.

Polyhedra

refFastBall, source file, video.

refFastHorse, source file, video.

refFastIrreqular, source file, video.
refFastSphere-interaction, source file, video.
refFastSplitter, source file, video.
refFastInteractinDetectionFactor, source file, video.
refFastScGeom, source file, video.

refFast TextFExport, source file, video.

PolyhedraBreak

refFast Uniaxial-compression, source file, video.

Ring2d

refFastRingCundallDamping, source file, video.

refFastRingSimpleViscoelastic, source file, video.

Rod-penetration

refFastModel, source file, video.

Simple-scene

refFast2SpheresNorm Visc, source file, video.
refFastSave-then-reload, source file, video.
refFastSimple-scene-default-engines, source file, video.
refFastSimple-scene-energy-tracking, source file, video.
refFastSimple-scene-plot, source file, video.

refFastSimple-scene, source file, video.

48

Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/packs/packs.py
https://youtu.be/luGIch9gSdg
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/gts-pfacet.py
https://youtu.be/AA2rCfdBX1w
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/mesh-pfacet.py
https://youtu.be/HZ3aAOaebbo
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/pFacets_grids_spheres_interacting.py
https://youtu.be/3e09Zi_LPU0
https://gitlab.com/yade-dev/trunk/blob/master/examples/pfacet/pfacetcreators.py
https://youtu.be/5PMYeadRRvA
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/ball.py
https://youtu.be/pH6kbVcTRg4
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/horse.py
https://youtu.be/I9bpX85B8f8
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/irregular.py
https://youtu.be/9XbkYXukdjI
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/sphere-interaction.py
https://youtu.be/2ZlWJBQ4ELY
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/splitter.py
https://youtu.be/IjXvPLU92xQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/tests/interactinDetectionFactor.py
https://youtu.be/mPj7YfFObdg
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/tests/scGeom.py
https://youtu.be/xdpFnwy_mB8
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedra/textExport.py
https://youtu.be/Js52jLduYYM
https://gitlab.com/yade-dev/trunk/blob/master/examples/polyhedraBreak/uniaxial_compression.py
https://youtu.be/r77l-A8O8ug
https://gitlab.com/yade-dev/trunk/blob/master/examples/ring2d/ringCundallDamping.py
https://youtu.be/jm_snDXShaE
https://gitlab.com/yade-dev/trunk/blob/master/examples/ring2d/ringSimpleViscoelastic.py
https://youtu.be/1-StKzb7XV4
https://gitlab.com/yade-dev/trunk/blob/master/examples/rod-penetration/model.py
https://youtu.be/b_yLp0onOzg
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/2SpheresNormVisc.py
https://youtu.be/kiWMTyNGMv4
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/save-then-reload.py
https://youtu.be/-_xUAgGMz2E
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-default-engines.py
https://youtu.be/i8Vl3tx1-JM
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-energy-tracking.py
https://youtu.be/D3XrbW3lvsU
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://youtu.be/3bUCL4VmvGM
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene.py
https://youtu.be/a6j6v6zByFk

Yade Documentation, Release 3rd ed.

Stl-gts

refFastGts-stl, source file, video.

Tesselationwrapper

Test

refFast Tesselation Wrapper, source file, video.

refFastNet-2part-displ-unloading, source file, video.
refFastNet-2part-displ, source file, video.
refFastBeam-l6geom, source file, video.
refFastClump-facet, source file, video.
refFastClumpPack, source file, video.
refFastCollider-stride-triaz, source file, video.
refFastCollider-stride, source file, video.
refFastCombined-kinematic-engine, source file, video.
refFastEnergy, source file, video.

refFastFacet-box, source file, video.
refFastFacet-sphere-ViscElBasic-peri, source file, video.
refFastFacet-sphere-ViscElBasic, source file, video.
refFastFacet-sphere, source file, video.

refFastHelix, source file, video.
refFastInterpolating-force, source file, video.
refFastKinematic, source file, video.
refFastMindlin, source file, video.

refFastMulti, source file, video.

refFastPack-cloud, source file, video.
refFastPack-inConvexPolyhedron, source file, video.
refFastPv-section, source file, video.
refFastPeriodic-geom-compare, source file, video.

refFastPsd, source file, video.

refFastSphere-sphere- ViscElBasic-peri, source file, video.

refFastSubdomain-balancer, source file, video.
refFast Test-sphere-facet-corner, source file, video.
refFast Test-sphere-facet, source file, video.

refFast Triaz-basic, source file, video.

refFast Triaz-basic-without-plots, source file, video.

refFastUnvRead, source file, video.

1.2.

Tutorial

49

https://gitlab.com/yade-dev/trunk/blob/master/examples/stl-gts/gts-stl.py
https://youtu.be/MvxHr7mCR0A
https://gitlab.com/yade-dev/trunk/blob/master/examples/tesselationwrapper/tesselationWrapper.py
https://youtu.be/2o3Y4znBmh8
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/WireMatPM/net-2part-displ-unloading.py
https://youtu.be/588FJ80bf4I
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/WireMatPM/net-2part-displ.py
https://youtu.be/dcU3xQghpEc
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/beam-l6geom.py
https://youtu.be/CFWi3YGXSKQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/clump-facet.py
https://youtu.be/kGRgeom2isI
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/clumpPack.py
https://youtu.be/qq17u0gXAfU
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/collider-stride-triax.py
https://youtu.be/jHXXuu7WeBk
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/collider-stride.py
https://youtu.be/0UIC-HhGDBY
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/combined-kinematic-engine.py
https://youtu.be/6lN9N1YAmvM
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/energy.py
https://youtu.be/8v6ln8by5fo
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-box.py
https://youtu.be/9h-5MLa5s0o
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-sphere-ViscElBasic-peri.py
https://youtu.be/NKzzupEVO8A
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-sphere-ViscElBasic.py
https://youtu.be/cggR3UG7a6o
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/facet-sphere.py
https://youtu.be/7aJ2jHK2zv8
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/helix.py
https://youtu.be/EvpwMBdyG4s
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/interpolating-force.py
https://youtu.be/3RNc1J9YCds
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/kinematic.py
https://youtu.be/J10jxnWuhFc
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/mindlin.py
https://youtu.be/kqr39aXEMCk
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/multi/multi.py
https://youtu.be/-DQrAVyXEzw
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/pack-cloud.py
https://youtu.be/bcPS894Qp_g
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/pack-inConvexPolyhedron.py
https://youtu.be/fBJT5iFQ4ak
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/paraview-spheres-solid-section/pv_section.py
https://youtu.be/bFiUfoEXFMQ
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/periodic-geom-compare.py
https://youtu.be/SiobftG7Lqw
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/psd.py
https://youtu.be/HVs7qGg4AE0
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/sphere-sphere-ViscElBasic-peri.py
https://youtu.be/ar4JDS6vjs0
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/subdomain-balancer.py
https://youtu.be/i4_LOzGk3m8
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/test-sphere-facet-corner.py
https://youtu.be/NaELYGF9tKg
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/test-sphere-facet.py
https://youtu.be/J7i86WHK3QA
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic.py
https://youtu.be/B2DIXJJvpwM
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/triax-basic-without-plots.py
https://youtu.be/AALiZ7G7yNM
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/unv-read/unvRead.py
https://youtu.be/IkDE36LAwr8

Yade Documentation, Release 3rd ed.

Tetra

refFastOneTetra, source file, video.
refFastOneTetraPoly, source file, video.

refFast Two Tetras, source file, video.

refFast Two TetrasPoly, source file, video.

50

Chapter 1. Guided tour

https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/oneTetra.py
https://youtu.be/bv8PxbiG500
https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/oneTetraPoly.py
https://youtu.be/vzOJte9HzgI
https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/twoTetras.py
https://youtu.be/U9edvfJWspk
https://gitlab.com/yade-dev/trunk/blob/master/examples/tetra/twoTetrasPoly.py
https://youtu.be/nAIBxWQ32-o

Chapter 2

Yade for users

2.1 DEM formulation

In this chapter, we mathematically describe general features of explicit DEM simulations, with some
reference to Yade implementation of these algorithms. They are given roughly in the order as they
appear in simulation; first, two particles might establish a new interaction, which consists in

1. detecting collision between particles;

2. creating new interaction and determining its properties (such as stiffness); they are either precom-
puted or derived from properties of both particles;

Then, for already existing interactions, the following is performed:
1. strain evaluation;
2. stress computation based on strains;
3. force application to particles in interaction.

This simplified description serves only to give meaning to the ordering of sections within this chapter.
A more detailed description of this simulation loop is given later.

In this chapter we refer to kinematic variables of the contacts as ‘“‘strains‘‘, although at this scale it
is also common to speak of ‘“‘displacements‘. Which semantic is more appropriate depends on the
conceptual model one is starting from, and therefore it cannot be decided independently of specific
problems. The reader familiar with displacements can mentaly replace normal strain and shear strain by
normal displacement and shear displacement, respectively, without altering the meaning of what follows.

2.1.1 Collision detection

Generalities

Exact computation of collision configuration between two particles can be relatively expensive (for in-
stance between Sphere and Facet). Taking a general pair of bodies 1 and j and their “exact* (In the
sense of precision admissible by numerical implementation.) spatial predicates (called Shape in Yade)
represented by point sets P;, P; the detection generally proceeds in 2 passes:

1. fast collision detection using approximate predicate P; and 15].; they are pre-constructed in such a
way as to abstract away individual features of P; and P; and satisfy the condition

Vx eR¥:xePi=xeP; (2.1)

51

Yade Documentation, Release 3rd ed.

(likewise for Pj). The approximate predicate is called ‘““bounding volume” (Bound in Yade) since it
bounds any particle’s volume from outside (by virtue of the implication). It follows that (P; NP;) #
0 = (PiNPj) # 0 and, by applying modus tollens,

(lsiﬂlsj) =0 = (Piﬂpj) =10 (22)

which is a candidate exclusion rule in the proper sense.

2. By filtering away impossible collisions in (2.2), a more expensive, exact collision detection algo-
rithms can be run on possible interactions, filtering out remaining spurious couples (P; N P;) #
VAN (Pi N Pj) = (). These algorithms operate on P; and P; and have to be able to handle all possible
combinations of shape types.

It is only the first step we are concerned with here.

Algorithms

Collision evaluation algorithms have been the subject of extensive research in fields such as robotics,
computer graphics and simulations. They can be roughly divided in two groups:

Hierarchical algorithms which recursively subdivide space and restrict the number of approximate
checks in the first pass, knowing that lower-level bounding volumes can intersect only if they
are part of the same higher-level bounding volume. Hierarchy elements are bounding volumes of
different kinds: octrees [Jungl997], bounding spheres [Hubbard1996], k-DOP’s [Klosowskil998].

Flat algorithms work directly with bounding volumes without grouping them in hierarchies first; let
us only mention two kinds commonly used in particle simulations:

Sweep and prune algorithm operates on axis-aligned bounding boxes, which overlap
if and only if they overlap along all axes. These algorithms have roughly O(nlogn)
complexity, where n is number of particles as long as they exploit temporal coherence
of the simulation.

Grid algorithms represent continuous R3 space by a finite set of regularly spaced
points, leading to very fast neighbor search; they can reach the O(n) complex-
ity [Munjiza1998] and recent research suggests ways to overcome one of the major
drawbacks of this method, which is the necessity to adjust grid cell size to the largest
particle in the simulation (/Munjiza2006], the “‘multistep’ extension).

Temporal coherence expresses the fact that motion of particles in simulation is not arbitrary but
governed by physical laws. This knowledge can be exploited to optimize performance.

Numerical stability of integrating motion equations dictates an upper limit on At (sect. Stability consid-
erations) and, by consequence, on displacement of particles during one step. This consideration is taken
into account in /[Munjiza2006], implying that any particle may not move further than to a neighboring
grid cell during one step allowing the O(n) complexity; it is also explored in the periodic variant of the
sweep and prune algorithm described below.

On a finer level, it is common to enlarge P; predicates in such a way that they satisfy the (2.1) condition
during several timesteps; the first collision detection pass might then be run with stride, speeding up
the simulation considerably. The original publication of this optimization by Verlet [Verlet1967] used
enlarged list of neighbors, giving this technique the name Verlet list. In general cases, however, where
neighbor lists are not necessarily used, the term Verlet distance is employed.

Sweep and prune

Let us describe in detail the sweep and prune algorithm used for collision detection in Yade (class
InsertionSortCollider). Axis-aligned bounding boxes (Aabb) are used as Pi; each Aabb is given by lower
and upper corner € R? (in the following, PX°, PX! are minimum/maximum coordinates of P; along the
x-axis and so on). Construction of Aabb from various particle Shape’s (such as Sphere, Facet, Wall) is

52 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

straightforward, handled by appropriate classes deriving form BoundFunctor (Bol__Sphere_Aabb, Bol -
Facet__Aabb, ...).

Presence of overlap of two Aabb’s can be determined from conjunction of separate overlaps of intervals
along each axis (fig-sweep-and-prune):

(Penpy) 20 A [((Pro,pem) o (Preppt)) 0]

we{x,y,z}

where (a,b) denotes interval in R.

+x

v

x0 px1
P3 ‘ g P3

Fig. 2.1: Sweep and prune algorithm (shown in 2D), where Aabb of each sphere is represented by minimum
and maximum value along each axis. Spatial overlap of Aabl’s is present if they overlap along all axes.
In this case, P1 NP2 # @ (but note that P NP, =0) and P, NP3 # 0.}

The collider keeps 3 separate lists (arrays) L, for each axis w € {x,y, z}

Lo =U{Pro P}

1

where 1 traverses all particles. L,, arrays (sorted sets) contain respective coordinates of minimum and
maximum corners for each Aabb (we call these coordinates bound in the following); besides bound, each
of list elements further carries id referring to particle it belongs to, and a flag whether it is lower or
upper bound.

In the initial step, all lists are sorted (using quicksort, average O(nlogn)) and one axis is used to create
initial interactions: the range between lower and upper bound for each body is traversed, while bounds
in-between indicate potential Aabb overlaps which must be checked on the remaining axes as well.

At each successive step, lists are already pre-sorted. Inversions occur where a particle’s coordinate has
just crossed another particle’s coordinate; this number is limited by numerical stability of simulation and
its physical meaning (giving spatio-temporal coherence to the algorithm). The insertion sort algorithm
swaps neighboring elements if they are inverted, and has complexity between O(n) and O(n?), for pre-
sorted and unsorted lists respectively. For our purposes, we need only to handle inversions, which by
nature of the sort algorithm are detected inside the sort loop. An inversion might signify:

« overlap along the current axis, if an upper bound inverts (swaps) with a lower bound (i.e. that the
upper bound with a higher coordinate was out of order in coming before the lower bound with a
lower coordinate). Overlap along the other 2 axes is checked and if there is overlap along all axes,
a new potential interaction is created.

o End of overlap along the current axis, if lower bound inverts (swaps) with an upper bound. If there
is only potential interaction between the two particles in question, it is deleted.

e Nothing if both bounds are upper or both lower.

2.1. DEM formulation 53

Yade Documentation, Release 3rd ed.

Aperiodic insertion sort

Let us show the sort algorithm on a sample sequence of numbers:

| 3 / 2 4

Elements are traversed from left to right; each of them keeps inverting (swapping) with neighbors to the
left, moving left itself, until any of the following conditions is satisfied:

(<) | the sorting order with the left neighbor is correct, or
(Il the element is at the beginning of the sequence.

~

We start at the leftmost element (the current element is marked)

| |3 / 2 4

It obviously immediately satisfies (||), and we move to the next element:

| 3 / 2 4

\R-._..’
<

Condition (<) holds, therefore we move to the right. The is not in order (violating (<)) and two
inversions take place; after that, (||) holds:

3 7 2 4 |

~—

£
2 3 / 4 .

The last element first violates (<), but satisfies it after one inversion

2 3 % 41 1,

xX—

£
| 2 3 4 /

V—.____..-/
<

All elements having been traversed, the sequence is now sorted.

It is obvious that if the initial sequence were sorted, elements only would have to be traversed without
any inversion to handle (that happens in O(n) time).

54 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

For each inversion during the sort in simulation, the function that investigates change in Aabb overlap is
invoked, creating or deleting interactions.

The periodic variant of the sort algorithm is described in Periodic insertion sort algorithm, along with
other periodic-boundary related topics.

Optimization with Verlet distances

As noted above, [Verlet1967] explored the possibility of running the collision detection only sparsely by
enlarging predicates Pj.

In Yade, this is achieved by enlarging Aabb of particles by fixed relative length (or Verlet’s distance) in all
dimensions AL (InsertionSortCollider.sweepLength). Suppose the collider run last time at step m and the
current step is n. NewtonlIntegrator tracks the cummulated distance traversed by each particle between
m and n by comparing the current position with the reference position from time n (Bound::refPos),

I—rnn = |X.rl - Xm| (23)

triggering the collider re-run as soon as one particle gives:

Lonn > AL (2.4)

AL is defined primarily by the parameter InsertionSortCollider.verletDist. It can be set directly by
assigning a positive value, or indirectly by assigning negative value (which defines AL in proportion of
the smallest particle radius). In addition, InsertionSortCollider.targetInterv can be used to adjust AL
independently for each particle. Larger AL will be assigned to the fastest ones, so that all particles would
ideally reach the edge of their bounds after this “target” number of iterations. Results of using Verlet
distance depend highly on the nature of simulation and choice of InsertionSortCollider.targetInteruv.
Adjusting the sizes independently for each particle is especially efficient if some parts of a problem have
high-speed particles will others are not moving. If it is not the case, no significant gain should be expected
as compared to targetInterv=0 (assigning the same AL to all particles).

The number of particles and the number of available threads is also to be considered for choosing an
appropriate Verlet’s distance. A larger distance will result in less time spent in the collider (which runs
single-threaded) and more time in computing interactions (multi-threaded). Typically, large AL will be
used for large simulations with more than 10 particles on multi-core computers. On the other hand
simulations with less than 10% particles on single processor will probably benefit from smaller AL. Users
benchmarks may be found on Yade’s wiki (see e.g. https://yade-dem.org/wiki/Colliders performace).

2.1.2 Creating interaction between particles

Collision detection described above is only approximate. Exact collision detection depends on the ge-
ometry of individual particles and is handled separately. In Yade terminology, the Collider creates only
potential interactions; potential interactions are evaluated exactly using specialized algorithms for colli-
sion of two spheres or other combinations. Exact collision detection must be run at every timestep since
it is at every step that particles can change their mutual position (the collider is only run sometimes
if the Verlet distance optimization is in use). Some exact collision detection algorithms are described
in Kinematic variables; in Yade, they are implemented in classes deriving from /GeomFunctor (prefixed
with Ig2).

Besides detection of geometrical overlap (which corresponds to IGeom in Yade), there are also non-
geometrical properties of the interaction to be determined (/Phys). In Yade, they are computed for
every new interaction by calling a functor deriving from IPhysFunctor (prefixed with Ip2) which accepts
the given combination of Material types of both particles.

2.1. DEM formulation 55

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 3rd ed.

Stiffnesses

Basic DEM interaction defines two stiffnesses: normal stiffness Ky and shear (tangent) stiffness Kr.
It is desirable that Ky be related to fictitious Young’s modulus of the particles’ material, while Kt is
typically determined as a given fraction of computed Kyn. The Ky/Kyn ratio determines macroscopic
Poisson’s ratio of the arrangement, which can be shown by dimensional analysis: elastic continuum has
two parameters (E and v) and basic DEM model also has 2 parameters with the same dimensions Ky and
Kt /KN ; macroscopic Poisson’s ratio is therefore determined solely by Kt/Kyn and macroscopic Young’s
modulus is then proportional to Ky and affected by Ky /Ky.

Naturally, such analysis is highly simplifying and does not account for particle radius distribution, packing
configuration and other possible parameters such as the interaction radius introduced later.

Normal stiffness

The algorithm commonly used in Yade computes normal interaction stiffness as stiffness of two springs
in serial configuration with lengths equal to the sphere radii (fig-spheres-contact-stiffness).

Fig. 2.2: Series of 2 springs representing normal stiffness of contact between 2 spheres.

Let us define distance 1 = 1 +1,, where 1; are distances between contact point and sphere centers, which
are initially (roughly speaking) equal to sphere radii. Change of distance between the sphere centers Al
is distributed onto deformations of both spheres Al = Al + Al, proportionally to their compliances.
Displacement change Al; generates force F; = K;Al;, where K; assures proportionality and has physical
meaning and dimension of stiffness; K; is related to the sphere material modulus E; and some length l;
proportional to rj.

Al = Al + Al
Ki =El
KNAL=F=F, = F,
Kn (Aly +AL) =F
FOF
< (g 1) =7
K+ K =Ky
K1K;
T K+ K2
_ EiLEL
N E]i] + Eziz

Kn

The most used class computing interaction properties Ip2 FrictMat FrictMat FrictPhys uses I, = 2ry.

Some formulations define an equivalent cross-section Aeq, which in that case appears in the 1; term as
Ki=El =E ﬁ?q. Such is the case for the concrete model (Ip2 CpmMat CpmMat CpmPhys), where

Acq = min(ry, 12).

For reasons given above, no pretense about equality of particle-level E; and macroscopic modulus E should
be made. Some formulations, such as [Hentz2003], introduce parameters to match them numerically.

56 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

This is not appropriate, in our opinion, since it binds those values to particular features of the sphere
arrangement that was used for calibration.

Other parameters

Non-elastic parameters differ for various material models. Usually, though, they are averaged from
the particles’ material properties, if it makes sense. For instance, Ip2 CpmMat_CpmMat_ CpmPhys
averages most quantities, while Ip2 FrictMal_FrictMat FrictPhys computes internal friction angle as
@ = min(@1, @2) to avoid friction with bodies that are frictionless.

2.1.3 Kinematic variables
In the general case, mutual configuration of two particles has 6 degrees of freedom (DoFs) just like a

beam in 3D space: both particles have 6 DoFs each, but the interaction itself is free to move and rotate
in space (with both spheres) having 6 DoFs itself; then 12 — 6 = 6. They are shown at fig-spheres-dofs.

OO0 U

initial configuration normal straining (1DoF) shearing (2 DoFs)
twisting (1DoF') bending (2 DoFs)

Fig. 2.3: Degrees of freedom of configuration of two spheres. Normal motion appears if there is a
difference of linear velocity along the interaction axis (n); shearing originates from the difference of
linear velocities perpendicular to n and from the part of wi + w; perpendicular to n; twisting is caused
by the part of w; — w; parallel with n; bending comes from the part of w; — w; perpendicular to n.

We will only describe normal and shear components of the relative movement in the following, leaving
torsion and bending aside. The reason is that most constitutive laws for contacts do not use the latter
two.

Normal deformation

Constants

Let us consider two spheres with initial centers C1, C, and radii 11, T2 that enter into contact. The
order of spheres within the contact is arbitrary and has no influence on the behavior. Then we define
lengths

do =1C2 — G4

do—11—12
d1=T1+f, d, =do—d;.
These quantities are constant throughout the life of the interaction and are computed only once when
the interaction is established. The distance dg is the reference distance and is used for the conversion

of absolute displacements to dimensionless strain, for instance. It is also the distance where (for usual

2.1. DEM formulation 57

Yade Documentation, Release 3rd ed.

N
<

‘d]‘

Fig. 2.4: Geometry of the initial contact of 2 spheres; this case pictures spheres which already overlap
when the contact is created (which can be the case at the beginning of a simulation) for the sake of
generality. The initial contact point C is in the middle of the overlap zone.

contact laws) there is neither repulsive nor attractive force between the spheres, whence the name
equilibrium distance.

Distances di and d, define reduced (or expanded) radii of spheres; geometrical radii v and 7, are used
only for collision detection and may not be the same as dy and d,, as shown in fig. fig-sphere-sphere.
This difference is exploited in cases where the average number of contacts between spheres should be
increased, e.g. to influence the response in compression or to stabilize the packing. In such case,
interactions will be created also for spheres that do not geometrically overlap based on the interaction
radius Ry, a dimensionless parameter determining ,non-locality“ of contact detection. For Ry = 1, only
spheres that touch are considered in contact; the general condition reads

do < Ri(ry +12). (2.5)

The value of Ry directly influences the average number of interactions per sphere (percolation), which
for some models is necessary in order to achieve realistic results. In such cases, Aabb (or P; predicates
in general) must be enlarged accordingly (Bol Sphere Aabb.aabbEnlargeFactor).

Contact cross-section

Some constitutive laws are formulated with strains and stresses (Law2 ScGeom CpmPhys Cpm, the
concrete model described later, for instance); in that case, equivalent cross-section of the contact must
be introduced for the sake of dimensionality. The exact definition is rather arbitrary; the CPM model
(Ip2_ CpmMat_ CpmMat_CpmPhys) uses the relation

Aeq = mmin(ry,12)? (2.6)

which will be used to convert stresses to forces, if the constitutive law used is formulated in terms of
stresses and strains. Note that other values than 7t can be used; it will merely scale macroscopic packing
stiffness; it is only for the intuitive notion of a truss-like element between the particle centers that we
choose Acq representing the circle area. Besides that, another function than min(ry,r2) can be used,
although the result should depend linearly on 1y and 1, so that the equation gives consistent results if
the particle dimensions are scaled.

Variables

The following state variables are updated as spheres undergo motion during the simulation (as C7 and
C3 change):

58 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Cg — Cc1) o o
Tlo = T30 ~o = C - 2.7
|C2 - C]‘ 2 1 ()
and
C°=C+ <d1 _do—|c22—c]|)n (2.8)

The contact point C° is always in the middle of the spheres’ overlap zone (even if the overlap is neg-
ative, when it is in the middle of the empty space between the spheres). The contact plane is always
perpendicular to the contact plane normal n° and passes through C°.

Normal displacement and strain can be defined as

uN = |C3* ?‘*dO)
ey = N -Gl
do do

Since uy is always aligned with n, it can be stored as a scalar value multiplied by n if necessary.

For massively compressive simulations, it might be beneficial to use the logarithmic strain, such that the
strain tends to —oo (rather than —1) as centers of both spheres approach. Otherwise, repulsive force
would remain finite and the spheres could penetrate through each other. Therefore, we can adjust the
definition of normal strain as follows:

_ Jlog (%OCC‘J‘) if |C5 — C7l < do
N ey

T otherwise.
0

Such definition, however, has the disadvantage of effectively increasing rigidity (up to infinity) of contacts,
requiring At to be adjusted, lest the simulation becomes unstable. Such dynamic adjustment is possible
using a stiffness-based time-stepper (GlobalStiffness TimeStepper in Yade).

Shear deformation

In order to keep ut consistent (e.g. that ur must be constant if two spheres retain mutually constant
configuration but move arbitrarily in space), then either ur must track spheres’ spatial motion or must
(somehow) rely on sphere-local data exclusively.

Geometrical meaning of shear strain is shown in fig-shear-2d.

Fig. 2.5: Evolution of shear displacement uyt due to mutual motion of spheres, both linear and rotational.
Left configuration is the initial contact, right configuration is after displacement and rotation of one
particle.

2.1. DEM formulation 59

Yade Documentation, Release 3rd ed.

The classical incremental algorithm is widely used in DEM codes and is described frequently
([Luding2008], [Alonso2004]). Yade implements this algorithm in the ScGeom class. At each step,
shear displacement ut is updated; the update increment can be decomposed in 2 parts: motion of the
interaction (i.e. C and n) in global space and mutual motion of spheres.

1. Contact moves dues to changes of the spheres’ positions C; and C,, which updates current C°
and m° as per (2.8) and (2.7). uy is perpendicular to the contact plane at the previous step ™~
and must be updated so that uy 4 (Aut) =u$ L n°; this is done by perpendicular projection to
the plane first (which might decrease |ut|) and adding what corresponds to spatial rotation of the
interaction instead:

(Aut); =—uy x (n” xn°)
At

(Aut); = —uy x (Zno (WP + w?)) ne

2. Mutual movement of spheres, using only its part perpendicular to n°; vy, denotes mutual velocity
of spheres at the contact point:
viz = (vV§ + w§ x (—dn°)) — (Vi + wf x (din°))
sz =vi2 —(n%-vi2)n®

(Aur); = —Atvy,

Finally, we compute

uT =ur + (Aut)y + (Aut)z + (Aut)s.

2.1.4 Contact model (example)

The kinematic variables of an interaction are used to determine the forces acting on both spheres via
a constitutive law. In DEM generally, some constitutive laws are expressed using strains and stresses
while others prefer displacement/force formulation. The law described here falls in the latter category.

The constitutive law presented here is the most common in DEM, originally proposed by Cundall. While
the kinematic variables are described in the previous section regardless of the contact model, the force
evaluation depends on the nature of the material being modeled. The constitutive law presented here is
the simplest non-cohesive elastic-frictional contact model, which Yade implements in Law2 ScGeom, -
FrictPhys__CundallStrack (all constitutive laws derive from base class LawFunctor).

When new contact is established (discussed in Engines) it has its properties (IPhys) computed from
Materials associated with both particles. In the simple case of frictional material FrictMat, Ip2 -
FrictMat__FrictMat_ FrictPhys creates a new FrictPhys instance, which defines normal stiffness Ky,
shear stiffness Kt and friction angle .

At each step, given normal and shear displacements uy, Ur, normal and shear forces are computed (if
un > 0, the contact is deleted without generating any forces):

Fn = Knunm,
F:cr = Kyur

where Fy is normal force and FY is trial shear force. A simple non-associated stress return algorithm is
applied to compute final shear force

; {F;FN;;W if [F}| > [Fnltan @,
T =

F otherwise.

Summary force F = Fy + Fy is then applied to both particles — each particle accumulates forces and
torques acting on it in the course of each step. Because the force computed acts at contact point C,
which is difference from spheres’ centers, torque generated by F must also be considered.

Fi+=F F;+=-F
Ti+=di(—m) xF To+=dnxF.

60 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

2.1.5 Motion integration

Each particle accumulates generalized forces (forces and torques) from the contacts in which it partici-
pates. These generalized forces are then used to integrate motion equations for each particle separately;
therefore, we omit 1 indices denoting the i-th particle in this section.

The customary leapfrog scheme (also known as the Verlet scheme) is used, with some adjustments for
rotation of non-spherical particles, as explained below. The “leapfrog” name comes from the fact that
even derivatives of position/orientation are known at on-step points, whereas odd derivatives are known
at mid-step points. Let us recall that we use a—, a°, at for on-step values of a at t — At, t and t + At
respectively; and a®, a® for mid-step values of a at t — At/2, t + At/2.

Described integration algorithms are implemented in the Newtonlntegrator class in Yade.

Position

Integrating motion consists in using current acceleration 1i° on a particle to update its position from the
current value u° to its value at the next timestep u™. Computation of acceleration, knowing current
forces F acting on the particle in question and its mass m, is simply

U’ =F/m.
Using the 2nd order finite difference with step At, we obtain

u” —2u°+u’
At?

0~

u

from which we express

ut =2u° —u +U°At? =

o —

u —u
_we At (T
ot (At

(1)

+ ﬂ°At> .

Typically, u™ is already not known (only u° is); we notice, however, that

At

i.e. the mean velocity during the previous step, which is known. Plugging this approximate into the (f)
term, we also notice that mean velocity during the current step can be approximated as

1% ~ 1° +1i°At,
which is (1); we arrive finally at
ut =u® + At (u° +1°At).
The algorithm can then be written down by first computing current mean velocity ¥ which we need to

store for the next step (just as we use its old value u® now), then computing the position for the next
time step u™:

u® =u® + 1At

ut =u° + u?At.

Positions are known at times 1At (if At is constant) while velocities are known at iAt+ %. The fact that
they interleave (jump over each other) in such way gave rise to the colloquial name “leapfrog” scheme.

2.1. DEM formulation 61

Yade Documentation, Release 3rd ed.

Orientation (spherical)

Updating particle orientation q° proceeds in an analogous way to position update. First, we compute
current angular acceleration ® from known current torque T. For spherical particles where the inertia
tensor is diagonal in any orientation (therefore also in current global orientation), satisfying I11 =12 =
153, we can write

(i)? = Ti/Il Ty
We use the same approximation scheme, obtaining an equation analogous to (2.1.5)
w® = w® + At°.

The quaternion Aq representing rotation vector w®At is constructed, i.e. such that

Finally, we compute the next orientation q* by rotation composition

q" =Aqq°.

Orientation (aspherical)

Integrating rotation of aspherical particles is considerably more complicated than their position, as their
local reference frame is not inertial. Rotation of rigid body in the local frame, where inertia matrix I is
diagonal, is described in the continuous form by Euler’s equations (i € {1,2,3} and i, j, k are subsequent
indices):

T = Liwi + (L — I) wj .

Due to the presence of the current values of both w and w, they cannot be solved using the standard
leapfrog algorithm (that was the case for translational motion and also for the spherical bodies’ rotation
where this equation reduced to T = I).

The algorithm presented here is described by [Allen1989] (pg. 84-89) and was designed by Fincham
for molecular dynamics problems; it is based on extending the leapfrog algorithm by mid-step/on-step
estimators of quantities known at on-step/mid-step points in the basic formulation. Although it has
received criticism and more precise algorithms are known (/Omelyan1999], [Neto2006], [Johnson2008)),
this one is currently implemented in Yade for its relative simplicity.

Each body has its local coordinate system based on the principal axes of inertia for that body. We use @ to
denote vectors in local coordinates. The orientation of the local system is given by the current particle’s
orientation q° as a quaternion; this quaternion can be expressed as the (current) rotation matrix A.
Therefore, every vector a is transformed as a = qaq* = Aa. Since A is a rotation (orthogonal) matrix,
the inverse rotation A~' = AT,

For given particle in question, we know
e T (constant) inertia matrix; diagonal, since in local, principal coordinates,
o T° external torque,
e (° current orientation (and its equivalent rotation matrix A),
o W® mid-step angular velocity,

e L° mid-step angular momentum; this is an auxiliary variable that must be tracked in addition for
use in this algorithm. It will be zero in the initial step.

62 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Our goal is to compute new values of the latter three, that is LY, q*, w®. We first estimate current
angular momentum and compute current local angular velocity:

At ~o
L°:L9+T°7, L =AL°,
L = 1L° + T°At, ¥ = AL®,
@ =1L,

O =T1".

Then we compute ¢°, using q° and @©°:

G dw 9% —4y —d4z\ [O
ax | _1lav dw —4z gy || D
dy 2(dy 9z dw Ok | | Dy ’
q; Az —dy dy dw w,

EY:
q°=q"+4°"5.

We evaluate 4% from q® and @? in the same way as in (2.1.5) but shifted by At/2 ahead. Then we can
finally compute the desired values

q" =q°+q%At,

w® = A T®?

Clumps (rigid aggregates)

DEM simulations frequently make use of rigid aggregates of particles to model complex shapes [Price2007]
called clumps, typically composed of many spheres. Dynamic properties of clumps are computed from
the properties of its members:

e For non-overlapping clump members the clump’s mass m. is summed over members, the inertia
tensor I. is computed using the parallel axes theorem: I. = } ,(m; * d? + I;), where m; is the
mass of clump member i, d; is the distance from center of clump member 1 to clump’s centroid
and I; is the inertia tensor of the clump member i.

e For overlapping clump members the clump’s mass m. is summed over cells using a regular grid
spacing inside axis-aligned bounding box (Aabd) of the clump, the inertia tensor is computed using
the parallel axes theorem: I, = Zj (my * dj2 +1;), where m; is the mass of cell j, d; is the distance
from cell center to clump’s centroid and Ij is the inertia tensor of the cell j.

Local axes are oriented such that they are principal and inertia tensor is diagonal and clump’s orientation
is changed to compensate rotation of the local system, as to not change the clump members’ positions
in global space. Initial positions and orientations of all clump members in local coordinate system are
stored.

In Yade (class Clump), clump members behave as stand-alone particles during simulation for purposes of
collision detection and contact resolution, except that they have no contacts created among themselves
within one clump. It is at the stage of motion integration that they are treated specially. Instead of inte-
grating each of them separately, forces/torques on those particles F;, T; are converted to forces/torques
on the clump itself. Let us denote r; relative position of each particle with regards to clump’s centroid,
in global orientation. Then summary force and torque on the clump are

Fo=) F,

Te=) mixF+T.

2.1. DEM formulation 63

Yade Documentation, Release 3rd ed.

Motion of the clump is then integrated, using aspherical rotation integration. Afterwards, clump members
are displaced in global space, to keep their initial positions and orientations in the clump’s local coordinate
system. In such a way, relative positions of clump members are always the same, resulting in the behavior
of a rigid aggregate.

Numerical damping

In simulations of quasi-static phenomena, it it desirable to dissipate kinetic energy of particles. Since most
constitutive laws (including Law_ ScGeom_ FrictPhys Basic shown above, Contact model (example)) do
not include velocity-based damping (such as one in [Addetta2001]), it is possible to use artificial numerical
damping. The formulation is described in [Pfc3dManual30], although our version is slightly adapted. The
basic idea is to decrease forces which increase the particle velocities and vice versa by (AF)4, comparing
the current acceleration sense and particle velocity sense. This is done by component, which makes the
damping scheme clearly non-physical, as it is not invariant with respect to coordinate system rotation;
on the other hand, it is very easy to compute. Cundall proposed the form (we omit particle indices i
since it applies to all of them separately):

(AF) aw

FW 6))

= —Aasgn(F,u;) w € {x,y,z}

where Aq is the damping coefficient. This formulation has several advantages [Hentz2003]:
« it acts on forces (accelerations), not constraining uniform motion;
e it is independent of eigenfrequencies of particles, they will be all damped equally;
it needs only the dimensionless parameter Aq which does not have to be scaled.

In Yade, we use the adapted form

(AF) g (u;, At)
= —AgsgnF,, (0 + 22—,

Fu 4% 2 (2.9)
~——

~ug,

where we replaced the previous mid-step velocity 1° by its on-step estimate in parentheses. This is to
avoid locked-in forces that appear if the velocity changes its sign due to force application at each step,
i.e. when the particle in question oscillates around the position of equilibrium with 2At period.

In Yade, damping (2.9) is implemented in the Newtonlntegrator engine; the damping coefficient A4 is
NewtonlIntegrator.damping.

Stability considerations

Critical timestep

In order to ensure stability for the explicit integration sceheme, an upper limit is imposed on At:

2

wmax

Ate = (2.10)

where Wpax is the highest eigenfrequency within the system.
Single mass-spring system

Single 1D mass-spring system with mass m and stiffness K is governed by the equation

mx = —Kx

64 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

where x is displacement from the mean (equilibrium) position. The solution of harmonic oscillation is
x(t) = A cos(wt+ @) where phase @ and amplitude A are determined by initial conditions. The angular
frequency

o= /X (2.11)
m

does not depend on initial conditions. Since there is one single mass, wax = w1, Plugging (2.11) into
(2.10), we obtain

AtlD =2/w!l) =2./m/K

max

for a single oscillator.

General mass-spring system

In a general mass-spring system, the highest frequency occurs if two connected masses mi, m; are in
opposite motion; let us suppose they have equal velocities (which is conservative) and they are connected
by a spring with stiffness K;: displacement Ax; of m; will be accompained by Ax; = —Ax; of m;, giving
AF; = —K;(Ax; — (—Axy)) = —2K;Ax;. That results in apparent stiffness ng) = 2Kj, giving maximum

eigenfrequency of the whole system
Wmax = Max 4/ ng)/mi.
1

The overall critical timestep is then

2 [my L mi
Aty = o= min 2 @ = min 2 T min \/5\/; (2.12)
1

This equation can be used for all 6 degrees of freedom (DOF) in translation and rotation, by considering
generalized mass and stiffness matrices M and K, and replacing fractions ¢+ by eigen values of MK
The critical timestep is then associated to the eigen mode with highest frequency :

Ate, = min Atey, ke{l,..,6}L (2.13)

DEM simulations

In DEM simulations, per-particle stiffness Ky; is determined from the stiffnesses of contacts in which it
participates. Suppose each contact has normal stiffness Ky, shear stiffness K1 = EKnk and is oriented
by normal ny. A translational stiffness matrix Ki; can be defined as the sum of contributions of all
contacts in which it participates (indices k), as [Chareyre2005].

Ky =) (Knie—Kpdniny +Kne =) K (1= &)y + &) (2.14)
k j

with 1 and j € {x,y,z}. Equations (2.13) and (2.14) determine At., in a simulation. A similar ap-
proach generalized to all 6 DOFs is implemented by the GlobalStiffnessTimeStepper engine in Yade.
The derivation of generalized stiffness including rotational terms is very similar and can be found in
[AboulHosn2017].

Note that for computation efficiency reasons, eigenvalues of the stiffness matrices are not computed. They
are only approximated assuming than DOF’s are uncoupled, and using the diagonal terms of K.M~'.
They give good approximates in typical mechanical systems.

2.1. DEM formulation 65

Yade Documentation, Release 3rd ed.

There is one important condition that Wy, > 0: if there are no contacts between particles and wpax = 0,
we would obtain value At., = co. While formally correct, this value is numerically erroneous: we were
silently supposing that stiffness remains constant during each timestep, which is not true if contacts are
created as particles collide. In case of no contact, therefore, stiffness must be pre-estimated based on
future interactions, as shown in the next section.

Estimation of At., by wave propagation speed

Estimating timestep in absence of interactions is based on the connection between interaction stiffnesses
and the particle’s properties. Note that in this section, symbols E and p refer exceptionally to Young’s
modulus and density of particles, not of macroscopic arrangement.

In Yade, particles have associated Material which defines density p (Material.density), and also may
define (in ElastMat and derived classes) particle’s “Young’s modulus” E (ElastMat.young). p is used
when particle’s mass m is initially computed from its p, while E is taken in account when creating new
interaction between particles, affecting stiffness Kn. Knowing m and Ky, we can estimate (2.14) for
each particle; we obviously neglect

e number of interactions per particle Nj; for a “reasonable” radius distribution, however, there is a
geometrically imposed upper limit (12 for a packing of spheres with equal radii, for instance);

» the exact relationship the between particles’ rigidities Ei, E;, supposing only that Ky is somehow
proportional to them.

By defining E and p, particles have continuum-like quantities. Explicit integration schemes for continuum
equations impose a critical timestep based on sonic speed \/E/p; the elastic wave must not propagate
farther than the minimum distance of integration points l,,;, during one step. Since E, p are parameters
of the elastic continuum and l,;, is fixed beforehand, we obtain

At(‘:) = lminM B
Ccr E

For our purposes, we define E and p for each particle separately; l.,;, can be replaced by the sphere’s
radius Ri; technically, L, = 2R; could be used, but because of possible interactions of spheres and facets
(which have zero thickness), we consider lyi, = R; instead. Then

At‘gfj = HliinRu / %
i

This algorithm is implemented in the wutils. P Wave TimeStep function.

Let us compare this result to (2.12); this necessitates making several simplifying hypotheses:
o all particles are spherical and have the same radius R;
e the sphere’s material has the same E and p;
e the average number of contacts per sphere is N;

e the contacts have sufficiently uniform spatial distribution around each particle;

the & = Kn /Kt ratio is constant for all interactions;

contact stiffness Ky is computed from E using a formula of the form

Kn = En'R’, (2.15)

where 7t/ is some constant depending on the algorithm in usefootnote{For example, 7’ = 71/2 in the
concrete particle model (Ip2_CpmMat_CpmMat_CpmPhys), while 71/ = 2 in the classical DEM
model (Ip2_ FrictMat_FrictMat_FrictPhys) as implemented in Yade.} and R’ is half-distance
between spheres in contact, equal to R for the case of interaction radius Ry = 1. If Ry = 1 (and
R’ = R by consequence), all interactions will have the same stiffness Kn. In other cases, we will
consider Ky as the average stiffness computed from average R’ (see below).

66 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

As all particles have the same parameters, we drop the 1 index in the following formulas.

We try to express the average per-particle stiffness from (2.14). It is a sum over all interactions where Ky
and & are scalars that will not rotate with interaction, while n,,, is w-th component of unit interaction
normal n. Since we supposed uniform spatial distribution, we can replace n2, by its average value ﬁf\,.
Recognizing components of n as direction cosines, the average values of n2, is 1/3. We find the average
value by integrating over all possible orientations, which are uniformly distributed in space:

Moreover, since all directions are equal, we can write the per-body stiffness as K = K,, for all w € {x,y, z}.
We obtain

K= ZKN<) ZKN

and can put constant terms (everything) in front of the summation. > 1 equals the number of contacts
per sphere, i.e. N. Arriving at

1-2¢&
b

K = NKy 3

we substitute K into (2.12) using (2.15):

7'[R3 /7’
At = xﬂ/ =V2 7NE R R\/> NO—20"
Atil”

The ratio of timestep Atg’) predicted by the p-wave velocity and numerically stable timestep At is the
inverse value of the last (dimensionless) term:

At _, N0+
Ate, i/’

Actual values of this ratio depend on characteristics of packing N, Kyn /Kt = & ratio and the way of
computing contact stiffness from particle rigidity. Let us show it for two models in Yade:

Concrete particle model computes contact stiffness from the equivalent area Ay first (2.6),

Ak

Aeq = TR*KN 1
0

do is the initial contact length, which will be, for interaction radius (2.5) Ry > 1, in average larger
than 2R. For R; = 1.5 ;we can roughly estimate dp = 1.25-2R = %R, getting

2
Kn =E (57t) R

where 27t = 7t/ by comparison with (2.15).

Interaction radius R; = 1.5 leads to average N = 12 interactions per sphere for dense packing of
spheres with the same radius R. & = 0.2 is calibrated to match the desired macroscopic Poisson’s
ratio v = 0.2.

Finally, we obtain the ratio

AtlP) 12(1-2-0.2)

A =2 =3.39,

2/5)n
showing significant overestimation by the p-wave algorithm.

Non-cohesive dry friction model is the basic model proposed by Cundall explained in Contact model
(example). Supposing almost-constant sphere radius R and rather dense packing, each sphere will
have N = 6 interactions on average (that corresponds to maximally dense packing of spheres with
a constant radius). If we use the Ip2 FrictMal FrictMat FrictPhys class, we have m’ = 2, as

2.1. DEM formulation 67

Yade Documentation, Release 3rd ed.

Kn = E2R; we again use & = 0.2 (for lack of a more significant value). In this case, we obtain the
result

Awf) [6(1-2-02)

=3.02
At /2 3.0

which again overestimates the numerical critical timestep.

To conclude, p-wave timestep gives estimate proportional to the real At.., but in the cases shown, the
value of about At = 0.3At£f) should be used to guarantee stable simulation.

Non-elastic At constraints

Let us note at this place that not only At assuring numerical stability of motion integration is a
constraint. In systems where particles move at relatively high velocities, position change during one
timestep can lead to non-elastic irreversible effects such as damage. The At needed for reasonable result
can be lower At.,. We have no rigorously derived rules for such cases.

2.1.6 Periodic boundary conditions

While most DEM simulations happen in R3 space, it is frequently useful to avoid boundary effects by
using periodic space instead. In order to satisfy periodicity conditions, periodic space is created by
repetition of parallelepiped-shaped cell. In Yade, periodic space is implemented in the Cell class. The
geometry of the cell in the reference coordinates system is defined by three edges of the parallepiped.
The corresponding base vectors are stored in the columns of matrix H (Cell.hSize).

The initial H can be explicitly defined as a 3x3 matrix at the beginning of the simulation. There are no
restricitions on the possible shapes: any parallelepiped is accepted as the initial cell. If the base vectors
are axis-aligned, defining only their sizes can be more convenient than defining the full H matrix; in that
case it is enough to define the norms of columns in H (see Cell.size).

After the definition of the initial cell’s geometry, H should generally not be modified by direct assignment.
Instead, its deformation rate will be defined via the velocity gradient Cell.velGrad described below. It
is the only variable that let the period deformation be correctly accounted for in constitutive laws and
Newton integrator (Newtonlntegrator).

Deformations handling

The deformation of the cell over time is defined via a tensor representing the gradient of an homoge-
neous velocity field Vv (Cell.velGrad). This gradient represents arbitrary combinations of rotations and
stretches. It can be imposed externaly or updated by boundary controllers (see PeriTriazController or
Peri3dController) in order to reach target strain values or to maintain some prescribed stress.

The velocity gradient is integrated automatically over time, and the cumulated transformation is re-
flected in the transformation matrix F (Cell.trsf) and the current shape of the cell H. The per-step
transformation update reads (it is similar for H), with I the identity matrix:

F' = (I+ VvAt)F.
F can be set back to identity at any point in simulations, in order to define the current state as reference

for strains definition in boundary controllers. It will have no effect on H.

Along with the automatic integration of cell transformation, there is an option to homothetically displace
all particles so that Vv is applied over the whole simulation (enabled via Cell.homoDeform). This avoids
all boundary effects coming from change of the velocity gradient.

68 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Collision detection in periodic cell

In usual implementations, particle positions are forced to be inside the cell by wrapping their positions
if they get over the boundary (so that they appear on the other side). As we wanted to avoid abrupt
changes of position (it would make particle’s velocity inconsistent with step displacement change), a
different method was chosen.

Approximate collision detection

Pass 1 collision detection (based on sweep and prune algorithm, sect. Sweep and prune) operates on
axis-aligned bounding boxes (Aabb) of particles. During the collision detection phase, bounds of all
Aabb’s are wrapped inside the cell in the first step. At subsequent runs, every bound remembers by how
many cells it was initially shifted from coordinate given by the Aabb and uses this offset repeatedly as
it is being updated from Aabb during particle’s motion. Bounds are sorted using the periodic insertion
sort algorithm (sect. Periodic insertion sort algorithm), which tracks periodic cell boundary ||.

Upon inversion of two Aabb’s, their collision along all three axes is checked, wrapping real coordinates
inside the cell for that purpose.

This algorithm detects collisions as if all particles were inside the cell but without the need of constructing
“ghost particles” (to represent periodic image of a particle which enters the cell from the other side) or
changing the particle’s positions.

It is required by the implementation (and partly by the algorithm itself) that particles do not span more
than half of the current cell size along any axis; the reason is that otherwise two (or more) contacts
between both particles could appear, on each side. Since Yade identifies contacts by Body.id of both
bodies, they would not be distinguishable.

In presence of shear, the sweep-and-prune collider could not sort bounds independently along three axes:
collision along x axis depends on the mutual position of particles on the y axis. Therefore, bounding
boxes are expressed in transformed coordinates which are perpendicular in the sense of collision detection.
This requires some extra computation: Aabb of sphere in transformed coordinates will no longer be cube,
but cuboid, as the sphere itself will appear as ellipsoid after transformation. Inversely, the sphere in
simulation space will have a parallelepiped bounding “box”, which is cuboid around the ellipsoid in
transformed axes (the Aabb has axes aligned with transformed cell basis). This is shown in fig. fig-cell-
shear-aabb.

The restriction of a single particle not spanning more than half of the transformed axis becomes stringent
as Aabb is enlarged due to shear. Considering Aabb of a sphere with radius r in the cell where x’ = x,
z' =z, but Z(y,y’) = @, the x-span of the Aabb will be multiplied by 1/ cos @. For the infinite shear
@ — 7/2, which can be desirable to simulate, we have 1/ cos @ — oo. Fortunately, this limitation can be
easily circumvented by realizing the quasi-identity of all periodic cells which, if repeated in space, create
the same grid with their corners: the periodic cell can be flipped, keeping all particle interactions intact,
as shown in fig. fig-cell-flip. It only necessitates adjusting the Interaction.cellDist of interactions and
re-initialization of the collider (Collider::invalidatePersistentData). Cell flipping is implemented
in the wtils.flipCell function.

This algorithm is implemented in InsertionSortCollider and is used whenever simulation is periodic
(Omega.isPeriodic); individual BoundFunctor’s are responsible for computing sheared Aabb’s; currently
it is implemented for spheres and facets (in Bol Sphere Aabb and Bol Facet Aabb respectively).

Exact collision detection

When the collider detects approximate contact (on the Aabb level) and the contact does not yet exist,
it creates potential contact, which is subsequently checked by exact collision algorithms (depending on
the combination of Shapes). Since particles can interact over many periodic cells (recall we never change
their positions in simulation space), the collider embeds the relative cell coordinate of particles in the
interaction itself (Interaction.cellDist) as an integer vector ¢. Multiplying current cell size Ts by c
component-wise, we obtain particle offset Ax in aperiodic R?; this value is passed (from InteractionLoop)

2.1. DEM formulation 69

Yade Documentation, Release 3rd ed.

OO

o)~
~ RN

SUAS A
9 0-0L°00
(O~

)

LY
RO BN

7
oS enL et
" N \Q“v/ \Q“v/ \‘
edsedse
s sserge

Se0!

Fig. 2.6: Flipping cell (utils.flipCell) to avoid infinite stretch of the bounding boxes’ spans with growing .
Cell flip does not affect interactions from the point of view of the simulation. The periodic arrangement
on the left is the same as the one on the right, only the cell is situated differently between identical grid
points of repetition; at the same time @] < [@1] and sphere bounding box’s x-span stretched by 1/ cos ¢
becomes smaller. Flipping can be repeated, making effective infinite shear possible.

<
Il
<

Fig. 2.7: Constructing axis-aligned bounding box (Aabb) of a sphere in simulation space coordinates
(without periodic cell — left) and transformed cell coordinates (right), where collision detection axes x’,
y’ are not identical with simulation space axes x, y. Bounds’ projection to axes is shown by orange lines.

70 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

to the functor computing exact collision (/GeomFunctor), which adds it to the position of the particle
Interaction.id2.

By storing the integral offset ¢, Ax automatically updates as cell parameters change.

Periodic insertion sort algorithm

The extension of sweep and prune algorithm (described in Sweep and prune) to periodic boundary
conditions is non-trivial. Its cornerstone is a periodic variant of the insertion sort algorithm, which
involves keeping track of the “period” of each boundary; e.g. taking period (0,10), then 8; = -2, < 2,
(subscript indicating period). Doing so efficiently (without shuffling data in memory around as bound
wraps from one period to another) requires moving period boundary rather than bounds themselves and
making the comparison work transparently at the edge of the container.

This algorithm was also extended to handle non-orthogonal periodic Cell boundaries by working in trans-
formed rather than Cartesian coordinates; this modifies computation of Aabb from Cartesian coordinates
in which bodies are positioned (treated in detail in Approzimate collision detection).

The sort algorithm is tracking Aabb extrema along all axes. At the collider’s initialization, each value is
assigned an integral period, i.e. its distance from the cell’s interior expressed in the cell’s dimension along
its respective axis, and is wrapped to a value inside the cell. We put the period number in subscript.

Let us give an example of coordinate sequence along x axis (in a real case, the number of elements would
be even, as there is maximum and minimum value couple for each particle; this demonstration only
shows the sorting algorithm, however.)

4 12, || —12 —24 50

with cell x-size sy = 10. The 47 value then means that the real coordinate x; of this extremum is
xi +1-10=4,1ie. x; = —4. The || symbol denotes the periodic cell boundary.

Sorting starts from the first element in the cell, i.e. right of ||, and inverts elements as in the aperiodic
variant. The rules are, however, more complicated due to the presence of the boundary ||:

(<) | stop inverting if neighbors are ordered;

(lle) | current element left of || is below 0 (lower period boundary); in this case, decrement element’s
period, decrease its coordinate by s, and move || right;

(o]|) | current element right of || is above sy (upper period boundary); increment element’s period,
increase its coordinate by sy and move || left;

@) | inversion across || must subtract sy from the left coordinate during comparison. If the elements
are not in order, they are swapped, but they must have their periods changed as they traverse
l. Apply (llo) if necessary;

(llo) | if after {f) the element that is now right of || has x; < sy, decrease its coordinate by sy and
decrement its period. Do not move ||.

In the first step, (||®) is applied, and inversion with 12, happens; then we stop because of (<):

2.1. DEM formulation 71

Yade Documentation, Release 3rd ed.

41
41

4

~—
<

12,

12,

2

I |—12

-~

yid

We move to next element ; first, we apply (||e), then invert until (<):

44

~—
<

A

A

33

12, ||

__24 50)

83 50)

12, 50,

12, Do.

The next element is ; we satisfy {f), therefore instead of comparing 12, > 50, we must do (12, —sy) =
23 < 5; we adjust periods when swapping over || and apply (|lo), turning 12, into 23; then we keep

inverting, until (<):

1

We move (wrapping around) to , which is ordered:

12; _ |l |50},

e
5—1 || 23)

91 H 23)

%l 2s.

72

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

44 5_1 83 %2 Il 23

and so is the last element

4
~
<

2.1.7 Computational aspects
Cost

The DEM computation using an explicit integration scheme demands a relatively high number of steps
during simulation, compared to implicit scehemes. The total computation time Z of simulation spanning
T seconds (of simulated time), containing N particles in volume V depends on:

o linearly, the number of steps i = T/(s{At.;), where s is timestep safety factor; At., can be estimated
by p-wave velocity using E and p (sect. Estimation of by wave propagation speed) as Atg)] = r\/g .
Therefore

. T |E
i=—4/—.
StT\ P

o the number of particles N; for fixed value of simulated domain volume V and particle radius r

\%
N :p73>
gT[T'

where p is packing porosity, roughly % for dense irregular packings of spheres of similar radius.

The dependency is not strictly linear (which would be the best case), as some algorithms do not
scale linearly; a case in point is the sweep and prune collision detection algorithm introduced in
sect. Sweep and prune, with scaling roughly O(N logN).

The number of interactions scales with N, as long as packing characteristics are the same.

» the number of computational cores ngpy; in the ideal case, the dependency would be inverse-linear
were all algorithms parallelized (in Yade, collision detection is not).

Let us suppose linear scaling. Additionally, let us suppose that the material to be simulated (E, p) and
the simulation setup (V, T) are given in advance. Finally, dimensionless constants s¢, p and Mep, will
have a fixed value. This leaves us with one last degree of freedom, r. We may write

1T T JE V 1 11 1

Z x iN LI . LN .
MNepu ST\ P %m3 MNepy 113 14

This (rather trivial) result is essential to realize DEM scaling; if we want to have finer results, refining
the “mesh” by halving 1, the computation time will grow 2% = 16 times.

For very crude estimates, one can use a known simulation to obtain a machine “constant”

Z

H:m

2.1. DEM formulation 73

Yade Documentation, Release 3rd ed.

with the meaning of time per particle and per timestep (in the order of 1075 for current machines).
p will be only useful if simulation characteristics are similar and non-linearities in scaling do not have
major influence, i.e. N should be in the same order of magnitude as in the reference case.

Result indeterminism

It is naturally expected that running the same simulation several times will give exactly the same results:
although the computation is done with finite precision, round-off errors would be deterministically the
same at every run. While this is true for single-threaded computation where exact order of all operations
is given by the simulation itself, it is not true anymore in multi-threaded computation which is described
in detail in later sections.

The straight-forward manner of parallel processing in explicit DEM is given by the possibility of treating
interactions in arbitrary order. Strain and stress is evaluated for each interaction independently, but
forces from interactions have to be summed up. If summation order is also arbitrary (in Yade, forces are
accumulated for each thread in the order interactions are processed, then summed together), then the
results can be slightly different. For instance

(1/10.)+(1/13.)+(1/17.)=0.23574660633484162
(1/17.)+(1/13.)+(1/10.)=0.23574660633484165

As forces generated by interactions are assigned to bodies in quasi-random order, summary force F; on
the body can be different between single-threaded and multi-threaded computations, but also between
different runs of multi-threaded computation with exactly the same parameters. Exact thread scheduling
by the kernel is not predictable since it depends on asynchronous events (hardware interrupts) and other
unrelated tasks running on the system; and it is thread scheduling that ultimately determines summation
order of force contributions from interactions.

2.2 User’'s manual

2.2.1 Scene construction
Adding particles

The BodyContainer holds Body objects in the simulation; it is accessible as 0.bodies.

Creating Body objects

Body objects are only rarely constructed by hand by their components (Shape, Bound, State, Material);
instead, convenience functions sphere, facet and wall are used to create them. Using these functions also
ensures better future compatibility, if internals of Body change in some way. These functions receive
geometry of the particle and several other characteristics. See their documentation for details. If the
same Material is used for several (or many) bodies, it can be shared by adding it in 0.materials, as
explained below.

Defining materials

The 0.materials object (instance of Omega.materials) holds defined shared materials for bodies. It
only supports addition, and will typically hold only a few instances (though there is no limit).

label given to each material is optional, but can be passed to sphere and other functions for constructing
body. The value returned by 0.materials.append is an id of the material, which can be also passed to
sphere — it is a little bit faster than using label, though not noticeable for small number of particles and
perhaps less convenient.

74 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

If no Material is specified when calling sphere, the last defined material is used; that is a convenient
default. If no material is defined yet (hence there is no last material), a default material will be created:
FrictMat(density=1e3,young=1e7,poisson=.3 frictionAngle=.5). This should not happen for serious sim-
ulations, but is handy in simple scripts, where exact material properties are more or less irrelevant.

Yade [1]: len(0.materials)
Out[1]: O

Yade [2]: idConcrete=0.materials.append(FrictMat (young=30e9,poisson=.2,frictionAngle=.6,label=
—"concrete"))

Yade [3]: O.materials[idConcrete]
Out[3]: <FrictMat instance at 0x3f225a0>

uses the last defined material
Yade [4]: O.bodies.append(sphere(center=(0,0,0),radius=1))
Out[4]: O

matertal given by id
Yade [5]: O.bodies.append(sphere((0,0,2),1,material=idConcrete))
OQut[5]: 1

matertal given by label
Yade [6]: 0.bodies.append(sphere((0,2,0),1,material="concrete"))
OQut[6]: 2

Yade [7]: idSteel=0.materials.append(FrictMat (young=210e9,poisson=.25,frictionAngle=.8,label=
<"steel"))

Yade [8]: len(0.materials)
Out[8]: 2

implicitly uses "steel” material, as it is the last one now
Yade [9]: O.bodies.append(facet([(1,0,0),(0,1,0),(-1,-1,0)1))
Out[9]: 3

Adding multiple particles

As shown above, bodies are added one by one or several at the same time using the append method:

Yade [10]: 0.bodies.append(sphere((0,10,0),1))
Out[10]: O

Yade [11]: 0.bodies.append(sphere((0,0,2),1))
Out[11]: 1

this ts the same, but in one function call
Yade [12]: 0.bodies.append([

Lo sphere((0,0,0),1),

....: sphere((1,1,3),1)

Out[12]: [2, 3]

Many functions introduced in next sections return list of bodies which can be readily added to the
simulation, including

e packing generators, such as pack.randomDensePack, pack.reqularHezxa
o surface function pack.gtsSurface2Facets

e import functions ymport.gmsh, ymport.stl, ...

2.2. User's manual 75

Yade Documentation, Release 3rd ed.

As those functions use sphere and facet internally, they accept additional arguments passed to those
functions. In particular, material for each body is selected following the rules above (last one if not
specified, by label, by index, etc.).

Clumping particles together

In some cases, you might want to create rigid aggregate of individual particles (i.e. particles will retain
their mutual position during simulation). This we call a clump. A clump is internally represented by a
special body, referenced by clumpld of its members (see also isClump, isClumpMember and isStandalone).
Like every body a clump has a position, which is the (mass) balance point between all members. A
clump body itself has no interactions with other bodies. Interactions between clumps is represented by
interactions between clump members. There are no interactions between clump members of the same
clump.

YADE supports different ways of creating clumps:
o Create clumps and spheres (clump members) directly with one command:

The function appendClumped() is designed for this task. For instance, we might add 2 spheres tied
together:

Yade [13]: 0.bodies.appendClumped ([
R sphere([0,0,0],1),
R sphere([0,0,2],1)

Out[13]: (2, [0, 11)

Yade [14]: len(0.bodies)
Out[14]: 3

Yade [15]: 0.bodies[1].isClumpMember, 0.bodies[2].clumpId
Out[15]: (True, 2)

Yade [16]: 0.bodies[2].isClump, O.bodies[2].clumpId
Out[16]: (True, 2)

-> appendClumped() returns a tuple of ids (clumpld, [memberIdl,memberId2,...])
e Use existing spheres and clump them together:

For this case the function clump() can be applied on a list of existing bodies:

Yade [17]: bodyList = []

Yade [18]: for ii in range(0,5):
R bodyList.append(0.bodies.append(sphere([ii,0,1],.5)))#create a "chain" of 5 spheres

Yade [19]: print(bodyList)
o, 1, 2, 3, 4]

Yade [20]: idClump=0.bodies.clump(bodyList)

-> clump() returns clumpId

o Another option is to replace standalone spheres from a given packing (see SpherePack and make-
Cloud) by clumps using clump templates.

This is done by a function called replace ByClumps(). This function takes a list of clumpTemplates() and
a list of amounts and replaces spheres by clumps. The volume of a new clump will be the same as the
volume of the sphere, that was replaced (clump volume/mass/inertia is accounting for overlaps assuming
that there are only pair overlaps).

76 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

-> replaceByClumps() returns a list of tuples: [(clumpIdl, [memberIdl,memberId2,...]), (clumpId2,
[memberIdl,memberId2,...]1),...]

It is also possible to add bodies to a clump and release bodies from a clump. Also you can erase the
clump (clump members will become standalone).

Additionally YADE allows to achieve the roundness of a clump or roundness coefficient of a packing.
Parts of the packing can be excluded from roundness measurement via exclude list.

Yade [21]: bodyList = []

Yade [22]: for ii in range(1,5):
et bodyList.append(0.bodies.append(sphere([ii,ii,ii],.5)))

Yade [23]: 0.bodies.clump(bodyList)
Out[23]: 4

Yade [24]: RC=0.bodies.getRoundness()

Yade [25]: print(RC)
0.25619141423166986

-> getRoundness() returns roundness coefficient RC of a packing or a part of the packing

Note: Have a look at examples/clumps/ folder. There you will find some examples, that show usage
of different functions for clumps.

Sphere packings

Representing a solid of an arbitrary shape by arrangement of spheres presents the problem of sphere
packing, i.e. spatial arrangement of spheres such that a given solid is approximately filled with them.
For the purposes of DEM simulation, there can be several requirements.

1. Distribution of spheres’ radii. Arbitrary volume can be filled completely with spheres provided
there are no restrictions on their radius; in such case, number of spheres can be infinite and their
radii approach zero. Since both number of particles and minimum sphere radius (via critical
timestep) determine computation cost, radius distribution has to be given mandatorily. The most
typical distribution is uniform: mean-+dispersion; if dispersion is zero, all spheres will have the
same radius.

2. Smooth boundary. Some algorithms treat boundaries in such way that spheres are aligned on them,
making them smoother as surface.

3. Packing density, or the ratio of spheres volume and solid size. It is closely related to radius
distribution.

4. Coordination number, (average) number of contacts per sphere.

5. Isotropy (related to regularity/irregularity); packings with preferred directions are usually not
desirable, unless the modeled solid also has such preference.

6. Permissible Spheres’ overlap; some algorithms might create packing where spheres slightly overlap;
since overlap usually causes forces in DEM, overlap-free packings are sometimes called “stress-free .

Volume representation

There are 2 methods for representing exact volume of the solid in question in Yade: boundary repre-
sentation and constructive solid geometry. Despite their fundamental differences, they are abstracted in
Yade in the Predicate class. Predicate provides the following functionality:

2.2. User's manual 77

https://gitlab.com/yade-dev/trunk/blob/master/examples/clumps/

Yade Documentation, Release 3rd ed.

1. defines axis-aligned bounding box for the associated solid (optionally defines oriented bounding
box);

2. can decide whether given point is inside or outside the solid; most predicates can also (exactly or
approximately) tell whether the point is inside and satisfies some given padding distance from the
represented solid boundary (so that sphere of that volume doesn’t stick out of the solid).

Constructive Solid Geometry (CSG)

CSG approach describes volume by geometric primitives or primitive solids (sphere, cylinder, box, cone,
...) and boolean operations on them. Primitives defined in Yade include inCylinder, inSphere, inEllipsoid,
inHyperboloid, notInNotch.

For instance, hyperboloid (dogbone) specimen for tension-compression test can be constructed in this
way (shown at img. img-hyperboloid):

from yade import pack

construct the predicate first
pred=pack. inHyperboloid(centerBottom=(0,0,-.1),centerTop=(0,0,.1) ,radius=.05,skirt=.03)
alternatively: pack.inHyperboloid((0,0,-.1),(0,0,.1),.05,.03)

pack the predicate with spheres (will be explained later)
spheres=pack.randomDensePack (pred, spheresInCell=2000,radius=3.5e-3)

add spheres to simulation
0.bodies.append (spheres)

Fig. 2.8: Specimen constructed with the pack.inHyperboloid predicate, packed with
pack.randomDensePack.

Boundary representation (BREP)

Representing a solid by its boundary is much more flexible than CSG volumes, but is mostly only ap-
proximate. Yade interfaces to GNU Triangulated Surface Library (GTS) to import surfaces readable by
GTS, but also to construct them explicitly from within simulation scripts. This makes possible para-
metric construction of rather complicated shapes; there are functions to create set of 3d polylines from
2d polyline (pack.revolutionSurfaceMeridians), to triangulate surface between such set of 3d polylines
(pack.sweptPolylines2gtsSurface).

For example, we can construct a simple funnel (examples/funnel.py, shown at img-funnel):

78 Chapter 2. Yade for users

http://gts.sourceforge.net
https://gitlab.com/yade-dev/trunk/blob/master/examples/funnel.py

Yade Documentation, Release 3rd ed.

from numpy import linspace
from yade import pack

angles for points on circles
thetas=linspace(0,2*pi,num=16,endpoint=True)

creates list of polylines in 3d from list of 2d projections
turned from O to 7
meridians=pack.revolutionSurfaceMeridians(
[[(3+rad*sin(th),10*rad+rad*cos(th)) for th in thetas] for rad in linspace(1,2,
—num=10)7,
linspace(0,pi,num=10)

create surface
surf=pack.sweptPolylines2gtsSurface(
meridians
+[[Vector3(5*sin(-th) ,-10+5*%cos(-th) ,30) for th in thetas]] # add funnel top

add to simulation
0.bodies.append(pack.gtsSurface2Facets(surf))

WA

|

Fig. 2.9: Triangulated funnel, constructed with the examples/funnel.py script.

GTS surface objects can be used for 2 things:

1. pack.gtsSurface2Facets function can create the triangulated surface (from Fucet particles) in the
simulation itself, as shown in the funnel example. (Triangulated surface can also be imported
directly from a STL file using ymport.stl.)

2. pack.inGtsSurface predicate can be created, using the surface as boundary representation of the
enclosed volume.

The examples/gts-horse/gts-horse.py (img. i¢mg-horse) shows both possibilities; first, a GTS surface is
imported:

import gts
surf=gts.read(open('horse.coarse.gts'))

That surface object is used as predicate for packing:

pred=pack.inGtsSurface (surf)

aabb=pred.aabb()

radius=(aabb[1] [0]-aabb[0] [0]) /40
0.bodies.append(pack.regularHexa(pred,radius=radius,gap=radius/4.))

2.2. User's manual 79

https://gitlab.com/yade-dev/trunk/blob/master/examples/funnel.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/gts-horse/gts-horse.py

Yade Documentation, Release 3rd ed.

and then, after being translated, as base for triangulated surface in the simulation itself:

surf.translate(0,0,-(aabb[1] [2]-aabb[0] [2]))
0.bodies.append(pack.gtsSurface2Facets(surf,wire=True))

Fig. 2.10: Imported GTS surface (horse) used as packing predicate (top) and surface constructed from
facets (bottom). See http://www.youtube.com/watch?v=PZVrullUX1A for movie of this simulation.

Boolean operations on predicates

Boolean operations on pair of predicates (noted A and B) are defined:
o intersection A & B (conjunction): point must be in both predicates involved.
o union A | B (disjunction): point must be in the first or in the second predicate.

o difference A - B (conjunction with second predicate negated): the point must be in the first pred-
icate and not in the second one.

o symmetric difference A = B (exclusive disjunction): point must be in exactly one of the two pred-
icates.

Composed predicates also properly define their bounding box. For example, we can take box and remove
cylinder from inside, using the A - B operation (img. img-predicate-difference):

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack (pred, spheresInCell=2000,radius=.1,rRelFuzz=.4,
—returnSpherePack=True)

spheres.toSimulation()

Packing algorithms

Algorithms presented below operate on geometric spheres, defined by their center and radius. With a
few exception documented below, the procedure is as follows:

80 Chapter 2. Yade for users

http://www.youtube.com/watch?v=PZVruIlUX1A

Yade Documentation, Release 3rd ed.

Fig. 2.11: Box with cylinder removed from inside, using difference of these two predicates.

1. Sphere positions and radii are computed (some functions use volume predicate for this, some do
not)

2. sphere is called for each position and radius computed; it receives extra keyword arguments of the
packing function (i.e. arguments that the packing function doesn’t specify in its definition; they
are noted **kw). Each sphere call creates actual Body objects with Sphere shape. List of Body
objects is returned.

3. List returned from the packing function can be added to simulation using toSimulation(). Legacy
code used a call to O.bodies.append.

Taking the example of pierced box:

pred=pack.inAlignedBox((-2,-2,-2),(2,2,2))-pack.inCylinder((0,-2,0),(0,2,0),1)
spheres=pack.randomDensePack (pred, spheresInCell=2000,radius=.1,rRelFuzz=.4,wire=True,color=(0,
—0,1) ,material=1,returnSpherePack=True)

Keyword arguments wire, color and material are not declared in pack.randomDensePack, therefore
will be passed to sphere, where they are also documented. spheres is now a SpherePack object.:

spheres.toSimulation()

Packing algorithms described below produce dense packings. If one needs loose packing, SpherePack
class provides functions for generating loose packing, via its makeCloud() method. It is used internally
for generating initial configuration in dynamic algorithms. For instance:

from yade import pack
sp=pack.SpherePack()
sp.makeCloud (minCorner=(0,0,0) ,maxCorner=(3,3,3) ,rMean=.2,rRelFuzz=.5)

will fill given box with spheres, until no more spheres can be placed. The object can be used to add
spheres to simulation:

sp.toSimulation()

2.2. User’s manual 81

http://docs.python.org/glossary.html#term-keyword-argument

Yade Documentation, Release 3rd ed.

Geometric

Geometric algorithms compute packing without performing dynamic simulation; among their advantages
are

e speed;
o spheres touch exactly, there are no overlaps (what some people call “stress-free” packing);

their chief disadvantage is that radius distribution cannot be prescribed exactly, save in specific cases
(regular packings); sphere radii are given by the algorithm, which already makes the system determined.
If exact radius distribution is important for your problem, consider dynamic algorithms instead.

Regular

Yade defines packing generators for spheres with constant radii, which can be used with volume predicates
as described above. They are dense orthogonal packing (pack.regularOrtho) and dense hexagonal packing
(pack.regularHeza). The latter creates so-called “hexagonal close packing”, which achieves maximum
density (http://en.wikipedia.org/wiki/Close-packing of spheres).

Clear disadvantage of regular packings is that they have very strong directional preferences, which might
not be an issue in some cases.

Irregular

Random geometric algorithms do not integrate at all with volume predicates described above; rather,
they take their own boundary/volume definition, which is used during sphere positioning. On the other
hand, this makes it possible for them to respect boundary in the sense of making spheres touch it at
appropriate places, rather than leaving empty space in-between.

GenGeo is library (python module) for packing generation developed with ESyS-Particle. It creates
packing by random insertion of spheres with given radius range. Inserted spheres touch each other
exactly and, more importantly, they also touch the boundary, if in its neighbourhood. Boundary
is represented as special object of the GenGeo library (Sphere, cylinder, box, convex polyhedron,
...). Therefore, GenGeo cannot be used with volume represented by yade predicates as explained
above.

Packings generated by this module can be imported directly via ymport.gengeo, or from saved file via
ymport.gengeoFile. There is an example script examples/test/genCylLSM.py. Full documentation
for GenGeo can be found at ESyS documentation website.

There are debian packages esys-particle and python-demgengeo.

Dynamic

The most versatile algorithm for random dense packing is provided by pack.randomDensePack. Initial
loose packing of non-overlapping spheres is generated by randomly placing them in cuboid volume,
with radii given by requested (currently only uniform) radius distribution. When no more spheres can
be inserted, the packing is compressed and then uncompressed (see py/pack/pack.py for exact values
of these “stresses”) by running a DEM simulation; Omega.switchScene is used to not affect existing
simulation). Finally, resulting packing is clipped using provided predicate, as explained above.

By its nature, this method might take relatively long; and there are 2 provisions to make the computation
time shorter:

e If number of spheres using the spheresInCell parameter is specified, only smaller specimen with
periodic boundary is created and then repeated as to fill the predicate. This can provide high-
quality packing with low regularity, depending on the spheresInCell parameter (value of several
thousands is recommended).

82 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Close-packing_of_spheres
http://www.launchpad.net/esys-particle
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/genCylLSM.py
http://esys.geocomp.uq.edu.au/esys-particle_python_doc/current/pythonapi/html/index.html
https://gitlab.com/yade-dev/trunk/blob/master/py/pack/pack.py

Yade Documentation, Release 3rd ed.

e Providing memoizeDb parameter will make pack.randomDensePack first look into provided file
(SQLite database) for packings with similar parameters. On success, the packing is simply read
from database and returned. If there is no similar pre-existent packing, normal procedure is run,
and the result is saved in the database before being returned, so that subsequent calls with same
parameters will return quickly.

If you need to obtain full periodic packing (rather than packing clipped by predicate), you can use
pack.randomPeriPack.

In case of specific needs, you can create packing yourself, “by hand”. For instance, packing boundary
can be constructed from facets, letting randomly positioned spheres in space fall down under gravity.

Triangulated surfaces

Yade integrates with the the GNU Triangulated Surface library, exposed in python via GTS module. GTS
provides variety of functions for surface manipulation (coarsening, tesselation, simplification, import),
to be found in its documentation.

GTS surfaces are geometrical objects, which can be inserted into simulation as set of particles whose
Body.shape is of type Facet — single triangulation elements. pack.gtsSurface2Facets can be used to convert
GTS surface triangulation into list of bodies ready to be inserted into simulation via 0.bodies.append.

Facet particles are created by default as non-Body.dynamic (they have zero inertial mass). That means
that they are fixed in space and will not move if subject to forces. You can however

o prescribe arbitrary movement to facets using a PartialEngine (such as TranslationEngine or Rota-
tionEngine);

e assign explicitly mass and inertia to that particle;

o make that particle part of a clump and assign mass and inertia of the clump itself (described
below).

Note: Facets can only (currently) interact with spheres, not with other facets, even if they are dynamic.
Collision of 2 facets will not create interaction, therefore no forces on facets.

Import

Yade currently offers 3 formats for importing triangulated surfaces from external files, in the ymport
module:

ymport.gts text file in native GTS format.

ymport.stl STereoLitography format, in either text or binary form; exported from Blender, but from
many CAD systems as well.

ymport.gmsh. text file in native format for GMSH, popular open-source meshing program.

If you need to manipulate surfaces before creating list of facets, you can study the py/ymport.py file
where the import functions are defined. They are rather simple in most cases.

Parametric construction

The GTS module provides convenient way of creating surface by vertices, edges and triangles.
Frequently, though, the surface can be conveniently described as surface between polylines in space. For
instance, cylinder is surface between two polygons (closed polylines). The pack.sweptPolylines2gtsSurface
offers the functionality of connecting several polylines with triangulation.

2.2. User's manual 83

http://gts.sourceforge.net
http://www.blender.org
http://www.geuz.org/gmsh/
https://gitlab.com/yade-dev/trunk/blob/master/py/ymport.py

Yade Documentation, Release 3rd ed.

Note: The implementation of pack.sweptPolylines2gtsSurface is rather simplistic: all polylines must be
of the same length, and they are connected with triangles between points following their indices within
each polyline (not by distance). On the other hand, points can be co-incident, if the threshold parameter
is positive: degenerate triangles with vertices closer that threshold are automatically eliminated.

Manipulating lists efficiently (in terms of code length) requires being familiar with list comprehensions
in python.

Another examples can be found in examples/mill.py (fully parametrized) or examples/funnel.py (with
hardcoded numbers).

Creating interactions

In typical cases, interactions are created during simulations as particles collide. This is done by a Collider
detecting approximate contact between particles and then an IGeomFunctor detecting exact collision.

Some material models (such as the concrete model) rely on initial interaction network which is denser
than geometrical contact of spheres: sphere’s radii as “enlarged” by a dimensionless factor called inter-
action radius (or interaction ratio) to create this initial network. This is done typically in this way (see
examples/concrete/uniax.py for an example):

1. Approximate collision detection is adjusted so that approximate contacts are detected also be-
tween particles within the interaction radius. This consists in setting value of Bol Sphere -
Aabb.aabbEnlargeFactor to the interaction radius value.

2. The geometry functor (Ig2) would normally say that “there is no contact” if given 2 spheres that
are not in contact. Therefore, the same value as for Bol Sphere Aabb.aabbEnlargeFactor must
be given to it (Ig2_Sphere_Sphere ScGeom.interactionDetectionFactor).

Note that only Sphere + Sphere interactions are supported; there is no parameter analogous to
distFactor in Ig2_ Facet Sphere_ScGeom. This is on purpose, since the interaction radius is mean-
ingful in bulk material represented by sphere packing, whereas facets usually represent boundary
conditions which should be exempt from this dense interaction network.

3. Run one single step of the simulation so that the initial network is created.
4. Reset interaction radius in both Bol and Ig2 functors to their default value again.

5. Continue the simulation; interactions that are already established will not be deleted (the Law2
functor in use permitting).

In code, such scenario might look similar to this one (labeling is explained in Labeling things):

intRadius=1.5
damping=0.05

0.engines=[
ForceResetter(),
InsertionSortCollider ([
enlarge here
Bol_Sphere_Aabb(aabbEnlargeFactor=intRadius,label='bols"'),
Bol_Facet_Aabb(),

D,
InteractionLoop(
L
enlarge here
Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius,label='ig2ss'),
Ig2_Facet_Sphere_ScGeom(),
1,

[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm(epsSoft=0)], # deactivated
)5

84 Chapter 2. Yade for users

http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://gitlab.com/yade-dev/trunk/blob/master/examples/mill.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/funnel.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

NewtonIntegrator (damping=damping,label='damper'),

run one single step
0.step()

reset interaction radius to the default wvalue
bols.aabbEnlargeFactor=1.0
ig2ss.interactionDetectionFactor=1.0

now continue simulation
0.run()

Individual interactions on demand

It is possible to create an interaction between a pair of particles independently of collision detection using
createlnteraction. This function looks for and uses matching Ig2 and Ip2 functors. Interaction will be
created regardless of distance between given particles (by passing a special parameter to the Ig2 functor
to force creation of the interaction even without any geometrical contact). Appropriate constitutive law
should be used to avoid deletion of the interaction at the next simulation step.

Yade [26]: 0.materials.append(FrictMat(young=3e10,poisson=.2,density=1000))
Out[26]: O

Yade [27]: 0.bodies.append([
R sphere([0,0,0],1),
ol sphere([0,0,1000],1)

Out[27]: [0, 1]

only add InteractionLoop, nmo other engines are needed now
Yade [28]: 0.engines=[

Ll InteractionLoop(

R [Ig2_Sphere_Sphere_ScGeom(),],

Lo [Ip2_FrictMat_FrictMat_FrictPhys(],

e [1 # not needed now

Yade [29]: i=createlnteraction(0,1)

created by functors in InteractionLoop
Yade [30]: i.geom, i.phys
Out [30]: (<ScGeom instance at 0x4007a40>, <FrictPhys instance at 0x400c4d0>)

This method will be rather slow if many interactions are to be created (the functor lookup will be repeated
for each of them). In such case, ask on yade-dev@lists.launchpad.net to have the createlnteraction
function accept list of pairs id’s as well.

Base engines

A typical DEM simulation in Yade does at least the following at each step (see Function components for
details):

1. Reset forces from previous step

2. Detect new collisions

2.2. User's manual 85

mailto:yade-dev@lists.launchpad.net

Yade Documentation, Release 3rd ed.

3. Handle interactions
4. Apply forces and update positions of particles

Each of these points corresponds to one or several engines:

0.engines=[
ForceResetter(), # reset forces
InsertionSortCollider([...]), # approzimate collision detection
InteractionLoop([...]1,[...1,[...1) # handle interactions
NewtonIntegrator () # apply forces and update positions

The order of engines is important. In majority of cases, you will put any additional engine after Inter-
actionLoop:

o if it applies force, it should come before NewtonlIntegrator, otherwise the force will never be effective.

o if it makes use of bodies’ positions, it should also come before NewtonlIntegrator, otherwise, posi-
tions at the next step will be used (this might not be critical in many cases, such as output for
visualization with VTKRecorder).

The O.engines sequence must be always assigned at once (the reason is in the fact that although engines
themselves are passed by reference, the sequence is copied from c++ to Python or from Python to c++).
This includes modifying an existing 0.engines; therefore

’O.engines.append(SomeEngine()) # wrong

will not work;

’O.engines=0.engines+[SomeEngine()] # ok

must be used instead. For inserting an engine after position #2 (for example), use python slice notation:

’D.engines=0.engines[:2]+[SomeEngine()]+D‘engines[2:]

|

Note: When Yade starts, O.engines is filled with a reasonable default list, so that it is not strictly
necessary to redefine it when trying simple things. The default scene will handle spheres, boxes, and
facets with frictional properties correctly, and adjusts the timestep dynamically. You can find an example
in examples/simple-scene/simple-scene-default-engines.py.

Functors choice

In the above example, we omited functors, only writing ellipses . . . instead. As explained in Dispatchers
and functors, there are 4 kinds of functors and associated dispatchers. User can choose which ones to
use, though the choice must be consistent.

Bol functors

Bol functors must be chosen depending on the collider in use; they are given directly to the collider
(which internally uses BoundDispatcher).

At this moment (January 2019), the most common choice is InsertionSortCollider, which uses Aabb;
functors creating Aabb must be used in that case. Depending on particle shapes in your simulation,
choose appropriate functors:

0.engines=[...,
InsertionSortCollider([Bol_Sphere_Aabb() ,Bol_Facet_Aabb()]),

86 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-default-engines.py

Yade Documentation, Release 3rd ed.

Using more functors than necessary (such as Bol Facel Aabb if there are no facets in the simulation)
has no performance penalty. On the other hand, missing functors for existing shapes will cause those
bodies to not collide with other bodies (they will freely interpenetrate).

There are other colliders as well, though their usage is only experimental:

o SpatialQuickSortCollider is correctness-reference collider operating on Aabb; it is significantly
slower than InsertionSortCollider.

o PersistentTriangulationCollider only works on spheres; it does not use a BoundDispatcher, as it
operates on spheres directly.

e FlatGridCollider is proof-of-concept grid-based collider, which computes grid positions internally
(no BoundDispatcher either)

Ig2 functors

Ig2 functor choice (all of them derive from IGeomFunctor) depends on

1. shape combinations that should collide; for instance:

InteractionLoop([Ig2_Sphere_Sphere_ScGeom()]1, []1,[1)

will handle collisions for Sphere 4+ Sphere, but not for Facet + Sphere — if that is desired, an
additional functor must be used:

InteractionLoop ([
Ig2_Sphere_Sphere_ScGeom(),
Ig2_Facet_Sphere_ScGeom()

1,00,

Again, missing combination will cause given shape combinations to freely interpenetrate one an-
other. There are several possible choices of a functor for each pair, hence they cannot be put into
InsertionSortCollider by default. A common mistake for bodies going through each other is that
the necessary functor was not added.

2. IGeom type accepted by the Law2 functor (below); it is the first part of functor’s name after Law2
(for instance, Law2 ScGeom CpmPhys Cpm accepts ScGeom).

Ip2 functors

Ip2 functors (deriving from /PhysFunctor) must be chosen depending on

1. Material combinations within the simulation. In most cases, Ip2 functors handle 2 instances of the
same Material class (such as Ip2 FrictMat_FrictMat _FrictPhys for 2 bodies with FrictMat)

2. IPhys accepted by the constitutive law (Law2 functor), which is the second part of the Law2 functor’s
name (e.g. Law2_ScGeom_ FrictPhys CundallStrack accepts FrictPhys)

Note: Unlike with Bol and Ig2 functors, unhandled combination of Materials is an error condition
signaled by an exception.

2.2. User's manual 87

Yade Documentation, Release 3rd ed.

Law2 functor(s)

Law2 functor was the ultimate criterion for the choice of Ig2 and Ip2 functors; there are no restrictions
on its choice in itself, as it only applies forces without creating new objects.

In most simulations, only one Law2 functor will be in use; it is possible, though, to have several of them,
dispatched based on combination of IGeom and IPhys produced previously by Ig2 and Ip2 functors
respectively (in turn based on combination of Shapes and Materials).

Note: As in the case of Ip2 functors, receiving a combination of /Geom and IPhys which is not handled
by any Law2 functor is an error.

Warning: Many Law2 exist in Yade, and new ones can appear at any time. In some cases different
functors are only different implementations of the same contact law (e.g. Law2 ScGeom_ FrictPhys -
CundallStrack and Law?2_L3Geom__ FrictPhys_ElPerfPl). Also, sometimes, the peculiarity of one
functor may be reproduced as a special case of a more general one. Therefore, for a given constitutive
behavior, the user may have the choice between different functors. It is strongly recommended to
favor the most used and most validated implementation when facing such choice. A list of available
functors classified from mature to unmaintained is updated here to guide this choice.

Examples

Let us give several examples of the chain of created and accepted types.

Basic DEM model

Suppose we want to use the Law2 ScGeom,_ FrictPhys CundallStrack constitutive law. We see that

1. the Ig2 functors must create ScGeom. If we have for instance spheres and bozes in the simulation,
we will need functors accepting Sphere + Sphere and Box + Sphere combinations. We don’t want
interactions between boxes themselves (as a matter of fact, there is no such functor anyway). That
gives us Ig2 Sphere Sphere_ScGeom and Ig2 Box_Sphere_ScGeom.

2. the Ip2 functors should create FrictPhys. Looking at InteractionPhysicsFunctors, there is only
Ip2_ FrictMat_FrictMat_FrictPhys. That obliges us to use FrictMat for particles.

The result will be therefore:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys(],
[Law2_ScGeom_FrictPhys_CundallStrack()]

Concrete model

In this case, our goal is to use the Law2 ScGeom_CpmPhys Cpm constitutive law.

e We use spheres and facets in the simulation, which selects Ig2 functors accepting those types and
producing ScGeom: Ig2 Sphere Sphere ScGeom and 192 Facet Sphere ScGeom.

e We have to use Material which can be used for creating CpmPhys. We find that CpmPhys is
only created by Ip2 CpmMat CpmMat CpmPhys, which determines the choice of CpmMat for
all particles.

88 Chapter 2. Yade for users

https://yade-dem.org/wiki/ConstitutiveLaws

Yade Documentation, Release 3rd ed.

Therefore, we will use:

InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom() ,Ig2_Facet_Sphere_ScGeom()],
[Ip2_CpmMat_CpmMat_CpmPhys()],
[Law2_ScGeom_CpmPhys_Cpm()]

Imposing conditions

In most simulations, it is not desired that all particles float freely in space. There are several ways of
imposing boundary conditions that block movement of all or some particles with regard to global space.

Motion constraints

e Body.dynamic determines whether a body will be accelerated by NewtonlIntegrator; it is mandatory
to make it false for bodies with zero mass, where applying non-zero force would result in infinite
displacement.

Fucets are case in the point: facet makes them non-dynamic by default, as they have zero volume
and zero mass (this can be changed, by passing dynamic=True to facet or setting Body.dynamic;
setting State.mass to a non-zero value must be done as well). The same is true for wall.

Making sphere non-dynamic is achieved simply by:

b = sphere([x,y,z],radius,dynamic=False)
b.dynamic=True #revert the previous

e State.blockedDOF's permits selective blocking of any of 6 degrees of freedom in global space. For
instance, a sphere can be made to move only in the xy plane by saying:

Yade [31]: 0.bodies.append(sphere((0,0,0),1))
Out[31]: 0

Yade [32]: 0.bodies[0].state.blockedDOFs="'zXY'

In contrast to Body.dynamic, blockedDOFs will only block forces (and acceleration) in se-
lected directions. Actually, b.dynamic=False is nearly only a shorthand for b.state.
blockedDOFs=="'xyzXYZ' . A subtle difference is that the former does reset the velocity components
automaticaly, while the latest does not. If you prescribed linear or angular velocity, they will be
applied regardless of blockedDOFs. It also implies that if the velocity is not zero when degrees of
freedom are blocked via blockedDOFs assignements, the body will keep moving at the velocity it
has at the time of blocking. The differences are shown below:

Yade [33]: bl = sphere([0,0,0],1,dynamic=True)

Yade [34]: bl.state.blockedDOFs
OQut[34]: "'

Yade [35]: bl.state.vel = Vector3(1,0,0) #we want it to mowe. ..
Yade [36]: bl.dynamic = False #... at a constant velocity

Yade [37]: print(bl.state.blockedDOFs, bl.state.vel)
xyzXYZ Vector3(0,0,0)

Yade [38]: # oops, welocity has been reset when setting dynamic=False

Yade [39]: bl.state.vel = (1,0,0) # we can still assign it now

2.2. User's manual 89

Yade Documentation, Release 3rd ed.

Yade [40]: print(bl.state.blockedDOFs, bl.state.vel)
xyzXYZ Vector3(1,0,0)

Yade [41]: b2 = sphere([0,0,0],1,dynamic=True) #another try
Yade [42]: b2.state.vel = (1,0,0)

Yade [43]: b2.state.blockedDOFs = "xyzXYZ" #this time we assign blockedDOFs directly,,
—velocity %s unchanged

Yade [44]: print(b2.state.blockedDOFs, b2.state.vel)
xyzXYZ Vector3(1,0,0)

It might be desirable to constrain motion of some particles constructed from a generated sphere packing,
following some condition, such as being at the bottom of a specimen; this can be done by looping over
all bodies with a conditional:

for b in 0.bodies:
block all particles with z coord below .5:
if b.state.pos[2]<.5: b.dynamic=False

Arbitrary spatial predicates introduced above can be expoited here as well:

from yade import pack

pred=pack.inAlignedBox (lowerCorner,upperCorner)

for b in 0.bodies:
if not isinstance(b.shape,Sphere): continue # skip non-spheres
ask the predicate if we are inside
if pred(b.state.pos,b.shape.radius): b.dynamic=False

Imposing motion and forces
Imposed velocity

If a degree of freedom is blocked and a velocity is assigned along that direction (translational or rotational
velocity), then the body will move at constant velocity. This is the simpler and recommended method
to impose the motion of a body. This, for instance, will result in a constant velocity along x (it can still
be freely accelerated along y and z):

0.bodies.append (sphere((0,0,0),1))
0.bodies[0] .state.blockedDOFs="'x"
0.bodies[0] .state.vel=(10,0,0)

Conversely, modifying the position directly is likely to break Yade’s algorithms, especially those related
to collision detection and contact laws, as they are based on bodies velocities. Therefore, unless you
really know what you are doing, don’t do that for imposing a motion:

0.bodies.append(sphere((0,0,0),1))
0.bodies[0] .state.blockedDOFs="x"
0.bodies[0] .state.pos=10*0.dt #REALLY BAD! Don't assign position

Imposed force

Applying a force or a torque on a body is done via functions of the ForceContainer. It is as simple as
this:

90 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

0.forces.addF(0,(1,0,0)) #applies for one step

This way, the force applies for one time step only, and is resetted at the beginning of each step. For this
reason, imposing a force at the begining of one step will have no effect at all, since it will be immediatly
resetted. The only way is to place a PyRunner inside the simulation loop.

Applying the force permanently is possible with another function (in this case it does not matter if the
command comes at the begining of the time step):

0.forces.setPermF(0,(1,0,0)) #applies permanently

The force will persist across iterations, until it is overwritten by another call to 0.forces.setPermF (id,
f) or erased by 0.forces.reset (resetAl1=True). The permanent force on a body can be checked with
0.forces.permF (id).

Boundary controllers

Engines deriving from BoundaryController impose boundary conditions during simulation, either di-
rectly, or by influencing several bodies. You are referred to their individual documentation for details,
though you might find interesting in particular

e UniaxialStrainer for applying strain along one axis at constant rate; useful for plotting strain-stress
diagrams for uniaxial loading case. See examples/concrete/uniax.py for an example.

o TriazialStressController which applies prescribed stress/strain along 3 perpendicular axes on
cuboid-shaped packing using 6 walls (Boz objects)

o PeriTriaxController for applying stress/strain along 3 axes independently, for simulations using
periodic boundary conditions (Cell)

Field appliers

Engines deriving from FieldApplier are acting on all particles. The one most used is GravityEngine
applying uniform acceleration field (GravityEngine is deprecated, use NewtonlIntegrator.gravity instead).

Partial engines

Engines deriving from PartialEngine define the ids attribute determining bodies which will be affected.
Several of them warrant explicit mention here:

e TranslationEngine and RotationEngine for applying constant speed linear and rotational motion
on subscribers.

o ForceEngine and TorqueEngine applying given values of force/torque on subscribed bodies at every
step.

e StepDisplacer for applying generalized displacement delta at every timestep; designed for precise
control of motion when testing constitutive laws on 2 particles.

The real value of partial engines is when you need to prescribe a complex type of force or displacement
field. For moving a body at constant velocity or for imposing a single force, the methods explained in
Imposing motion and forces are much simpler. There are several interpolating engines (InterpolatingDi-
rectedForceEngine for applying force with varying magnitude, InterpolatingHelizFEngine for applying spi-
ral displacement with varying angular velocity; see examples/test/helix.py and possibly others); writing
a new interpolating engine is rather simple using examples of those that already exist.

2.2. User's manual 91

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/helix.py

Yade Documentation, Release 3rd ed.

Convenience features

Labeling things

Engines and functors can define a 1abel attribute. Whenever the 0. engines sequence is modified, python
variables of those names are created/updated; since it happens in the __builtins__ namespaces, these
names are immediately accessible from anywhere. This was used in Creating interactions to change
interaction radius in multiple functors at once.

Warning: Make sure you do not use label that will overwrite (or shadow) an object that you already
use under that variable name. Take care not to use syntactically wrong names, such as “er*452” or
“my engine”; only variable names permissible in Python can be used.

Simulation tags

Omega.tags is a dictionary (it behaves like a dictionary, although the implementation in C++ is different)
mapping keys to labels. Contrary to regular python dictionaries that you could create,

e 0.tags is saved and loaded with simulation;
e 0.tags has some values pre-initialized.

After Yade startup, 0.tags contains the following:

Yade [45]: dict(0.tags) # convert to real dictionary
Out [45]:
{'author': 'root~(root@runner-iTw7zVeE-project-10133144-concurrent-0)',
'd.id': '20211116T153500p364 "',
'id': '20211116T153500p364",
'id.d': '20211116T153500p364"',
'isoTime': '20211116T153500'}

author Real name, username and machine as obtained from your system at simulation creation

id Unique identifier of this Yade instance (or of the instance which created a loaded simulation). It is
composed of date, time and process number. Useful if you run simulations in parallel and want
to avoid overwriting each other’s outputs; embed 0.tags['id'] in output filenames (either as
directory name, or as part of the file’s name itself) to avoid it. This is explained in Separating
oulput files from jobs in detail.

isoTime Time when simulation was created (with second resolution).

d.id, id.d Simulation description and id joined by period (and vice-versa). Description is used in batch
jobs; in non-batch jobs, these tags are identical to id.

You can add your own tags by simply assigning value, with the restriction that the left-hand side object
must be a string and must not contain =.

Yade [46]: 0.tags['anythingThat I 1ik3']='whatever'

Yade [47]: O.tags['anythingThat I 1ik3']
Out[47]: 'whatever'

Saving python variables

Python variable lifetime is limited; in particular, if you save simulation, variables will be lost after
reloading. Yade provides limited support for data persistence for this reason (internally, it uses special
values of 0.tags). The functions in question are saveVars and loadVars.

92 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

saveVars takes dictionary (variable names and their values) and a mark (identification string for the
variable set); it saves the dictionary inside the simulation. These variables can be re-created (after the
simulation was loaded from a XML file, for instance) in the yade.params.mark namespace by calling
loadVars with the same identification mark:

Yade [48]: a=45; b=pi/3
Yade [49]: saveVars('ab',a=a,b=b)

save simulation (we could save to disk just as well)
Yade [49]: 0.saveTmp()

Yade [51]: 0.loadTmp()
Yade [52]: loadVars('ab')

Yade [53]: yade.params.ab.a
Out[53]: 45

tmport like this
Yade [64]: from yade.params import ab

Yade [55]: ab.a, ab.b
Out[55]: (45, 1.0471975511965976)

also possible
Yade [56]: from yade.params import x*

Yade [57]: ab.a, ab.b
Out[57]: (45, 1.0471975511965976)

Enumeration of variables can be tedious if they are many; creating local scope (which is a function
definition in Python, for instance) can help:

def setGeomVars():
radius=4
thickness=22
p_t=4/3*pi
dim=Vector3(1.23,2.2,3)
#
define as much as you want here
it all appears in locals() (and nothing else does)
#
saveVars('geom',loadNow=True,**locals())

setGeomVars ()
from yade.params.geom import *
use the wvariables now

Note: Only types that can be pickled can be passed to saveVars.

2.2.2 Controlling simulation
Tracking variables

Running python code

A special engine PyRunner can be used to periodically call python code, specified via the command
parameter. Periodicity can be controlled by specifying computation time (realPeriod), virtual time

2.2. User's manual 93

http://docs.python.org/library/pickle.html

Yade Documentation, Release 3rd ed.

(virtPeriod) or iteration number (iterPeriod).

For instance, to print kinetic energy (using kineticEnergy) every 5 seconds, the following engine will be
put to O.engines:

’PyRunner(command="print('kinetic energy' ,kineticEnergy())",realPeriod=5)

For running more complex commands, it is convenient to define an external function and only call it
from within the engine. Since the command is run in the script’s namespace, functions defined within
scripts can be called. Let us print information on interaction between bodies 0 and 1 periodically:

def intrInfo(idil,id?2):

try:
i=0.interactions[id1,id2]
assuming i1t is a CpmPhys instance
print (d1,id2,i.phys.sigmaN)
except:

in case the interaction doesn't exist (yet?)
print("No interaction between",idl,id2)
0.engines=[...,
PyRunner (command="intrInfo(0,1)",realPeriod=5)

]

Warning: If a function was declared inside a live yade session (ipython) then an error NameError:
name 'intrInfo' is not defined will occur unless python globals() are updated with command

globals() .update(locals())

More useful examples will be given below.

The plot module provides simple interface and storage for tracking various data. Although originally
conceived for plotting only, it is widely used for tracking variables in general.

The data are in plot.data dictionary, which maps variable names to list of their values; the plot.addData
function is used to add them.

Yade [58]: from yade import plot

Yade [59]: plot.data
Out [59]: {}

Yade [60]: plot.addData(sigma=12,eps=1le-4)
not adding sigma will add a NalN automatically
this assures all wvariables have the same number of records

Yade [61]: plot.addData(eps=1e-3)

adds Nals to already existing sigma and eps columns
Yade [62]: plot.addData(force=1e3)

Yade [63]: plot.data

Out [63]:
{'eps': [0.0001, 0.001, nan],
'force': [nan, nan, 1000.0],

'sigma': [12, nan, nan]}
retrieve only one column
Yade [64]: plot.datal'eps']
Out[64]: [0.0001, 0.001, nan]

get maxzimum eps

94 Chapter 2. Yade for users

http://ipython.org

Yade Documentation, Release 3rd ed.

Yade [65]: max(plot.datal['eps'])
Out[65]: 0.001

New record is added to all columns at every time plot.addData is called; this assures that lines in different
columns always match. The special value nan or NaN (Not a Number) is inserted to mark the record
invalid.

Note: It is not possible to have two columns with the same name, since data are stored as a dictionary.

To record data periodically, use PyRunner. This will record the z coordinate and velocity of body #1,
iteration number and simulation time (every 20 iterations):

0.engines=0.engines+[PyRunner (command='myAddData() ', iterPeriod=20)]

from yade import plot
def myAddData():
b=0.bodies[1]
plot.addData(zl=b.state.pos[2], vli=b.state.vel.norm(), i=0.iter, t=0.time)

Note: Arbitrary string can be used as a column label for plot.data. However if the name has spaces
inside (e.g. my funny column) or is a reserved python keyword (e.g. for) the only way to pass it to
plot.addData is to use a dictionary:

’plot.addData(**{'my funny column':1e3, 'for':0.3})

An exception are columns having leading of trailing whitespaces. They are handled specially in plot.plots
and should not be used (see below).

Labels can be conveniently used to access engines in the myAddData function:

0.engines=[...,
UniaxialStrainer(...,label='strainer')

]

def myAddData():
plot.addData(sigma=strainer.avgStress,eps=strainer.strain)

In that case, naturally, the labeled object must define attributes which are used (UniazialStrainer.strain
and UniazialStrainer.avgStress in this case).

Plotting variables

Above, we explained how to track variables by storing them using plot.addData. These data can be
readily used for plotting. Yade provides a simple, quick to use, plotting in the plot module. Naturally,
since direct access to underlying data is possible via plot.data, these data can be processed in any other
way.

The plot.plots dictionary is a simple specification of plots. Keys are x-axis variable, and values are
tuple of y-axis variables, given as strings that were used for plot.addData; each entry in the dictionary
represents a separate figure:

plot.plots={
it ('te,), # plot t(i)
"t ('zl','v1') # z1(t) and vi(t)

Actual plot using data in plot.data and plot specification of plot.plots can be triggered by invoking the
plot.plot function.

2.2. User's manual 95

http://en.wikipedia.org/wiki/NaN

Yade Documentation, Release 3rd ed.

Live updates of plots

Yade features live-updates of figures during calculations. It is controlled by following settings:

plot.live - By setting yade.plot.live=True you can watch the plot being updated while the cal-
culations run. Set to False otherwise.

e plot.livelnterval - This is the interval in seconds between the plot updates.

e plot.autozoom - When set to True the plot will be automatically rezoomed.
Controlling line properties

In this subsection let us use a basic complete script like examples/simple-scene/simple-scene-plot.py,

which we will later modify to make the plots prettier. Line of interest from that file is, and generates a
picture presented below:

plot.plots={'i':('t"'),'t"':('z_sph',None, ('v_sph','go-'),'z_sph_half')}

2.0 { { T 3.0
: : e—e v sph
: : — z_sph_half
19\ B P e 2.5
1.8 2.0
: : ©
-CI
<
S : f o
%I 1.7\ &8--B--/--\- | 1.5 zl
N : : ~
<
o
. ml
1 3 >
1.6}— e R 1.0
158 \@) d0.5
1. ‘ ‘ .0
6.0 0.5 1.0 1.5 2.8

Fig. 2.12: Figure generated by examples/simple-scene/simple-scene-plot.py.

The line plots take an optional second string argument composed of a line color (eg. 'r', 'g' or
'b'), a line style (eg. '-', '-='" or ':') and a line marker ('o', 's' or 'd'). A red dotted line
with circle markers is created with ‘ro:” argument. For a listing of all options please have a look at
http://matplotlib.sourceforge.net /api/pyplot__api.html#matplotlib.pyplot.plot

For example using following plot.plots() command, will produce a following graph:

96 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot

Yade Documentation, Release 3rd ed.

plot.plots={'i'":(('t','xr:"'),),'t'": (('z_sph','r:"'),None, ('v_sph','g--"'),('z_sph_half','b-."))}

3.0

v_sph
_ : : z_sph_half
....... ; , 2.5

T
i

N

o

z sph

'—I
ul
v_sph,z_sph_half

i
'—I
o

2.8

Fig. 2.13: Figure generated by changing parameters to plot.plots as above.

And this one will produce a following graph:

plot.plots={'i': (('t','xr:'),),'t": (('z_sph','Hr:') ,None, ('v_sph','+g-="),('z_sph_half', '*b-.
'Y

Note: You can learn more in matplotlib tutorial http://matplotlib.sourceforge.net/users/

pyplot_tutorial.html and documentation http://matplotlib.sourceforge.net/users/pyplot tutorial.
html#controlling-line-properties

Note: Please note that there is an extra , in 'i': (('t','xr:"'),), otherwise the 'xr:' wouldn’t be
recognized as a line style parameter, but would be treated as an extra data to plot.

Controlling text labels

It is possible to use TeX syntax in plot labels. For example using following two lines in examples/simple-
scene/simple-scene-plot.py, will produce a following picture:

plot.plots={'i': (('t','xr:'),),'t": (('z_sph','r:"'),None, ('v_sph','g--"),('z_sph_half','b-."'))}
plot.labels={'z_sph':'z_{spht' , 'v_sph':'v_{spht' , 'z_sph_half':'$z_{sph}/2$'}

2.2. User's manual 97

http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html#controlling-line-properties
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 3rd ed.

z_sph

T 3.0
+ —+ v_sph
* -+ 7 sph_half
... 25
.. 2_0%
©
<
!
: : o
R PR 1.5 ml
: : N
: . : c
o
i ln|
E >
E N S Lo

st nETARTARIARY

Fig. 2.14: Figure generated by changing parameters to plot.plots as above.

98

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Usph"zsph/z

1'6.0 01.5 \ 1.0 1.5 2.8'0

Fig. 2.15: Figure generated by examples/simple-scene/simple-scene-plot.py, with TeX labels.

2.2. User's manual 99

https://gitlab.com/yade-dev/trunk/blob/master/examples/simple-scene/simple-scene-plot.py

Yade Documentation, Release 3rd ed.

Greek letters are simply a 'α', 'β' etc. in those labels. To change the font style a
following command could be used:

yade.plot.matplotlib.rc('mathtext', fontset='stixsans')

But this is not part of yade, but a part of matplotlib, and if you want something more complex you really
should have a look at matplotlib users manual http://matplotlib.sourceforge.net /users/index.html

Multiple figures

Since plot.plots is a dictionary, multiple entries with the same key (x-axis variable) would not be possible,
since they overwrite each other:

Yade [66]: plot.plots={
i (tt,),
it (lzit,'vi')

Yade [67]: plot.plots
Qut[67]: {'i': ('z1', 'vi")}

You can, however, distinguish them by prepending/appending space to the x-axis variable, which will be
removed automatically when looking for the variable in plot.data — both x-axes will use the i column:

Yade [68]: plot.plots={
R it ('t',),
Ll 'i ':('z1','vl') # note the space in 'i '

Yade [69]: plot.plots
Out[69]: {'i': (C('t',), 'i ': ('z1', 'vi')}

Split y1 y2 axes

To avoid big range differences on the y axis, it is possible to have left and right y axes separate (like
axes x1y2 in gnuplot). This is achieved by inserting None to the plot specifier; variables coming before
will be plot normally (on the left y-axis), while those after will appear on the right:

plot.plots={'i':('z1',None, 'vi')}

Exporting

Plots and data can be exported to external files for later post-processing in Gnuplot
<http://www.gnuplot.info/> via that plot.saveGnuplot function. Note that all data you added via
plot.addData is saved - even data that you don’t plot live during simulation. By editing the gener-
ated .gnuplot file you can plot any of the added Data afterwards.

o Data file is saved (compressed using bzip2) separately from the gnuplot file, so any other programs
can be used to process them. In particular, the numpy.genfromtxt (documented here) can be
useful to import those data back to python; the decompression happens automatically.

e The gnuplot file can be run through gnuplot to produce the figure; see plot.save Gnuplot documen-
tation for details.

For post-processing with other tools than gnuplot, saved data can also be exported in another kind of
text file with plot.saveDataTut.

100 Chapter 2. Yade for users

http://matplotlib.sourceforge.net/users/index.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html

Yade Documentation, Release 3rd ed.

Stop conditions

For simulations with a pre-determined number of steps, it can be prescribed:

absolute iteration number
.stopAtIter=35466

.run()

.wait ()

oo o %

or

number of iterations to run from now
0.run(35466,True) # wait=True

causes the simulation to run 35466 iterations, then stopping.

Frequently, decisions have to be made based on evolution of the simulation itself, which is not yet known.
In such case, a function checking some specific condition is called periodically; if the condition is satisfied,
0.pause or other functions can be called to stop the stimulation. See documentation for Omega.run,
Omega.pause, Omega.step, Omega.stopAtlter for details.

For simulations that seek static equilibrium, the unbalancedForce can provide a useful metrics (see its
documentation for details); for a desired value of 1e-2 or less, for instance, we can use:

def checkUnbalanced():
if unbalancedForce<le-2: 0.pause()

0.engines=0.engines+[PyRunner (command="checkUnbalanced()",iterPeriod=100)]

this would work as well, without the function defined apart:
PyRunner(command="4if unablancedForce<le-2: 0.pause()",iterPeriod=100)

0.run(); O0.wait()
will continue after O.pause() will have been called

Arbitrary functions can be periodically checked, and they can also use history of variables tracked via
plot.addData. For example, this is a simplified version of damage control in examples/concrete /uniax.py;
it stops when current stress is lower than half of the peak stress:

0.engines=[...,
UniaxialStrainer=(...,label='strainer'),
PyRunner (command="'myAddData() ',iterPeriod=100),
PyRunner (command='stopIfDamaged() ',iterPeriod=100)

def myAddData():
plot.addData(t=0.time,eps=strainer.strain,sigma=strainer.stress)

def stopIfDamaged():
currSig=plot.datal['sigma'] [-1] # last sigma value
maxSig=max(plot.datal'sigma'l) # mazimum sigma value
print something in any case, so that we know what %is happening
print(plot.datal'eps'] [-1],currSig)
if currSig<.5*maxSig:
print("Damaged, stopping")
print('gnuplot',plot.saveGnuplot(0.tags['id']))
import sys
sys.exit(0)

0.run(); 0.wait()
this place is never reached, since we call sys.exit(0) directly

2.2. User's manual 101

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

Checkpoints

Occasionally, it is useful to revert to simulation at some past point and continue from it with different
parameters. For instance, tension/compression test will use the same initial state but load it in 2 different
directions. Two functions, Omega.save Tmp and Omega.loadTmp are provided for this purpose; memory
is used as storage medium, which means that saving is faster, and also that the simulation will disappear
when Yade finishes.

0.saveTmp ()

do something

0.saveTmp('foo')

0.loadTmp() # loads the first state
0.loadTmp('foo') # loads the second state

Warning: 0.loadTmp cannot be called from inside an engine, since before loading a simulation, the
old one must finish the current iteration; it would lead to deadlock, since 0.1loadTmp would wait for
the current iteration to finish, while the current iteration would be blocked on 0.loadTmp.

A special trick must be used: a separate function to be run after the current iteration is defined and
is invoked from an independent thread launched only for that purpose:

0.engines=[...,PyRunner ('myFunc()',iterPeriod=345)]

def myFunc(Q):
if someCondition:
import thread
the () are arguments passed to the function
thread.start_new_thread(afterIterFunc, ())
def afterIterFunc():
0.pause(); 0.wait() # wait till the iteration really finishes
0.loadTmp()

0.saveTmp ()
0.run()

Remote control

Yade can be controlled remotely over network. At yade startup, the following lines appear, among other
messages:

TCP python prompt on localhost:9000, auth cookie “dcekyu'
TCP info provider on localhost:21000

They inform about 2 ports on which connection of 2 different kind is accepted.

Python prompt

TCP python prompt is telnet server with authenticated connection, providing full python command-line.
It listens on port 9000, or higher if already occupied (by another yade instance, for example).

Using the authentication cookie, connection can be made using telnet:

$ telnet localhost 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '7]'.
Enter auth cookie: dcekyu

102 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

- |
N/ _\N// [I B PO I

It /177 (I I
I ___/_/ I

(connected from 127.0.0.1:40372)
>>>

The python pseudo-prompt >>> lets you write commands to manipulate simulation in variety of ways as
usual. Two things to notice:

1. The new python interpreter (>>>) lives in a namespace separate from Yade [1]: command-line.
For your convenience, from yade import * is run in the new python instance first, but local and
global variables are not accessible (only builtins are).

2. The (fake) >>> interpreter does not have rich interactive feature of IPython, which handles the
usual command-line Yade [1]:; therefore, you will have no command history, ? help and so on.

Note: By giving access to python interpreter, full control of the system (including reading user’s files)
is possible. For this reason, connection is only allowed from localhost, not over network remotely.
Of course you can log into the system via SSH over network to get remote access.

Warning: Authentication cookie is trivial to crack via bruteforce attack. Although the listener
stalls for 5 seconds after every failed login attempt (and disconnects), the cookie could be guessed by
trial-and-error during very long simulations on a shared computer.

Info provider

TCP Info provider listens at port 21000 (or higher) and returns some basic information about current
simulation upon connection; the connection terminates immediately afterwards. The information is
python dictionary represented as string (serialized) using standard pickle module.

This functionality is used by the batch system (described below) to be informed about individual sim-
ulation progress and estimated times. If you want to access this information yourself, you can study
core/main/yade-batch.in for details.

Batch queuing and execution (yade-batch)

Yade features light-weight system for running one simulation with different parameters; it handles as-
signment of parameter values to python variables in simulation script, scheduling jobs based on number
of available and required cores and more. The whole batch consists of 2 files:

simulation script regular Yade script, which calls readParamsFromTable to obtain parameters from
parameter table. In order to make the script runnable outside the batch, readParamsFromTable
takes default values of parameters, which might be overridden from the parameter table.

readParamsFrom Table knows which parameter file and which line to read by inspecting the PARAM_-
TABLE environment variable, set by the batch system.

parameter table simple text file, each line representing one parameter set. This file is read by read-
ParamsFromTable (using TableParamReader class), called from simulation script, as explained
above. For better reading of the text file you can make use of tabulators, these will be ignored
by readParamsFromTable. Parameters are not restricted to numerical values. You can also make
use of strings by "quoting" them (' ' may also be used instead of " "). This can be useful for
nominal parameters.

The batch can be run as

2.2. User's manual 103

http://docs.python.org/library/pickle.html
https://gitlab.com/yade-dev/trunk/blob/master/core/main/yade-batch.in

Yade Documentation, Release 3rd ed.

’yade—batch parameters.table simulation.py

and it will intelligently run one simulation for each parameter table line. A minimal example is found in
examples/test /batch/params.table and examples/test/batch/sim.py, another example follows.

Example

Suppose we want to study influence of parameters density and initial Velocity on position of a sphere
falling on fixed box. We create parameter table like this:

description density initialVelocity # first non-empty line are column headings
reference 2400 10

hi_v = 20 # = to use value from previous line
lo_v = 5
comments are allowed
hi_rho 5000 10

blank lines as well:

hi_rho_v = 20
hi_rhO_lo_v 5

Each line give one combination of these 2 parameters and assigns (which is optional) a description of
this simulation.

In the simulation file, we read parameters from table, at the beginning of the script; each parameter has
default value, which is used if not specified in the parameters file:

readParamsFromTable (

gravity=-9.81,

density=2400,

initialVelocity=20,

noTableOk=True # use default wvalues if nmot run in batch
)
from yade.params.table import *
print(gravity, density, initialVelocity)

after the call to readParamsFromTable, corresponding python variables are created in the yade.params.
table module and can be readily used in the script, e.g.

GravityEngine(gravity=(0,0,gravity))

Let us see what happens when running the batch:

$ yade-batch batch.table batch.py

Will run ~/usr/local/bin/yade-trunk' on “batch.py' with nice value 10, output redirected to
— batch.@.log', 4 jobs at a time.

Will use table “batch.table', with available lines 2, 3, 4, 5, 6, 7.

Will use lines 2 (reference), 3 (hi_v), 4 (lo_v), 5 (hi_rho), 6 (hi_rho_v), 7 (hi_rhO_lo_v).
Master process pid 7030

These lines inform us about general batch information: nice level, log file names, how many cores will be
used (4); table name, and line numbers that contain parameters; finally, which lines will be used; master
PID is useful for killing (stopping) the whole batch with the ki1l command.

Job summary:

#0 (reference/4): PARAM_TABLE=batch.table:2 DISPLAY= /usr/local/bin/yade-trunk --threads=4
—--nice=10 -z batch.py > batch.reference.log 2>&1

#1 (hi_v/4): PARAM_TABLE=batch.table:3 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --
—nice=10 -z batch.py > batch.hi_v.log 2>&1

#2 (lo_v/4): PARAM_TABLE=batch.table:4 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --
—nice=10 -z batch.py > batch.lo_v.log 2>&1

104 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/batch/params.table
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/batch/sim.py
http://en.wikipedia.org/wiki/Nice_%28Unix%29
http://en.wikipedia.org/wiki/Process_identifier

Yade Documentation, Release 3rd ed.

#3 (hi_rho/4): PARAM_TABLE=batch.table:5 DISPLAY= /usr/local/bin/yade-trunk --threads=4 --
—nice=10 -z batch.py > batch.hi_rho.log 2>61

#4 (hi_rho_v/4): PARAM_TABLE=batch.table:6 DISPLAY= /usr/local/bin/yade-trunk --threads=4 -
—-nice=10 -z batch.py > batch.hi_rho_v.log 2>&1

#5 (hi_rh0_lo_v/4): PARAM_TABLE=batch.table:7 DISPLAY= /usr/local/bin/yade-trunk --
—threads=4 --nice=10 -z batch.py > batch.hi_rh0_lo_v.log 2>&1

displays all jobs with command-lines that will be run for each of them. At this moment, the batch starts
to be run.

#0 (reference/4) started on Tue Apr 13 13:59:32 2010

#0 (reference/4) done (exit status 0), duration 00:00:01, log batch.reference.log
#1 (hi_v/4) started on Tue Apr 13 13:59:34 2010

#1 (hi_v/4) done (exit status 0), duration 00:00:01, log batch.hi_v.log

#2 (lo_v/4) started on Tue Apr 13 13:59:35 2010

#2 (lo_v/4) done (exit status 0), duration 00:00:01, log batch.lo_v.log

#3 (hi_rho/4) started on Tue Apr 13 13:59:37 2010

#3 (hi_rho/4) done (exit status 0), duration 00:00:01, log batch.hi_rho.log

#4 (hi_rho_v/4) started on Tue Apr 13 13:59:38 2010

#4 (hi_rho_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rho_v.log
#5 (hi_rh0_lo_v/4) started on Tue Apr 13 13:59:40 2010

#5 (hi_rh0_lo_v/4) done (exit status 0), duration 00:00:01, log batch.hi_rh0_lo_v.log

information about job status changes is being printed, until:

All jobs finished, total time 00:00:08

Log files:

batch.reference.log batch.hi_v.log batch.lo_v.log batch.hi_rho.log batch.hi_rho_v.log batch.hi_
—rh0_lo_v.log

Bye.

Separating output files from jobs

As one might output data to external files during simulation (using classes such as VT'KRecorder), it is
important to name files in such way that they are not overwritten by next (or concurrent) job in the same
batch. A special tag 0.tags['id'] is provided for such purposes: it is comprised of date, time and PID,
which makes it always unique (e.g. 20100413T144723p7625); additional advantage is that alphabetical
order of the id tag is also chronological. To add the used parameter set or the description of the job, if
set, you could add O.tags[‘params’] to the filename.

For smaller simulations, prepending all output file names with 0.tags['id'] can be sufficient:

saveGnuplot(0.tags['id'])

For larger simulations, it is advisable to create separate directory of that name first, putting all files
inside afterwards:

os.mkdir(0.tags['id'])
0.engines=[
..
VTKRecorder (fileName=0.tags['id']+"'/'+'vtk'),
.
]
.
0.saveGnuplot(0.tags['id']+'/'+'graphl')

2.2. User’s manual 105

Yade Documentation, Release 3rd ed.

Controlling parallel computation

Default total number of available cores is determined from /proc/cpuinfo (provided by Linux kernel);
in addition, if OMP_NUM_THREADS environment variable is set, minimum of these two is taken. The
-j/--jobs option can be used to override this number.

By default, each job uses all available cores for itself, which causes jobs to be effectively run in parallel.
Number of cores per job can be globally changed via the --job-threads option.

Table column named !0MP_NUM_THREADS (! prepended to column generally means to assign environment
variable, rather than python variable) controls number of threads for each job separately, if it exists.

If number of cores for a job exceeds total number of cores, warning is issued and only the total number
of cores is used instead.

Merging gnuplot from individual jobs

Frequently, it is desirable to obtain single figure for all jobs in the batch, for comparison purposes.
Somewhat heuristic way for this functionality is provided by the batch system. yade-batch must be run
with the --gnuplot option, specifying some file name that will be used for the merged figure:

yade-trunk --gnuplot merged.gnuplot batch.table batch.py

Data are collected in usual way during the simulation (using plot.addData) and saved to gnuplot file via
plot.save Gnuplot (it creates 2 files: gnuplot command file and compressed data file). The batch system
scans, once the job is finished, log file for line of the form gnuplot [something]. Therefore, in order to
print this magic line we put:

’print('gnuplot',plot.saveGnuplot(O.tags['id']))

and the end of the script (even after waitIfBatch()) , which prints:

’gnuplot 20100413T144723p7625 . gnuplot

to the output (redirected to log file).
This file itself contains single graph:

At the end, the batch system knows about all gnuplot files and tries to merge them together, by assembling
the merged. gnuplot file.

HTTP overview

While job is running, the batch system presents progress via simple HT'TP server running at port 9080,
which can be acessed from a regular web browser (or e.g. lynx for a terminal usage) by requesting the
http://localhost:9080 URL. This page can be accessed remotely over network as well.

Batch execution on Job-based clusters (OAR)

On High Performance Computation clusters with a scheduling system, the following script might be use-
ful. Exactly like yade-batch, it handles assignemnt of parameters value to python variables in simulation
script from a parameter table, and job submission. This script is written for oar-based system , and may
be extended to others ones. On those system, usually, a job can’t run forever and has a specific duration
allocation. The whole job submission consists of 3 files:

Simulation script: Regular Yade script, which calls readParamsFromTable to obtain parameters from
parameter table. In order to make the script runnable outside the batch, readParamsFromTable
takes default values of parameters, which might be overridden from the parameter table.

106 Chapter 2. Yade for users

http://oar.imag.fr

Yade Documentation, Release 3rd ed.

z_sph

10

z_sph(y_sph) ——

2 4 6 8 10 12 14 16 18 20
_sph

Fig. 2.16: Figure from single job in the batch.

readParamsFrom Table knows which parameter file and which line to read by inspecting the PARAM_-
TABLE environment variable, set by the batch system.

Parameter table: Simple text file, each line representing one parameter set. This file is read by

readParamsFromTable (using TableParamReader class), called from simulation script, as explained
above. For better reading of the text file you can make use of tabulators, these will be ignored
by readParamsFromTable. Parameters are not restricted to numerical values. You can also make
use of strings by "quoting" them (' ' may also be used instead of " "). This can be useful for
nominal parameters.

Job script: Bash script, which calls yade on computing nodes. This script eventually creates temp

folders, save data to storage server etc. The script must be formatted as a template where some
tags will be replaced by specific values at the execution time:

__YADE_COMMAND__ will be replaced by the actual yade run command

__YADE_LOGFILE__ will be replaced by the log file path (output to stdout)
__YADE_ERRFILE__ will be replaced by the error file path (output to stderr)
__YADE_JOBNO__ will be replaced by an identifier composed as (launch script pid)-(job order)

__YADE_JOBID__ will be replaced by an identifier composed of all parameters values

The batch can be run as

yade-oar --oar-project=<your project name> --oar-script=job.sh --oar-walltime=hh:mm:ss,
—parameters.table simulation.py

and it will generate one launch script and submit one job for each parameter table line. A minimal
example is found in examples/oar/params.table examples/oar/job.sh and examples/oar /sim.py.

2.2. User's manual 107

https://gitlab.com/yade-dev/trunk/blob/master/examples/oar/params.table
https://gitlab.com/yade-dev/trunk/blob/master/examples/oar/job.sh
https://gitlab.com/yade-dev/trunk/blob/master/examples/oar/sim.py

Yade Documentation, Release 3rd ed.

10 = T T T T T
\ : : : reference: z_sph(y_sph) ——
' ‘ : : hi_v: z_sph(y_sph)
9L N T 0 lo_v: z_sph(y_sph) -------- H
‘ \]] ; hi_rho: z_sph(y_sph)
U\ : : : hi_rho_v: z_sph(y_sph)
L\ ‘ ‘ hi_rh0_lo_v: z_sph(y_sph)
8 | .\'\ """"""""""""""""""""" e P 1
Lo \ N |
A\
i\
HEAY
. 6F S S O ———— |
g | \\
I :
N
5 - ,\\, e\ .
\\\
/A T \ ,, a
\
\
\
3 - - \\, ,, —
\
| iy
2 - - B A U S -
1 I 1 1 1 1
0 10 20 30 40 50 60

y_sph

Fig. 2.17: Merged figure from all jobs in the batch. Note that labels are prepended by job description
to make lines distinguishable.

108 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

Running for 00:10:19, since Tue Apr 13 16:17:11 2010.

Pid 9873

4 slots available, 4 used, 0 free.

Jobs

4 total, 2 running, 1 done

| id || status || info ||slots|| command
96.33% done
step 9180/9530 PARAM_TABLE=iParams.table:2 DISPLAY=
_geomType=B 00:10:19 ||avg 14.9596/sec||2 Jusr/locallbin/yade-trunk --threads=2 --nice=10 -x
10267 bodies indent.py > indent._geomType=B.log 2> &1
65506 intrs
PARAM_TABLE=iParams.table:3 DISPLAY=
_geomType=smallA (no info) 2 Jusr/locallbin/yade-trunk --threads=2 --nice=10 -x
indent.py > indent._geomType=smallA.log 2> &1
6.95% done
step 694/9985 PARAM_TABLE=iParams.table:4 DISPLAY=
_geomType=smallB|[00:00:24 ||avg 35.8212/sec||2 /usr/local/bin/yade-trunk --threads=2 --nice=10 -x
9021 bodies indent.py > indent._geomType=smallB.log 2> &1
58352 intrs
PARAM_TABLE=iParams.table:5 DISPLAY=
_geomType=smallC (no info) 2 Jusr/locallbin/yade-trunk --threads=2 --nice=10 -x
indent.py > indent._geomType=smallC.log 2> &1

Fig. 2.18: Summary page available at port 9080 as batch is processed (updates every 5 seconds automat-
ically). Possible job statuses are pending, running, done, failed.

2.2. User’s manual

109

Yade Documentation, Release 3rd ed.

Note: You have to specify either —oar-walltime or a 'WALLTIME column in params.table. \WALLTIME
will override —oar-walltime

Warning: yade-oar is not compiled by default. Use -DENABLE_OAR=1 option to cmake to
enable it.

2.2.3 Postprocessing

3d rendering & videos

There are multiple ways to produce a video of simulation:

1. Capture screen output (the 3d rendering window) during the simulation — there are tools available
for that (such as Istanbul or RecordMyDesktop, which are also packaged for most Linux distribu-
tions). The output is “what you see is what you get”, with all the advantages and disadvantages.

2. Periodic frame snapshot using SnapshotEngine (see examples/test/force-network-video.py, exam-
ples/bulldozer /bulldozer.py or examples/test/beam-16geom.py for a complete example):

0.engines=[
#...
SnapshotEngine (iterPeriod=100,fileBase="'/tmp/bulldozer-"',viewNo=0,label="'snapshooter")

]

which will save numbered files like /tmp/bulldozer-0000.png. These files can be processed ex-
ternally (with mencoder and similar tools) or directly with the makeVideo:

’makeVideo(frameSpec,out,renameNotOverwrite=True,fps=24,kbps=6000,bps=None)

The video is encoded using the default mencoder codec (mpeg4).

3. Specialized post-processing tools, notably Paraview. This is described in more detail in the follow-
ing section.

Paraview
Saving data during the simulation

Paraview is based on the Visualization Toolkit, which defines formats for saving various types of data.
One of them (with the .vtu extension) can be written by a special engine VT'KRecorder. It is added to
the simulation loop:

0.engines=[
...
VTKRecorder (iterPeriod=100,recorders=['spheres', 'facets', 'colors'],fileName='/tmp/pl-")

o iterPeriod determines how often to save simulation data (besides iterPeriod, you can also use
virtPeriod or realPeriod). If the period is too high (and data are saved only few times), the video
will have few frames.

e fileName is the prefix for files being saved. In this case, output files will be named /tmp/
pl-spheres.0.vtu and /tmp/pl-facets.0.vtu, where the number is the number of iteration;
many files are created, putting them in a separate directory is advisable.

e recorders determines what data to save

110 Chapter 2. Yade for users

http://www.linuceum.com/Desktop/istanbul.php
http://recordmydesktop.sourceforge.net/about.php
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/force-network-video.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/bulldozer/bulldozer.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/bulldozer/bulldozer.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/beam-l6geom.py
http://www.mplayerhq.hu
http://www.paraview.org
http://www.vtk.org

Yade Documentation, Release 3rd ed.

export. V'K FExporter plays a similar role, with the difference that it is more flexible. It will save any user
defined variable associated to the bodies.

Loading data into Paraview

All sets of files (spheres, facets, ..) must be opened one-by-one in Paraview. The open dialogue
automatically collapses numbered files in one, making it easy to select all of them:

Look in: ftmpf +Q © O &

Home Filename B

orbit-vaclav
pulse-cCpZoyohzIBC
ssh-ngGvMpl467
virtual-vaclav.eZXPXx
after-O.periodic=False.png

pl-facets...vtu
pl-spheres...vtu -
periodic-interactions.png -

File name: pl-facets...vtu ‘ OK t

Files of type: ParaView Files (*.d3plot *.k *.Isdyna *.pvd *.vitp *.wtu - Cancel

Click on the “Apply” button in the “Object inspector” sub-window to make loaded objects visible. You
can see tree of displayed objects in the “Pipeline browser”:

Rendering spherical particles. Glyphs

Spheres will only appear as points. To make them look as spheres, you have to add “glyph” to the

pl-spheres.* item in the pipeline using the icon. Then set (in the Object inspector)
e “Glyph type” to Sphere
e “Radius” to 1

o “Scale mode” to Scalar (Scalar is set above to be the radii value saved in the file, therefore spheres
with radius 1 will be scaled by their true radius)

e “Set scale factor” to 1

o optionally uncheck “Mask points” and “Random mode” (they make some particles not to be ren-
dered for performance reasons, controlled by the “Maximum Number of Points”)

After clicking “Apply”, spheres will appear. They will be rendered over the original white points, which
you can disable by clicking on the eye icon next to pl-spheres.* in the Pipeline browser.

Rendering spherical particles. PointSprite

Another opportunity to display spheres is by using PointSprite plugin. This technique requires much
less RAM in comparison to Glyphs.

e “Tools -> Manage Plugins”
e “PointSprite_ Plugin -> Load selected -> Close”

2.2. User's manual 111

Yade Documentation, Release 3rd ed.

File Edit View Sources Filters Animat

B 2 &7 @ solid Color -
EOUOUUR® O =«
Pipeline Browser J

[builtin:

F 7 |~- pl-facets.*
' "§ pl-spheres.*

Object Inspector

Properties Display Information
@ () Reset 3% Delete 2

| x Cell/Point Array Status

® o radi
® o color

112 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

e Load VTU-files
e “Representation -> Point Sprite”
o “Point Sprite -> Scale By -> radii”

o “Edit Radius Transfer Function -> Proportional -> Multiplier = 1.0 -> Close”

Rendering interactions as force chain

Data saved by VTKRecorder (the steps below generates cones rather than tubes) or export.
VTKExporter(...) .exportInteractions(what=dict(forceN='i.phys.normalForce.norm()')) (the
steps below generates per interaction tubes with constant radius):

e Load interactions VIP or VTK files
o Filters -> Cell Data To Point Data
o Filters -> Tube

e Set color by “forceN”

e Set “Vary Radius” to “By Scalar”

o Set “Radius” and “Radius Factor” such that the result looks OK (in 3D postprocessing tutorial
script, Radius=0.0005 and Radius Factor=100 looks reasonably)

Facet transparency

If you want to make facet objects transparent, select pl-facets.* in the Pipeline browser, then go to
the Object inspector on the Display tab. Under “Style”, you can set the “Opacity” value to something
smaller than 1.

Animation

You can move between frames (snapshots that were saved) via the “Animation” menu. After setting the
view angle, zoom etc to your satisfaction, the animation can be saved with File/Save animation.

Micro-stress and micro-strain

It is sometimes useful to visualize a DEM simulation through equivalent strain fields or stress fields. This
is possible with Tesselation Wrapper. This class handles the triangulation of spheres in a scene, build
tesselation on request, and give access to computed quantities: volume, porosity and local deformation for
each sphere. The definition of microstrain and microstress is at the scale of particle-centered subdomains
shown below, as explained in [Catalano201ja] .

Micro-strain

Below is an output of the defToVik function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.). The output is visualized with paraview, as explained in the previous section.
Similar results can be generated from simulations:

tt=TriaxialTest ()
tt.generate("test.yade")
0.load("test.yade")
0.run(100,True)
TW=TesselationWrapper ()

2.2. User's manual 113

Yade Documentation, Release 3rd ed.

TW.triangulate() #compute regular Delaunay triangulation, don’t construct tesselation
TW. computeVolumes () #will silently tesselate the packing, then compute volume of eachy
—~Voronoi cell

TW.volume (10) #get volume associated to sphere of id 10

TW.setState(0) #store current positions internaly for later use as the "0" state
0.run(100,True) #make particles move a little (let's hope they will!)

TW.setState (1) #store current positions internaly in the "1" (deformed) state

#Now we can define strain by comparing states 0 and 1, and average them at the particles scale
TW.defToVtk("strain.vtk")

0,47856

04

0.000247

Micro-stress

Stress fields can be generated by combining the volume returned by TesselationWrapper to per-particle
stress given by bodyStressTensors. Since the stress o from bodyStressTensor implies a division by the
volume V4, of the solid particle, one has to re-normalize it in order to obtain the micro-stress as defined

114 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

in [Catalano2014a] (equation 39 therein), i.e. &% = o x V¥/VE where V¥ is the volume assigned to
particle k in the tesselation. For instance:

#"b" being a body

TW=TesselationWrapper ()

TW.setState()

TW. computeVolumes ()

s=bodyStressTensors ()

stress = s[b.id]*4.*pi/3.*b.shape.radius**3/TW.volume (b.id)

As any other value, the stress can be exported to a vtk file for display in Paraview using ex-
port. VTKFExporter.

2.2.4 Python specialties and tricks

Importing Yade in other Python applications

Yade can be imported in other Python applications. To do so, you need somehow to make yade executable
.py extended. The easiest way is to create a symbolic link, i.e. (suppose your Yade executable file is
called “yade-trunk” and you want make it “yadeimport.py”):

$ cd /path/where/you/want/yadeimport
$ 1n -s /path/to/yade/executable/yade-trunk yadeimport.py

Then you need to make your yadeimport.py findable by Python. You can export PYTHONPATH
environment variable, or simply use sys.path directly in Python script:

import sys
sys.path.append('/path/where/you/want/yadeimport')
from yadeimport import *

print (Matrix3(1,2,3, 4,5,6, 7,8,9))
print (0.bodies)
any other Yade code

2.2.5 Extending Yade

e new particle shape

e new constitutive law

2.2.6 Troubleshooting

Crashes

It is possible that you encounter crash of Yade, i.e. Yade terminates with error message such as

Segmentation fault (core dumped)

without further explanation. Frequent causes of such conditions are
e program error in Yade itself;
o fatal condition in your particular simulation (such as impossible dispatch);

e problem with graphics card driver.

2.2. User's manual 115

Yade Documentation, Release 3rd ed.

Try to reproduce the error (run the same script) with debug-enabled version of Yade. Debugger will

be automatically launched at crash, showing backtrace of the code (in this case, we triggered crash by
hand):

Yade [1]: import os,signal

Yade [2]: os.kill(os.getpid(),signal.SIGSEGV)

SIGSEGV/SIGABRT handler called; gdb batch file is ~/tmp/yade-YwtfRY/tmp-0'
GNU gdb (GDB) 7.1-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

[Thread debugging using libthread_db enabled]

[New Thread 0x7f0fb1268710 (LWP 16471)]

[New Thread Ox7£0£b29£2710 (LWP 16470)]

(New Thread 0x7f0fb31£3710 (LWP 16469)]

What looks as cryptic message is valuable information for developers to locate source of the bug. In
particular, there is (usually) line <signal handler called>; lines below it are source of the bug (at
least very likely so):

Thread 1 (Thread 0x7f0fcee53700 (LWP 16465)):

#0 0z00007f0fcd8f4f7d in __libc_waitpid (pid=16497, stat_loc=<value optimized out>,
—options=0) at ../sysdeps/uniz/sysv/linuc/waitpid.c:41

#1 0200007f0fcd88c7e9 in do_system (line=<value optimized out>) at ../sysdeps/posixz/system.
c:149

#2 0x00007f0fcd88cb20 in __libc_system (line=<value optimized out>) at ../sysdeps/posiz/
—system.c:190

#3 0z00007f0fcd0b4b23 in crashHandler (sig=11) at core/main/pyboot.cpp:45

#4 <signal handler called>

#5 0200007f0fcd87ed57 in kill () at ../sysdeps/uniz/syscall-template.S:82

#6 02000000000051336d in posiz_kill (self=<value optimized out>, args=<value optimized out>)
—at ../Modules/posizmodule.c:4046

#7 0200000000004a7cbe in call_function (f=Frame 0x1c54620, for file <ipython console>, line 1,
< in <module> (), throwflag=<value optimized out>) at ../Python/ceval.c:3750

#8 PyEval_EvalFrameEz (f=Frame 0z1c54620, for file <ipython comsole>, lime 1, in <module> (),
wthrowflag=<value optimized out>) at ../Python/ceval.c:2412

If you think this might be error in Yade, file a bug report as explained below. Do not forget to attach full
yade output from terminal, including startup messages and debugger output — select with right mouse
button, with middle button paste the bugreport to a file and attach it. Attach your simulation script as
well.

Reporting bugs

Bugs are general name for defects (functionality shortcomings, misdocumentation, crashes) or feature
requests. They are tracked at https://gitlab.com/yade-dev/trunk/issues.

When reporting a new bug, be as specific as possible; state version of yade you use, system version and
the output of printAllVersions(), as explained in the above section on crashes.

Getting help

Questions and answers

116 Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/issues

Yade Documentation, Release 3rd ed.

Hint: Please use Launchpad interface at https://answers.launchpad.net/yade/ for asking questions
about Yade.

In case you're not familiar with computer oriented discussion lists, please read this wiki page (a Yade-
oriented and shortened version of How To Ask Questions The Smart Way) before posting, in order to
increase your chances getting help. Do not forget to state what version of Yade you use (shown when you
start Yade, or even better as printed by function lib Versions.printAllVersions), whether you installed it
from source code or a package, what operating system (such as Ubuntu 18.04), and if you have done any
local modifications to source code in case of compiled version.

Mailing lists

In addition to the Q&A Launchpad interface, Yade has two mailing-lists. Both are hosted at http:
//www.launchpad.net and before posting, you must register to Launchpad and subscribe to the list by
adding yourself to “team” of the same name running the list.

yade-users@lists.launchpad.net is a general discussion list for all Yade users. Add yourself to yade-
users team so that you can post messages. List archives:

o https://lists.launchpad.net/yade-users/
e http://www.mail-archive.com/yade-users@lists.launchpad.net/

yade-dev@lists.launchpad.net is for discussions about Yade development; you must be member of
yvade-dev team to post. This list is archived in two places:

o https://lists.launchpad.net/yade-dev/

o http://www.mail-archive.com/yade-dev@lists.launchpad.net/
Wiki
http://www.yade-dem.org/wiki/

Private and/or paid support

You might contact developers by their private mail (rather than by mailing list) if you do not want to
disclose details on the mailing list. This is also a suitable method for proposing financial reward for
implementation of a substantial feature that is not yet in Yade — typically, though, we will request this
feature to be part of the public codebase once completed, so that the rest of the community can benefit
from it as well.

2.3 Yade wrapper class reference

2.3.1 Bodies

Body

class yade.wrapper.Body (inherits Serializable)
A particle, basic element of simulation; interacts with other bodies.

aspherical (=false)
Whether this body has different inertia along principal axes; NewtonlIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

2.3. Yade wrapper class reference 117

https://answers.launchpad.net/yade/
http://www.yade-dem.org/wiki/Howtoask
https://www.yade-dem.org/wiki/Howtoask
http://catb.org/~esr/faqs/smart-questions.html
http://www.launchpad.net
http://www.launchpad.net
mailto:yade-users@lists.launchpad.net
https://launchpad.net/~yade-users
https://launchpad.net/~yade-users
https://lists.launchpad.net/yade-users/
http://www.mail-archive.com/yade-users@lists.launchpad.net/
mailto:yade-dev@lists.launchpad.net
https://launchpad.net/~yade-dev
https://lists.launchpad.net/yade-dev/
http://www.mail-archive.com/yade-dev@lists.launchpad.net/
http://www.yade-dem.org/wiki/

Yade Documentation, Release 3rd ed.

bound (=uninitalized)
Bound, approximating volume for the purposes of collision detection.

bounded (=true)
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body: : isBounded/Body: : setBounded)

chain
Returns Id of chain to which the body belongs.

clumpld
Id of clump this body makes part of; invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.

Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dynamic (=true)
Whether this body will be moved by forces. (In c++, use
Body: : isDynamic/Body: : setDynamic)

flags(=FLAG_BOUNDED)
Bits of various body-related flags. Do not access directly. In c++, use isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

groupMask(=1)
Bitmask for interaction detection purposes: it is required that two bodies have at least one
bit in common in their groupMask for their interaction to be possible from the Collider point
of view.

id(=Body::ID_NONE)
Unique id of this body.

intrs((Body)argl) — list :
Return list of all real interactions in which this body participates.

isClump
True if this body is clump itself, false otherwise.

isClumpMember
True if this body is clump member, false otherwise.

isFluidDomainBox (=false)
Whether this body is a Fluid grid bounding box should have Body.bound created. Fluid-
DomainBboxes’ do not participate to collision detection with their own bodies, they may
interact with external bodies and other subdomains through virtual interactions. (In c++,
use Body: :getIsFluidDomainBbox/Body: : setIsFluidDomainBbox)

isStandalone
True if this body is neither clump, nor clump member; false otherwise.

isSubdomain (=false)
Whether this body is a subdomain should have Body.bound created. Subdomains‘ do
not participate to collision detection with their own bodies, they may interact with
external bodies and other subdomains through virtual interactions. (In c++, use
Body: :getIsSubdomain/Body: : setIsSubdomain)

iterBorn(=-1)
Step number at which the body was added to simulation.

mask
Shorthand for Body::groupMask

118

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mat
Shorthand for Body::material

material (=uninitalized)
Material instance associated with this body.

shape (=uninitalized)
Geometrical Shape.

state(=new State)
Physical state.

subdomain (=0)
the subdomain this body belongs to.

timeBorn(=-1)
Time at which the body was added to simulation.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

Shape

DeformableCohesiveElement }-—{ Lin4NodeTetra_Lin4NodeTetra_InteractionElement

Lin4NodeTetra

Box
)

Shape Sphere ’WF @
‘\
|

PotentialParticle

Fig. 2.19: Inheritance graph of Shape. See also: Boz, ChainedCylinder, Clump, Cylinder, Deformable-
CohesiveElement, DeformableElement, Facet, FluidDomainBboz, GridConnection, GridNode, LevelSet,
Lin4NodeTetra, LinjNodeTetra__LinjNodeTetra_InteractionElement, Node, PFacet, Polyhedra, Poten-
tialBlock, PotentialParticle, Sphere, Subdomain, Tetra, Wall.

class yade.wrapper.Shape (inherits Serializable)
Geometry of a body

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 119

Yade Documentation, Release 3rd ed.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Box(inherits Shape — Serializable)

color (=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

extents (=uninitalized)
Half-size of the cuboid

highlight (=false)
Whether this Shape will be highlighted when rendered.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.ChainedCylinder (inherits Cylinder — Sphere — Shape — Serializable)
Geometry of a deformable chained cylinder, using geometry Cylinder.

chainedOrientation(=Quaternionr::Identity())
Deviation of nodel orientation from node-to-node vector

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

120 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

highlight (=false)
Whether this Shape will be highlighted when rendered.

initLength(=0)
tensile-free length, used as reference for tensile strain

length(=NaN)
Length [m)]

radius (=NalN)
Radius [m]

segment (= Vector3r::Zero())
Length vector

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Clump (inherits Shape — Serializable)
Rigid aggregate of bodies

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

ids (=uninitalized)
Ids of constituent particles (only informative; direct modifications will have no effect).

members
Return clump members as {‘id1’:(relPos,relOri),...}

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Cylinder (inherits Sphere — Shape — Serializable)
Geometry of a cylinder, as Minkowski sum of line and sphere.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

2.3. Yade wrapper class reference 121

Yade Documentation, Release 3rd ed.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

length(=NaN)
Length [m)]

radius (=NalN)
Radius [m]

segment (= Vector3r::Zero())
Length vector

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.DeformableCohesiveElement (inherits DeformableElement — Shape — Se-
rializable)
Tetrahedral Deformable Element Composed of Nodes

addFace ((DeformableElement)argl, (Vector3)arg2) — None :
Add a face into the element

addNode ((DeformableElement)argl, (Body)arg2) — None :
Add a node shared_ pt<:yref:'Body’>& as into the element

addPair ((Deformable CohesiveElement)argl, (Body)arg2, (Body)arg3) — None :
Add a node shared_ pt<:yref:’Body’>& as into the element

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

delNode ((DeformableElement)argl, (Body)arg2) — None :
Remove a node shared_ pt<:yref:’Body’>& from the element

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

elementframe

faces (=uninitalized)
Faces of the element for drawing

getNode ((DeformableElement)argl, (int)arg2) — Body :
Get a node shared_ pt<:yref:’'Body’>& as into the element

getVolume ((DeformableElement)argl) — float :
Get volume of the element

highlight (=false)
Whether this Shape will be highlighted when rendered.
localmap (=uninitalized)

Ids and relative positions—+orientations of members of the deformable element (should not be
accessed directly)

122 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

nodepairs (=uninitalized)
Ids and relative position+orientation difference of members of the cohesive deformable element
in the inital condition (should not be accessed directly)

removelastFace ((DeformableElement)argl) — None :
Remove a face from the element

removePair ((DeformableCohesiveElement)argl, (Body)arg2, (Body)arg3) — None :
Add a node shared_ pt<:yref:’Body’>& as into the element

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.DeformableElement (inherits Shape — Serializable)
Deformable aggregate of nodes

addFace ((DeformableElement)argl, (Vector3)arg2) — None :
Add a face into the element

addNode ((DeformableElement)argl, (Body)arg2) — None :
Add a node shared_ pt<:yref:'Body’>& as into the element

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

delNode ((DeformableElement)argl, (Body)arg2) — None :
Remove a node shared_ pt<:yref:’Body’>& from the element

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

elementframe

faces (=uninitalized)
Faces of the element for drawing

getNode ((DeformableElement)argl, (int)arg2) — Body :
Get a node shared_ pt<:yref:’Body’>& as into the element

getVolume ((DeformableElement)argl) — float :
Get volume of the element

highlight (=false)
Whether this Shape will be highlighted when rendered.
localmap (=uninitalized)

Ids and relative positions+orientations of members of the deformable element (should not be
accessed directly)

removeLastFace ((DeformableElement)argl) — None :
Remove a face from the element

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 123

Yade Documentation, Release 3rd ed.

wire (=false)

Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Facet (inherits Shape — Serializable)

Facet (triangular particle) geometry.

area(=NaN)
Facet’s area

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.
highlight (=false)
Whether this Shape will be highlighted when rendered.

normal (=Vector3r(NaN, NaN, NaN))
Facet’s normal (in local coordinate system)

setVertices ((Facet)argl, (Vectors)arg2, (Vector3)arg3, (Vector3)arg4) — None :
TODO

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vertices (=vector<Vector8r>(3, Vector8r(NaN, NaN, NaN)))
Vertex positions in local coordinates.

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.FluidDomainBbox (inherits Shape — Serializable)

The bounding box of a fluid grid from one OpenFOAM /YALES?2 proc

bIds (=std::vector<Body::id_t>())
ids of bodies intersecting with this subdomain,

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

domainRank (=-1)
rank of the OpenFOAM/YALES2 proc

hasIntersection(=false)
if this Yade subdomain has intersection with this OpenFOAM/YALES2 subdomain

124

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

highlight (=false)
Whether this Shape will be highlighted when rendered.

maxBound (= Vector3r(NaN, NaN, NaN))
max bounds of the fluid grid

minBound (= Vector3r(NaN, NaN, NaN))
min bounds of the fluid grid

minMaxisSet (=false)
flag to check if the min max bounds of this body are set.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridConnection (inherits Sphere — Shape — Serializable)

GridConnection shape (see [Effeindzourou2016], [Bourrier20153]). Component of a grid designed to
link two GridNodes. It is highly recommended to use gridpfacet.gridConnection to generate correct
GridConnections.

addPFacet ((GridConnection)argl, (Body)Body) — None :
Add a PFacet to the GridConnection.

cellDist (= Vector3i(0, 0, 0))
Distance of bodies in cell size units, if using periodic boundary conditions. Note that periodic
boundary conditions for GridConnections have not yet been fully implemented.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

getPFacets ((GridConnection)argl) — object :
get list of linked PFacets.

highlight (=false)
Whether this Shape will be highlighted when rendered.

nodel (=uninitalized)
First Body the GridConnection is connected to.

node2 (=uninitalized)
Second Body the GridConnection is connected to.

periodic(=false)
true if two nodes from different periods are connected.

radius(=NaN)
Radius [m]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3.

Yade wrapper class reference 125

Yade Documentation, Release 3rd ed.

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridNode (inherits Sphere — Shape — Serializable)

GridNode shape, component of a grid. To create a Grid, place the nodes first, they will define the
spacial discretisation of it. It is highly recommended to use gridpfacet.gridNode to generate correct
GridNodes. Note that the GridNodes should only be in an Interaction with other GridNodes. The
Sphere-Grid contact is only handled by the GridConnections.

addConnection((GridNode)argl, (Body)Body) — None :
Add a GridConnection to the GridNode.

addPFacet ((GridNode)arg1, (Body)Body) — None :
Add a PFacet to the GridNode.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex

Return class index of this instance.

getConnections ((GridNode)argl) — object :
get list of linked GridConnection’s.

getPFacets ((GridNode)argl) — object :
get list of linked PFuacet’s.

highlight (=false)

Whether this Shape will be highlighted when rendered.
radius (=NaN)

Radius [m]
updateAttrs ((Serializable)argl, (dict)arg2) — None :

Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.LevelSet (inherits Shape — Serializable)

A level set description of particle shape based on a discrete distance field and surface nodes
[Duriez2021a] [Duriez2021b]. Visualization of corresponding bodies is currently absent from YADE
3D view and relies upon a VTKRecorder export with ‘‘IsBodies” among recorders. File exam-
ples/levelSet /pvVisu.py provides a Python function dedicated for such a purpose.

center ((LevelSet)argl) — Vector3 :
The center of mass of the volume (considering obviously an uniform density for this volume),
in local axes (for verification purposes, by comparison with the origin).

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

corners (=uninitalized)
The 8 corners of an axis-aligned bounding box, in local axes. It is computed once for all by
Bol_LevelSet_Aabb and used by the same Functor to get Body.bound.

126

Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/levelSet/pvVisu.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/levelSet/pvVisu.py

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

distField(=uninitalized)
The signed (< 0 when inside) distance-to-surface function as a discrete scalar field on IsGrid,
with distField[i][j][k] corresponding to lsGrid.gridPoint(i,j,k). From Python, slice this multi-
dimensional list with care: while distField[i][:][:] corresponds to values on a x-cst plane,
distField[:][:][k] is not at z-constant (use [[distField[i][j][k] for j in ..] for i in ..] instead)

distance ((LevelSet)argl, (Vector3)pt) — float :
Distance to surface value at pt, pt being expressed in local frame.

highlight (=false)
Whether this Shape will be highlighted when rendered.

inertia((LevelSet)argl) — Vector3 :
The eigenvalues of the geometric inertia matrix (the one considering the infinitesimal volume
as the integrand, instead of infinitesimal mass) as a Vector3r.

1sGrid(=new RegularGrid)
The regular grid carrying distField, in local axes.

marchingCubes ((LevelSet)argl) — object :
Vertices of a triangulation of the particle surface after executing the Marching Cubes algorithm
on distField.

nSurfNodes (=100)
The number of boundary nodes in surfNodes, previously coined nNodes in [Duriez2021b].
Usually set through utils levelSetBody() function (has to be set at instantiation in all cases).
Please use a perfect square + 2 if not twoD and if nodesPath = 1.

nodesPath(=2)
Defines how the space of spherical coordinates (8 € [0;7, ¢ € [0;271]) is discretized when ray
tracing the boundary nodes: 1 gives a rectangular partition of that space, plus two nodes at
9 = 0[r); 2 locates the nodes along a spiral path [Duriez2021a/

nodesTol(=50)
Tolerance coefficient for accepting (if |@|/L < nodesTol x numeric precision with ¢ the return
value of distance and L a body-characteristic length taken as v/V with V the volume, or \/V/g
with g the grid spacing if twoD) boundary nodes proposed by the ray tracing algorithm.

normal ((LevelSet)argl, (Vectord)pt) — Vector3 :
Normal vector to the surface, at some pt. Local frame applies to both output normal and
input pt.

rayTrace ((LevelSet)argl, (Vector3)ray) — None :
Performs one ray tracing, possibly modifying surfNodes. Provided for debugging purposes

sphericity(=-1)
Shape sphericity computed from boundary nodes and assuming both largest inscribed sphere
and smallest circumscribed sphere have the origin (of local axes) as center.

surfNodes (=uninitalized)
Surface discretization nodes (the list of) used for exact contact treatment in Ig2_LevelSet_ -
LevelSet__ScGeom, previously coined boundNodes in [Duriez2021b]. Expressed in local frame.
Getting them back after a save/load cycle requires to launch one iteration or to first ask for
shape.center.

2.3.

Yade wrapper class reference 127

Yade Documentation, Release 3rd ed.

twoD (=false)
True for z-invariant shapes. Serves to restrict the definition of surfNodes in the (x,y) plane.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

volume ((LevelSet)argl) — float :
The volume defined by the negative domain of the level set function, in a voxellised fashion.
A voxel is said to be inside according to the level set value at its minimum grid point.

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Lin4NodeTetra (inherits DeformableElement — Shape — Serializable)
Tetrahedral Deformable Element Composed of Nodes

addFace ((DeformableElement)argl, (Vector3)arg2) — None :
Add a face into the element

addNode ((DeformableElement)argl, (Body)arg2) — None :
Add a node shared_ pt<:yref:’Body’>& as into the element

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

delNode ((DeformableElement)argl, (Body)arg2) — None :
Remove a node shared_ pt<:yref:'Body’>& from the element

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

elementframe

faces (=uninitalized)
Faces of the element for drawing

getNode ((DeformableElement)argl, (int)arg2) — Body :
Get a node shared_ pt<:yref:’Body’>& as into the element

getVolume ((DeformableElement)argl) — float :
Get volume of the element

highlight (=false)
Whether this Shape will be highlighted when rendered.

localmap (=uninitalized)
Ids and relative positions—+orientations of members of the deformable element (should not be
accessed directly)

removelastFace ((DeformableElement)argl) — None :
Remove a face from the element

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

128 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.Lin4NodeTetra_Lin4NodeTetra_InteractionElement (inherits De-
formableCohe-
siweElement —
DeformableEle-
ment — Shape —
Serializable)

Tetrahedral Deformable Element Composed of Nodes

addFace ((DeformableElement)argl, (Vector3)arg2) — None :
Add a face into the element

addNode ((DeformableElement)argl, (Body)arg2) — None :
Add a node shared_ pt<:yref:’Body’>& as into the element

addPair ((Deformable CohesiveElement)argl, (Body)arg2, (Body)arg3) — None :
Add a node shared_ pt<:yref:’Body’>& as into the element

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

delNode ((DeformableElement)argl, (Body)arg2) — None :
Remove a node shared_ pt<:yref:'Body’>& from the element

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

elementframe

faces (=uninitalized)
Faces of the element for drawing

getNode ((DeformableElement)argl, (int)arg2) — Body :
Get a node shared_ pt<:yref:’Body’>& as into the element

getVolume ((DeformableElement)argl) — float :
Get volume of the element

highlight (=false)
Whether this Shape will be highlighted when rendered.

localmap (=uninitalized)
Ids and relative positions-+orientations of members of the deformable element (should not be
accessed directly)

nodepairs (=uninitalized)
Ids and relative position+orientation difference of members of the cohesive deformable element
in the inital condition (should not be accessed directly)

removeLastFace ((DeformableElement)argl) — None :
Remove a face from the element

removePair ((DeformableCohesiveElement)argl, (Body)arg2, (Body)arg3) — None :
Add a node shared_ pt<:yref:'Body’>& as into the element

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

2.3.

Yade wrapper class reference 129

Yade Documentation, Release 3rd ed.

class yade.wrapper.Node (inherits Shape — Serializable)

Geometry of node particle.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

radius(=0.1)
Radius [m]
updateAttrs ((Serializable)argl, (dict)arg2) — None :

Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.PFacet (inherits Shape — Serializable)

PFacet (particle facet) geometry (see [Effeindzourou2016], [Effeindzourou2015af). It is highly rec-
ommended to use the helper functions in gridpfacet (e.g., gridpfacet.pfacetCreator1-4) to generate
correct PFuacet elements.

area(=NaN)
PFacet’s area

cellDist (=Vector3i(0, 0, 0))
Distance of bodies in cell size units, if using periodic boundary conditions. Note that periodic
boundary conditions for PFacets have not yet been fully implemented.

color (=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

connl (=uninitalized)
First Body the Pfacet is connected to.

conn?2 (=uninitalized)
Second Body the Pfacet is connected to.

conn3 (=uninitalized)
third Body the Pfacet is connected to.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

130

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

nodel (=uninitalized)
First Body the Pfacet is connected to.

node2 (=uninitalized)
Second Body the Pfacet is connected to.

node3 (=uninitalized)
third Body the Pfacet is connected to.

normal (=Vector3r(NaN, NaN, NaN))
PFacet’s normal (in local coordinate system)

radius(=-1)
PFacet’s radius

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Polyhedra(inherits Shape — Serializable)

Polyhedral (convex) geometry.

GetCentroid((Polyhedra)argl) — Vector3 :
return polyhedra’s centroid

GetInertia((Polyhedra)argl) — Vector3 :
return polyhedra’s inertia tensor

GetOri ((Polyhedra)argl) — Quaternion :
return polyhedra’s orientation

GetSurfaceTriangulation((Polyhedra)argl) — object :
triangulation of facets (for plotting)

GetSurfaces ((Polyhedra)argl) — object :
get indices of surfaces’ vertices (for postprocessing)

GetVolume ((Polyhedra)argl) — float :
return polyhedra’s volume

Initialize ((Polyhedra)argl) — None :
Initialization

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.
highlight (=false)
Whether this Shape will be highlighted when rendered.

seed (=time(___null))
Seed for random generator.

setVertices ((Polyhedra)argl, (object)arg2) — None :
set vertices and update receiver. Takes a list/tuple of vertices as argument.

2.3.

Yade wrapper class reference 131

Yade Documentation, Release 3rd ed.

Note: Causes memory leaks, so if you want to use it maaaany times, use one of setVer-
tices mentioned lower, passing each vertex as individual argument (currently only setVer-
tices(vl,v2,v3,v4) for tetrahedron is implemented, on request it is easy to implement more
vertices).

setVertices4 ((Polyhedra)argl, (Vector3)arg2, (Vector3)arg3, (Vector3)args, (Vector3)arg5)
— None :
set 4 vertices and update receiver. Each vertex is single argument.
size(=Vectorsr(1., 1., 1.))
Size of the grain in meters - x,y,z - before random rotation

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

v (=uninitalized)
Polyhedron vertices in local coordinate system.

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.PotentialBlock(inherits Shape — Serializable)
Geometry of PotentialBlock.

AabbMinMax (=false)
Whether the exact Aabb should be calculated. If false, an approximate cubic Aabb is defined
with edges of 2R

R(=0.0)
R in Potential Particles. If left zero, a default value is calculated as half the distance of the
farthest vertices

a(=uninitalized)
List of a coefficients of plane normals

b (=uninitalized)
List of b coefficients of plane normals

boundaryNormal (= Vector3r::Zero())
Normal direction of boundary if fixedNormal=True

c (=uninitalized)
List of ¢ coefficients of plane normals

cohesion(=uninitalized)
Cohesion (stress) of each face (property for plane, rock joint)

color (=Vectordr(l, 1, 1))
Color for rendering (normalized RGB).

connectivity (=uninitalized)
Connectivity of vertices for each plane (auto-updated)

d(=uninitalized)
List of d coefficients of plane equations

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

132 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispIndex
Return class index of this instance.

erase (=false)
Parameter to mark particles to be removed (for excavation)

fixedNormal (=false)
Whether to fix the contact normal at a boundary, using boundaryNormal

highlight (=false)

Whether this Shape will be highlighted when rendered.
id(=-D

Particle id (for graphics in vtk output)

inertia(=Vector3r::Zero())
Principal inertia tensor (auto-updated)

intactRock (=false)
Property for plane

isBolt (=false)
Whether a block is part of a bolt (used in the Rockbolt.cpp script)

isBoundary (=false)

Whether the particle is part of a boundary block
isLining(=false)

Whether particle is part of tunnel lining (used in the RockLining.cpp script)
jointType (=uninitalized)

jointType
k(=0.0)

k in Potential Particles (not used)
liningFriction(=20.0)

Lining friction
liningLength(=0.0)

Lining spacing between nodes

liningNormalPressure (= Vector3r(0, 0, 0))
Normal pressure acting on lining

liningStiffness(=pow(10.0, 8))
Lining stiffness

liningTensionGap (=0.0)
Numerical gap between lining and block to allowing tension to be calculated

liningTotalPressure (= Vector3r(0, 0, 0))
Total pressure acting on lining

maxAabb (= Vector3r::Zero())
Max from box centre: Used for visualisation in vtk

minAabb (=Vector3r::Zero())
Min from box centre: Used for visualisation in vtk

orientation(=Quaternionr::Identity())
Principal orientation

phi_b(=uninitalized)

Basic friction angle of each face (property for plane, rock joint)
phi_r(=uninitalized)

Residual friction angle of each face (property for plane, rock joint)

2.3.

Yade wrapper class reference

133

Yade Documentation, Release 3rd ed.

position(=Vector3r::Zero())
Initial position of the particle, if initially defined eccentrically to the centroid (auto-updated)

r(=0.0)
r in Potential Particles

tension (=uninitalized)
Tension (stress) of each face (property for plane, rock joint)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vertices (=uninitalized)
Vertices (auto-updated)

volume (=uninitalized)
Volume (auto-updated)

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.PotentialParticle (inherits Shape — Serializable)

EXPERIMENTAL. Geometry of PotentialParticle.

AabbMinMax (=false)
Whether the exact Aabb should be calculated. If false, an approximate cubic Aabb is defined
with edges of 2R

R(=1.0)
R in Potential Particles

a(=uninitalized)
List of a coefficients of plane normals

b (=uninitalized)
List of b coefficients of plane normals

boundaryNormal (= Vector3r::Zero())
Normal direction of boundary if fixedNormal=True

c(=uninitalized)
List of ¢ coefficients of plane normals

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

d(=uninitalized)
List of d coefficients of plane normals

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fixedNormal (=false)
Whether to fix the contact normal at a boundary, using boundaryNormal

highlight (=false)
Whether this Shape will be highlighted when rendered.

134

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

id(=D
Particle id (for graphics in vtk output)

isBoundary (=false)
Whether the particle is part of a boundary particle

k(=0.1
k in Potential Particles

maxAabb (= Vector3r::Zero())
Max from box centre: Used for visualisation in vtk and qt

maxAabbRotated (= Vector3r::Zero())
Max from box centre: Used for primary contact detection

minAabb (=Vectordr::Zero())
Min from box centre: Used for visualisation in vtk and qt

minAabbRotated (= Vector3r::Zero())
Min from box centre: Used for primary contact detection

r(=0.1)
r in Potential Particles

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vertices (=uninitalized)
Vertices

wire (=false)

Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden

by global config of the renderer).

class yade.wrapper.Sphere (inherits Shape — Serializable)

Geometry of spherical particle.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)argl[, (bool)names:True]) — list :

Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical

indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

radius(=NaN)
Radius [m]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)

Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden

by global config of the renderer).

class yade.wrapper.Subdomain (inherits Shape — Serializable)

The bounding box of a mpi subdomain. Stores internals and provides optimized functions for
communications between workers. This class may not be used directly. Instead, Subdomains are

appended automatically to the scene bodies when using mpy.mpirun

2.3. Yade wrapper class reference

135

Yade Documentation, Release 3rd ed.

boundOnAxis ((Subdomain)argl, (Bound)bound, (Vector3)axis, (bool)min) — float :
computes projected position of a bound in a certain direction

boundOnAxis((Subdomain)argl, (Bound)bound, (Vector3)axis, (bool)min) -> float :
computes projected position of a bound in a certain direction

boundsMax (= Vector3r(NaN, NaN, NaN))
max corner of all bboxes of members; differs from effective domain bounds by the extra length
(sweepLength)

boundsMin (= Vector3r(NaN, NaN, NaN))
min corner of all bboxes of members; differs from effective domain bounds by the extra length
(sweepLength)

center0fMass ((Subdomain)argl) — Vector3 :
returns center of mass of assigned bodies

centerOfMass((Subdomain)argl) -> Vector3 : returns center of mass of assigned bod-
ies

cleanIntersections ((Subdomain)argl, (int)otherDomain) — None :
makes sure that the ids in the current subdomain belong to the current subdomain

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

comm
Communicator to be used for MPI (converts mpidpy comm <-> c¢++ comm)

completeSendBodies ((Subdomain)argl) — None :
calls MPI_wait to complete the non blocking sends/recieves.

countIntsWith((Subdomain)argl, (int)body, (int)someSubDomain [,

(Scene)someSubDomain=<Scene instance at 0x1e994 70>]) — int :
returns for a body the count of interactions (real or virtual) with bodies from a certain
subdomain, interactions with subdomains excluded. Third parameter (scene pointer) can be
left to default (equivalent to O._sceneObj).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex

Return class index of this instance.

extralLength(=0)
verlet dist for the subdomain, added to bodies verletDist

filterIntersections ((Subdomain)argl) — float :
clear intersections and mirror intersections of all non-interacting bodies.

filteredInts ((Subdomain)argl, (int)someSubDomain, (bool)mirror) — object :
return a copy of intersections or mirrorIntersections from which non-interacting bodies have
been removed.

getMirrorIntrs((Subdomain)argl) — None :
get mirrorIntersections from other subdomains

getRankSize ((Subdomain)argl) — None :
set subdomain ranks, used for communications -> merging, sending bodies etc.

getStateBoundsValuesFromIds ((Subdomain)argl, (object)b_ids) — object :
returns pos,vel,angVel,ori,bounds of listed bodies.

136 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getStateValues((Subdomain)argl, (int)otherDomain) — object :
returns pos,vel,angVel,ori of bodies interacting with a given otherDomain, based on Subdo-
main.intersections.

getStateValuesFromIds ((Subdomain)argl, (object)b ids) — object :
returns pos,vel,angVel,ori of listed bodies.

highlight (=false)
Whether this Shape will be highlighted when rendered.

ids(=vector<Body::id_t>())
Ids of owned particles.

init ((Subdomain)argl) — None :
Initialize subdomain variables as rank and buffer sizes, call this from each thread after scene
distribution by master.

intersections
lists of bodies from this subdomain intersecting other subdomains. WARNING: only assigne-
ment and concatenation allowed

medianFilterCPP ((Subdomain)argl, (int)arg2, (Vector3)bodies ToRecv, (Vec-
tor3)otherSubdomain, (int)oterSubdomainCenterofMass, (bool)useAABB)
— object :

cpp version of median filter, used for body reallocation operations.

merge0p ((Subdomain)argl) — None :
merge with setting interactions

migrateBodiesSend ((Subdomain)argl, (object)bodiesToSend, (int)destination) — None :
ids of body to be sent have their subdomain parameter reassigned, followed by sendBodies

mirrorIntersections
lists of bodies from other subdomains intersecting this one. WARNING: only assignement
and concatenation allowed

mpilrecvStates ((Subdomain)argl, (int)otherSubdomain) — None :
mpi-Irecv states from another domain (non-blocking)

mpiRecvStates((Subdomain)argl, (int)otherSubdomain) — None :
mpi-recv states from another domain (blocking)

mpiSendStates ((Subdomain)argl, (int)otherSubdomain) — None :
mpi-send states from current domain to another domain (blocking)

mpiWaitReceived ((Subdomain)argl, (int)otherSubdomain) — None :
mpi-Wait states from another domain (upon return the buffer is set)

receiveBodies ((Subdomain)argl, (int)sender) — None :
Receive the bodies from MPI sender rank to MPI receiver rank

sendBodies ((Subdomain)sender, (int)receiver, (object)idsToSend) — None :
Copy the bodies from MPI sender rank to MPI receiver rank

setIDstoSubdomain ((Subdomain)argl, (list)idList) — None :
set list of ids to the subdomain.

setMinMax ((Subdomain)argl) — None :
returns bounding min-max based on members bounds. precondition: the members bounds

have been dispatched already, else we re-use old values. Carefull if subdomain is not at the
end of O.bodies.

setStateBoundsValuesFromIds ((Subdomain)argl, (object)b_ids, (object)input) — None :
set pos,vel,angVel,ori,bounds from listed body ids and data.

setStateValuesFromBuffer ((Subdomain)argl, (int)subdomain) — None :
set pos,vel,angVel,ori from state buffer.

2.3.

Yade wrapper class reference 137

Yade Documentation, Release 3rd ed.

setStateValuesFromIds ((Subdomain)argl, (object)b_ids, (object)input) — None :
set pos,vel,angVel,ori from listed body ids and data.

splitBodiesToWorkers ((Subdomain)argl, (bool)erase WorkerBodies) — None :
of true bodies in workers are erased and reassigned.

subdomains
subdomain ids of other bodies, WARNING: only assignement and concatenation allowed

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updateLocallds ((Subdomain)argl, (bool)eraseRemoteMastrer) — None :
updates the ids in the subdomain id vector, if not eraseRemoteMastrer, body->subdomain in
master are updated.

updateNewMirrorIntrs ((Subdomain)argl, (int)otherdomain, (object)newMirrorList) —
None :
update the mirrorIntersections of a specific subdomain
wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Tetra(inherits Shape — Serializable)
Tetrahedron geometry.

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

v (=std::vector< Vector3r>(4))
Tetrahedron vertices (in local coordinate system).

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Wall (inherits Shape — Serializable)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).

axis(=0)
Axis of the normal; can be 0,1,2 for +x, +y, 4z respectively (Body’s orientation is disregarded
for walls)

color (=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

138 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

State

dispHierarchy((Shape)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

sense (=0)
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

JCFpmState

PartialSatState

/

State ChainedState

\
WireState

CpmState

Fig. 2.20: Inheritance graph of State. See also: ChainedState, CpmState, JCFpmState, PartialSatState,
WireState.

class yade.wrapper.State (inherits Serializable)

State of a body (spatial configuration, internal variables).

Cp(=0)
Heat capacity of the body

Tcondition(=false)
indicates if particle is assigned dirichlet (constant temp) condition

alpha(=0)
coefficient of thermal expansion

angMom (= Vector3r::Zero())
Current angular momentum

angVel (=VectorSr::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to

2.3.

Yade wrapper class reference 139

Yade Documentation, Release 3rd ed.

an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

boundaryId(=-1)
identifies if a particle is associated with constant temperature thrermal boundary condition

delRadius(=0)
radius change due to thermal expansion

densityScaling(=-1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((State)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ ((State)argl) — Vector3 :
Displacement from reference position (pos - refPos)

inertia(="Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isCavity(=false)
flag used for unbounding cavity bodies
isDamped (=true)
Damping in NewtonlIntegrator can be deactivated for individual particles by setting this vari-

able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

k(=0
thermal conductivity of the body

mass (=0)
Mass of this body

0ldTemp(=0)
change of temp (for thermal expansion)

ori
Current orientation.

pos
Current position.

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (=Vector3r::Zero())
Reference position

rot ((State)argl) — Vector3 :
Rotation from reference orientation (as rotation vector)
se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))

Position and orientation as one object.

stabilityCoefficient (=0)
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

140

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

stepFlux(=0)
flux during current step

temp (=0)
temperature of the body

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.ChainedState (inherits State — Serializable)

State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
rank and chainNumber.

Cp(=0
Heat capacity of the body

Tcondition(=false)
indicates if particle is assigned dirichlet (constant temp) condition

addToChain ((ChainedState)argl, (int)bodyld) — None :
Add body to current active chain

alpha(=0)
coefficient of thermal expansion

angMom (= Vector3r::Zero())
Current angular momentum

angVel (= VectorSr::Zero())
Current angular velocity

bId(=-1)
id of the body containing - for postLoad operations only.

blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

boundaryId(=-1)
identifies if a particle is associated with constant temperature thrermal boundary condition

chainNumber (=0)
chain id.

currentChain = 0

delRadius(=0)
radius change due to thermal expansion

densityScaling(=-1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((State)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

2.3.

Yade wrapper class reference 141

Yade Documentation, Release 3rd ed.

displ((State)argl) — Vector3 :
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isCavity(=false)
flag used for unbounding cavity bodies
isDamped (=true)
Damping in NewtonlIntegrator can be deactivated for individual particles by setting this vari-

able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

k(=0
thermal conductivity of the body

mass (=0)
Mass of this body

0ldTemp(=0)
change of temp (for thermal expansion)

ori
Current orientation.

pos
Current position.

rank (=0)
rank in the chain.

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rot ((State)argl) — Vector3 :
Rotation from reference orientation (as rotation vector)

se3(=Sedr(Vector8r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stabilityCoefficient (=0)
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

stepFlux(=0)
flux during current step

temp (=0)
temperature of the body

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vel (=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.CpmState (inherits State — Serializable)
State information about body use by cpm-model.

None of that is used for computation (at least not now), only for post-processing.

Cp(=0)
Heat capacity of the body

Tcondition(=false)
indicates if particle is assigned dirichlet (constant temp) condition

142 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

alpha(=0)
coefficient of thermal expansion

angMom (= Vector3r::Zero())
Current angular momentum

angVel (=Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

boundaryId(=-1)
identifies if a particle is associated with constant temperature thrermal boundary condition

damageTensor (=Matriz3r::Zero())
Damage tensor computed with microplane theory averaging. state.damageTensor.trace() =
state.normDmg

delRadius (=0)
radius change due to thermal expansion

densityScaling(=-1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((State)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ ((State)argl) — Vector3 :
Displacement from reference position (pos - refPos)

epsVolumetric(=0)
Volumetric strain around this body (unused for now)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isCavity(=false)
flag used for unbounding cavity bodies

isDamped (=true)
Damping in NewtonlIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

k(=0)
thermal conductivity of the body

mass (=0)
Mass of this body

normDmg (=0)
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

numBrokenCohesive (=0)
Number of (cohesive) contacts that damaged completely

2.3.

Yade wrapper class reference 143

Yade Documentation, Release 3rd ed.

numContacts (=0)
Number of contacts with this body

0ldTemp (=0)
change of temp (for thermal expansion)

ori
Current orientation.

pos
Current position.

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (=Vectordr::Zero())
Reference position

rot ((State)argl) — Vector3 :
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stabilityCoefficient (=0)
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

stepFlux (=0)
flux during current step

stress (=Matriz3r::Zero())
Stress tensor of the spherical particle (under assumption that particle volume = pi*r*r*r*4/3.)
for packing fraction 0.62

temp (=0)
temperature of the body

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vel (=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.JCFpmState (inherits State — Serializable)
JCFpm state information about each body.

Cp(=0)

Heat capacity of the body
Tcondition(=false)

indicates if particle is assigned dirichlet (constant temp) condition
alpha(=0)

coefficient of thermal expansion

angMom (= Vector3r::Zero())
Current angular momentum

angVel (=VectorSr::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

boundaryId(=-1)
identifies if a particle is associated with constant temperature thrermal boundary condition

144 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

damageIndex (=0)
Ratio of broken bonds over initial bonds. [-]

delRadius(=0)
radius change due to thermal expansion

densityScaling(=-1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((State)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ((State)argl) — Vector3 :

Displacement from reference position (pos - refPos)
inertia(=VectorSr::Zero())

Inertia of associated body, in local coordinate system.

isCavity(=false)
flag used for unbounding cavity bodies

isDamped (=true)
Damping in NewtonlIntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

joint (=0)
Indicates the number of joint surfaces to which the particle belongs (0-> no joint, 1->1 joint,
etc..). []

jointNormall (= Vector3r::Zero())
Specifies the normal direction to the joint plane 1. Rk: the ideal here would be to create a
vector of vector wich size is defined by the joint integer (as much joint normals as joints).

However, it needs to make the pushback function works with python since joint detection is
done through a python script. lines 272 to 312 of cpp file should therefore be adapted. [-]

jointNormal2 (= Vector3r::Zero())
Specifies the normal direction to the joint plane 2. [-]

jointNormal3 (= Vector3r::Zero())

Specifies the normal direction to the joint plane 3. [-]
k(=0)

thermal conductivity of the body

mass (=0)
Mass of this body

nbBrokenBonds (=0)
Number of broken bonds. -]

nbInitBonds(=0)
Number of initial bonds. [-]

0ldTemp (=0)
change of temp (for thermal expansion)

onJoint (=false)
Identifies if the particle is on a joint surface.

2.3.

Yade wrapper class reference 145

Yade Documentation, Release 3rd ed.

ori
Current orientation.

pos
Current position.

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (=Vector3r::Zero())
Reference position

rot ((State)argl) — Vector3 :
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector8r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stabilityCoefficient (=0)
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

stepFlux(=0)
flux during current step

temp (=0)
temperature of the body

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vel (=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.PartialSatState (inherits State — Serializable)

Hertz mindlin state information about each body. Only active if partially saturated clay model is
active.

Cp(=0)
Heat capacity of the body

Tcondition(=false)
indicates if particle is assigned dirichlet (constant temp) condition

alpha(=0)
coefficient of thermal expansion

angMom (= VectorSr::Zero())
Current angular momentum

angVel (= Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

boundaryId(=-1)
identifies if a particle is associated with constant temperature thrermal boundary condition

delRadius(=0)
radius change due to thermal expansion

densityScaling(=-1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

146

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((State)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ((State)argl) — Vector3 :
Displacement from reference position (pos - refPos)

incidentCells (=0)
number of incident cells

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isCavity(=false)
flag used for unbounding cavity bodies

isDamped (=true)
Damping in Newtonlntegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

k(=0)
thermal conductivity of the body

lastIncidentCells (=0)
number of incident cells

mass (=0)
Mass of this body

0ldTemp(=0)
change of temp (for thermal expansion)

ori
Current orientation.

pos

Current position.
radiiChange (=0)

total change of particle radius due to swelling
radiiOriginal (=0)

original particle radius prior to swelling

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rot ((State)argl) — Vector3 :
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stabilityCoefficient (=0)
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

stepFlux(=0)
flux during current step

2.3.

Yade wrapper class reference 147

Yade Documentation, Release 3rd ed.

suction(=0)
suction computed for particle (sum(sat of inc. cells)/num inc. cells)

suctionSum(=0)
sum of suctions associated with incident cells

temp (=0)
temperature of the body

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vel (= Vector3r::Zero())
Current linear velocity.

volumeOriginal (=0)
original particle volume stored for strain increments

class yade.wrapper.WireState (inherits State — Serializable)

Wire state information of each body.
None of that is used for computation (at least not now), only for post-processing.

Cp(=0)
Heat capacity of the body

Tcondition(=false)
indicates if particle is assigned dirichlet (constant temp) condition

alpha(=0)
coefficient of thermal expansion

angMom (= Vector3r::Zero())
Current angular momentum

angVel (= Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear /angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

boundaryId(=-1)
identifies if a particle is associated with constant temperature thrermal boundary condition

delRadius(=0)
radius change due to thermal expansion

densityScaling(=-1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((State)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ((State)argl) — Vector3 :
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

148

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

isCavity(=false)
flag used for unbounding cavity bodies
isDamped (=true)
Damping in NewtonIntegrator can be deactivated for individual particles by setting this vari-

able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

k(=0
thermal conductivity of the body

mass (=0)
Mass of this body

numBrokenLinks (=0)
Number of broken links (e.g. number of wires connected to the body which are broken). [-]

0ldTemp (=0)
change of temp (for thermal expansion)

ori
Current orientation.

pos
Current position.

ref0ri (=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rot ((State)argl) — Vector3 :
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stabilityCoefficient (=0)
sum of solid and fluid thermal resistivities for use in automatic timestep estimation

stepFlux(=0)
flux during current step

temp (=0)
temperature of the body

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vel (= Vector3r::Zero())
Current linear velocity.

Material

class yade.wrapper.Material (inherits Serializable)
Material properties of a body.

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Mcn‘em'al)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,

2.3. Yade wrapper class reference 149

Yade Documentation, Release 3rd ed.

‘ CohesiveDeformableElementMaterial H LinCohesiveElasticMaterial H LinCohesiveStiffPropDampElastMat ‘

‘ Material E—{ DeformableElementMaterial LinIsoRayleighDampElastMat ‘

'

Fig. 2.21: Inheritance graph of Material. See also: BubbleMat, CohFrictMat, CohesiveDeformableEle-
mentMaterial, CpmMat, DeformableElementMaterial, ElastMat, FrictMat, FrictMatCDM, FrictVis-
coMat, InelastCohFrictMat, JCEFpmMat, LinCohesiveElasticMaterial, LinCohesiveStiffPropDampFElast-
Mat, LinlsoElastMat, LinlsoRayleighDampFElastMat, LudingMat, MortarMat, PartialSatMat, Polyhe-
draMat, ViscElCapMat, ViscElMat, WireMat.

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.BubbleMat (inherits Material — Serializable)
material for bubble interactions, for use with other Bubble classes

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

150 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((Material)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

surfaceTension(=0.07197)
The surface tension in the fluid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CohFrictMat (inherits FrictMat — ElastMat — Material — Serializable)

Material description extending FrictMat with cohesive properties and rotational stiffnesses. For
use e.g. with Law2 ScGeom6D__CohFrictPhys CohesionMoment.

alphaKr (=2.0)
Dimensionless rolling stiffness.

alphaKtw(=2.0)
Dimensionless twist stiffness.

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)arg][, (bool)nameS:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

etaRoll(=-1.)
Dimensionless rolling (aka ‘bending’) strength. If negative, rolling moment will be elastic.

etaTwist(=-1.)
Dimensionless twisting strength. If negative, twist moment will be elastic.

fragile(=true)
do cohesion disappear when contact strength is exceeded

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

2.3.

Yade wrapper class reference 151

Yade Documentation, Release 3rd ed.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isCohesive (=true)
Whether this body can form possibly cohesive interactions (if true and depending on other
parameters such as Ip2 CohFrictMat CohFrictMat_CohFrictPhys.setCohesionNow).

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

momentRotationLaw (=false)
Use bending/twisting moment at contact. The contact may have moments only if both bodies
have this flag true. See Law2 ScGeom6D__CohFrictPhys CohesionMoment.always use_ -
moment_law for details.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

normalCohesion(=-1)
Tensile strength, homogeneous to a pressure. If negative the normal force is purely elastic.

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

shearCohesion(=-1)
Shear strength, homogeneous to a pressure. If negative the shear force is purely elastic.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.CohesiveDeformableElementMaterial (inherits Malerial — Serializable)

Deformable Element Material.

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Matem'al)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

152

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CpmMat (inherits FrictMat — FElastMat — Material — Serializable)
Concrete material, for use with other Cpm classes.

Note: Density is initialized to 4800 kgm 2automatically, which gives approximate 2800 kgm 2 on
0.5 density packing.

Concrete Particle Model (CPM)

CpmMat is particle material, Ip2 CpmMat _CpmMat_CpmPhys averages two particles’ materials,
creating CpmPhys, which is then used in interaction resultion by Law?2 ScGeom__CpmPhys Cpm.
CpmState is associated to CpmMat and keeps state defined on particles rather than interactions
(such as number of completely damaged interactions).

The model is contained in externally defined macro CPM__MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM__MATERIAL MODEL is not defined. The full model will be described in de-
tail in my (Vaclav Smilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).

Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.

damLaw(=1)
Law for damage evolution in uniaxial tension. 0 for linear stress-strain softening branch, 1
(default) for exponential damage evolution law

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Matem'ozl)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

dmgRateExp (=0)
Exponent for normal viscosity function. [-]

dmgTau(=-1, deactivated if negative)
Characteristic time for normal viscosity. [s]

epsCrackOnset (=NaN)
Limit elastic strain [-]

2.3. Yade wrapper class reference 153

https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/concrete/uniax.py

Yade Documentation, Release 3rd ed.

equivStrainShearContrib(=0)
Coefficient of shear contribution to equivalent strain

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isoPrestress(=0)
Isotropic prestress of the whole specimen. [Pa]

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

neverDamage (=false)
If true, no damage will occur (for testing only).

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

plRateExp (=0)
Exponent for visco-plasticity function. [-]

plTau(=-1, deactivated if negative)
Characteristic time for visco-plasticity. [s]

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

relDuctility(=NalN)
relative ductility of bonds in normal direction

sigmaT(=NalN)
Initial cohesion [Pa]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.DeformableElementMaterial (inherits Material — Serializable)
Deformable Element Material.

density(=1)
Density of the material.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)nameS:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

154 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ElastMat (inherits Material — Serializable)

Purely elastic material. The material parameters may have different meanings depending on the
IPhysFunctor used : true Young and Poisson in Ip2 FrictMat FrictMat MindlinPhys, or contact
stiffnesses in Ip2 FrictMat FrictMat_FrictPhys.

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierachhy((Matem'al)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa). It has different meanings depending on the Ip functor.

2.3.

Yade wrapper class reference 155

Yade Documentation, Release 3rd ed.

class yade.wrapper.FrictMat (inherits FlastMat — Material — Serializable)

Elastic material with contact friction. See also FlastMat.

density(=1000)
Density of the material [kg/m3]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictMatCDM(inherits FrictMat — ElastMat — Material — Serializable)

Material to be used for extended Hertz-Mindlin contact law. Normal direction: parameters for
Conical Damage Model (Harkness et al. 2016, Suhr & Six 2017). Tangential direction: parameters
for stress dependent interparticle friction coefficient (Suhr & Six 2016). Both models can be
switched on/off separately.

alpha(=1Ie-6)
[rad] angle of conical asperities, alpha in (0, pi/2)

c1(=0.0)
[-] parameter of pressure dependent friction model cl, choose 0 for constant interparticle
friction coefficient

c2(=0.0)
[-] parameter of pressure dependent friction model ¢2, choose 0 for constant interparticle
friction coefficient

density(=1000)
Density of the material [kg/m3]

156

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

sigmaMax (=1e99)
>0 [Pa] max compressive strength of material, choose 1e99 to switch off conical damage model

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictViscoMat (inherits FrictMat — ElastMat — Material — Serializable)
Material for use with the FrictViscoPM classes

betan(=0.)

Fraction of the viscous damping coefficient in normal direction equal to ==

n,crit

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

2.3. Yade wrapper class reference 157

Yade Documentation, Release 3rd ed.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.InelastCohFrictMat (inherits FrictMat — FElastMat — Material — Serial-

izable)

alphaKr(=2.0)
Dimensionless coefficient used for the rolling stiffness.

alphaKtw(=2.0)
Dimensionless coefficient used for the twist stiffness.

compressionModulus (=0.0)
Compresion elasticity modulus

creepBending (=0.0)
Bending creeping coefficient. Usual values between 0 and 1.

creepTension(=0.0)
Tension/compression creeping coefficient. Usual values between 0 and 1.

creepTwist (=0.0)
Twist creeping coefficient. Usual values between 0 and 1.

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierachhy((Matem'al)arg][7 (bool)nameS:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

epsilonMaxCompression(=0.0)
Maximal plastic strain compression

epsilonMaxTension(=0.0)
Maximal plastic strain tension

158

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

etaMaxBending(=0.0)
Maximal plastic bending strain

etaMaxTwist (=0.0)
Maximal plastic twist strain

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

nuBending (=0.0)
Bending elastic stress limit
nuTwist (=0.0)

Twist elastic stress limit

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

shearCohesion (=0.0)
Shear elastic stress limit

shearModulus (=0.0)
shear elasticity modulus

sigmaCompression(=0.0)
Compression elastic stress limit

sigmaTension(=0.0)
Tension elastic stress limit

tensionModulus (=0.0)
Tension elasticity modulus

unloadBending (=0.0)
Bending plastic unload coefficient. Usual values between 0 and +infinity.

unloadTension(=0.0)
Tension/compression plastic unload coefficient. Usual values between 0 and +infinity.

unloadTwist (=0.0)
Twist plastic unload coefficient. Usual values between 0 and +infinity.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.JCFpmMat (inherits FrictMat — FElastMat — Material — Serializable)
Possibly jointed, cohesive frictional material, for use with other JCFpm classes

2.3. Yade wrapper class reference 159

Yade Documentation, Release 3rd ed.

cohesion(=0.)
Defines the maximum admissible tangential force in shear, for Fn=0, in the matrix (FsMax
= cohesion * crossSection). [Pal

density(=1000)
Density of the material [kg/m3]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Matem’al)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

jointCohesion(=0.)
Defines the mazimum admissible tangential force in shear, for Fn=0, on the joint surface. [Pa]

jointDilationAngle(=0)
Defines the dilatancy of the joint surface (only valid for smooth contact logic). [rad]

jointFrictionAngle(=-1)
Defines Coulomb friction on the joint surface. [rad]

jointNormalStiffness(=0.)
Defines the normal stiffness on the joint surface. [Pa/m]

jointShearStiffness(=0.)
Defines the shear stiffness on the joint surface. [Pa/m]

jointTensileStrength(=0.)
Defines the mazimum admissible normal force in traction on the joint surface. [Pa]

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

residualFrictionAngle(=-1.)
Defines the residual friction angle (when contacts are not cohesive). residualFrictionAn-
gle=frictionAngle if not specified. [rad]

tensileStrength(=0.)
Defines the maximum admissible normal force in traction in the matrix (FnMaz = ten-
sileStrength * crossSection). [Pa]

160

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

type(=0)
If particles of two different types interact, it will be with friction only (no cohesion).[-]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.LinCohesiveElasticMaterial (inherits CohesiveDeformableElementMate-

rial — Material — Serializable)
Linear Isotropic Elastic material

density(=1000)
Density of the material [kg/m3

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poissonratio(=.33%)
Poisson ratio. Initially aluminium.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

youngmodulus (=.78¢5)
Young’s modulus. Initially aluminium.

class yade.wrapper.LinCohesiveStiffPropDampElastMat (inherits LinCohesiveElasticMate-

rial — CohesiveDeformableEle-
mentMaterial — Material —
Serializable)
Elastic material with Rayleigh Damping.
alpha(=0)
Mass propotional damping constant of Rayleigh Damping.
beta(=0)
Stiffness propotional damping constant of Rayleigh Damping.
density(=1000)
Density of the material [kg/m3]

2.3. Yade wrapper class reference 161

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poissonratio(=.33%)
Poisson ratio. Initially aluminium.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

youngmodulus (=.78¢5)
Young’s modulus. Initially aluminium.

class yade.wrapper.LinIsoElastMat (inherits DeformableElementMaterial — Material — Seri-

alizable)
Linear Isotropic Elastic material

density(=1)
Density of the material.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have

162

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poissonratio(=.33)
Poisson ratio. Initially aluminium.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

youngmodulus (=.78e5)
Young’s modulus. Initially aluminium.

class yade.wrapper.LinIsoRayleighDampElastMat (inherits LinlsoFElastMat — DeformableEle-

mentMaterial — Material — Serializable)
Elastic material with Rayleigh Damping.

alpha(=0)
Mass propotional damping constant of Rayleigh Damping.

beta(=0)
Stiffness propotional damping constant of Rayleigh Damping.

density(=1)
Density of the material.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Mcn‘em'ozl)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created

will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poissonratio(=.3%)
Poisson ratio. Initially aluminium.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

youngmodulus (=.78¢e5)
Young’s modulus. Initially aluminium.

class yade.wrapper.LudingMat (inherits Material — Serializable)
Material for simple Luding‘s model of contact [Luding2008] ,[Singh2013]__ .

GO(=Nal)
Viscous damping

2.3. Yade wrapper class reference 163

Yade Documentation, Release 3rd ed.

PhiF(=NaN)
Dimensionless plasticity depth

density(=1000)
Density of the material [kg/m3]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=NaN)
Friction angle [rad]

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

k1(=NaN)
Slope of loading plastic branch
kc(=NaN)
Slope of irreversible, tensile adhesive branch
kp(=NaN)
Slope of unloading and reloading limit elastic branch
ks(=NaN)
Shear stiffness
label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.MortarMat (inherits FrictMat — ElastMat — Material — Serializable)

Material for mortar interface, used in Ip2_MortarMat_MortarMat_ MortarPhys and Law2_ Sc-
Geom_ MortarPhys_ Lourenco. Default values according to

cohesion(=7e6)
cohesion [Pa]
compressiveStrength(=10e6)

compressiveStrength [Pa

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

164

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((Material)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

ellAspect(=3)
aspect ratio of elliptical ‘cap’. Value >1 means the ellipse is longer along normal stress axis.

frictionAngle(=.25)
Friction angle

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

neverDamage (=false)
If true, interactions remain elastic regardless stresses

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=1)
Shear to normal modulus ratio

tensileStrength(=1e6)
tensileStrength [Pa]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=Ie9)
Normal elastic modulus [Pa]

class yade.wrapper.PartialSatMat (inherits FrictMat — ElastMat — Material — Serializable)

Material used for PartialSatClayFEngine. Necessary for the custom PartialSatState.

density(=1000)
Density of the material [kg/m3

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),

2.3.

Yade wrapper class reference 165

Yade Documentation, Release 3rd ed.

-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

num(=0)
Particle number

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.PolyhedraMat (inherits FrictMat — FElastMal — Material — Serializable)
Elastic material with Coulomb friction.

IsSplitable(=0)
To be splitted ... or not

Wei P(=-1)
Weibull Formulation, failure probability, P, /Gladky2017].

Wei_S0(=-1)
Weibull Formulation, Sigma0, Pa, (if negative - disabled), [Gladky2017]

Wei_V0(=1e-9)
Weibull Formulation, VO, m™3, representative volume, [Gladky2017].

Wei_m(=-1)
Weibull Formulation, Weibull modulus, m, (if negative - disabled), [Gladky2017]

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Matem'al)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

166 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

label (=uninitalized)

Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

sigmaCD(=-1)
Mohr-Coulomb failure criterium SigmaCD, Pa, maximal compressive strength (if negative -
disabled), [Gladky2017]

sigmaCZ(=-1)
Mohr-Coulomb failure criterium SigmaCZ, Pa, maximal tensile strength (if negative - dis-
abled), [Gladky2017]

strength(=100)
Stress at which polyhedra of volume 4/3*pi [mm] breaks.

strengthTau(=-1)
Tangential stress at which polyhedra of volume 4/3*pi [mm] breaks.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e8)
Young modulus

class yade.wrapper.ViscElCapMat (inherits ViscEIMat — FrictMat — ElastMat — Material —

Serializable)
Material for extended viscoelastic model of contact with capillary parameters.
Capillar (=false)
True, if capillar forces need to be added.
CapillarType(="")
Different types of capillar interaction: Willett_ numeric, Willett_analytic [Willett2000] ,

Weigert [Weigert1999] , Rabinovich [Rabinov2005] , Lambert (simplified, corrected Rabi-
novich model) [Lambert2008]

Vb(=0.0)
Liquid bridge volume [m™3]
cn(=NaN)
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

cs(=NaN)
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

dcap(=0.0)
Damping coefficient for the capillary phase [-]

density(=1000)
Density of the material [kg/m?]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Material)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,

2.3.

Yade wrapper class reference 167

Yade Documentation, Release 3rd ed.

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

en(=NaN)
Restitution coefficient in normal direction

et (=NaN)
Restitution coefficient in tangential direction

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

gamma (=0.0)
Surface tension [N/m)]

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

kn(=NaN)
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

ks (=NaN)
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

lubrication(=false)
option to apply lubrication forces when material is defined from young, poisson and en (resti-
tution coefficient).

mR(=0.0)
Rolling resistance, see [Zhoul999530].

mRtype(=1)
Rolling resistance type, see [Zhoul999536]. mRtype=1 - equation (3) in [Zhoul999536];
mRtype=2 - equation (4) in [Zhou1999530].

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

roughnessScale(=Ie-3)
if lubrication is activated, roughness scale considered for the particles to evaluate the effective
restitution coefficient.

tc(=NaN)
Contact time

theta(=0.0)
Contact angle [°]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

168

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

viscoDyn(=Ie-3)
if lubrication is activated, surrounding fluid dynamic viscosity considered to evaluate the
effective restitution coefficient as a function of the local Stokes number of the collision.

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.ViscElMat (inherits FrictMat — ElastMat — Material — Serializable)

Material for simple viscoelastic model of contact from analytical solution of a pair spheres inter-
action problem [Pournin2001] .

cn(=NaN)
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

cs(=NalN)
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

density(=1000)
Density of the material [kg/m3]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarc:hy((Matem’al)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

en(=NaN)
Restitution coefficient in normal direction

et (=NaN)
Restitution coefficient in tangential direction

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

kn(=NaN)
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

ks (=NaN)
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

lubrication(=false)
option to apply lubrication forces when material is defined from young, poisson and en (resti-
tution coefficient).

mR(=0.0)
Rolling resistance, see [Zhou1999536].

mRtype(=1)
Rolling resistance type, see [Zhoul999536]. mRtype=1 - equation (3) in [Zhoul999536];
mRtype=2 - equation (4) in [Zhou1999556].

2.3.

Yade wrapper class reference 169

Yade Documentation, Release 3rd ed.

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

roughnessScale(=Ie-3)
if lubrication is activated, roughness scale considered for the particles to evaluate the effective
restitution coefficient.

tc(=NaN)
Contact time

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

viscoDyn(=Ie-3)
if lubrication is activated, surrounding fluid dynamic viscosity considered to evaluate the
effective restitution coefficient as a function of the local Stokes number of the collision.

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.WireMat (inherits FrictMat — ElastMat — Material — Serializable)
Material for use with the Wire classes. In conjunction with the corresponding functors it can be
used to model steel wire meshes [Thoeni201/], geotextiles [Cheng2016] and more.

as(=0.)
Cross-section area of a single wire used to transform stress into force. [m?]

density(=1000)
Density of the material [kg/m3]

diameter (=0.0027)
Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Ma,tem'ozl)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isDoubleTwist (=false)
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

170 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

lambdaEps (=0.47)
Parameter between 0 and 1 to reduce strain at failure of a double-twisted wire (as used by
[Bertrand2008]). [-]

lambdaF(=1.0)
Parameter between 0 and 1 introduced by [Thoeni20153] which defines where the shifted force-
displacement curve intersects with the new initial stiffness: F* = ArFejastic. []

lambdak(=0.7%)
Parameter between 0 and 1 to compute the elastic stiffness of a double-twisted wire (as used
by [Bertrand2008]): kP = 2(Avkn + (1 — A)KS). [H]

lambdau(=0.2)
Parameter between 0 and 1 introduced by [Thoeni2013] which defines the maximum shift
of the force-displacement curve in order to take an additional initial elongation (e.g. wire
distortion/imperfections, slipping, system flexibility) into account: Al* = A, lornd(seed). [-]

newAssocState ((Material)argl) — State :
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

seed(=12345)
Integer used to initialize the random number generator for the calculation of the distortion.
If the integer is equal to 0 a internal seed number based on the time is computed. [-]

strainStressValues (=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed! NOTE:
Vector needs to be initialized!

strainStressValuesDT (=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for the double twist. Tension only is considered and the point (0,0) is not needed! If this value
is given the calculation will be based on two different stress-strain curves without considering
the parameter introduced by [Bertrand2008] (see [Thoeni2013]).

type
Three different types are considered:

0 | Corresponds to Bertrand’s approach (see [Bertrand2008]): only one stress-strain curve
is used

1 | New approach: two separate stress-strain curves can be used (see [Thoeni2013])

2 | New approach with stochastically distorted contact model: two separate stress-strain
curves with changed initial stiffness and horizontal shift (shift is random if seed > 0,
for more details see [Thoeni2013])

By default the type is 0.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa)]. It has different meanings depending on the Ip functor.

2.3.

Yade wrapper class reference 171

Yade Documentation, Release 3rd ed.

Bound

Bound Aabb

Fig. 2.22: Inheritance graph of Bound. See also: Aabb.

class yade.wrapper.Bound (inherits Serializable)

Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection

color(=Vector3r(1, 1, 1))
Color for rendering this object

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Bound)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

lastUpdatelIter (=0)
record iteration of last reference position update (auto-updated)

max (=Vector3r(NaN, NaN, NaN))
Upper corner of box containing this bound (and the Body as well)

min(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

refPos (= Vector3r(NaN, NaN, NaN))
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

sweepLength (=0)
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.Aabb (inherits Bound — Serializable)

Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)

color (=Vector3r(1, 1, 1))
Color for rendering this object

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((Bound)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

172

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

lastUpdatelIter(=0)
record iteration of last reference position update (auto-updated)

max (=Vector3r(NaN, NaN, NaN))
Upper corner of box containing this bound (and the Body as well)

min (=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

refPos (=Vector3r(NaN, NaN, NaN))
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

sweepLength (=0)
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetinterv>0. (auto-updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3.2 Interactions

Interaction

class yade.wrapper.Interaction(inherits Serializable)

Interaction between pair of bodies.

cellDist
Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by
this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have the period information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

geom(=uninitalized)
Geometry part of the interaction.

id1(=0)
Id of the first body in this interaction.
id2(=0)

Id of the second body in this interaction.

isActive
True if this interaction is active. Otherwise the forces from this interaction will not be taken
into account. True by default.

isReal
True if this interaction has both geom and phys; False otherwise.

iterBorn(=-1)
Step number at which the interaction was added to simulation.

iterMadeReal (=-1)
Step number at which the interaction was fully (in the sense of geom and phys) created.

2.3.

Yade wrapper class reference 173

Yade Documentation, Release 3rd ed.

(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

phys (=uninitalized)
Physical (material) part of the interaction.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

IGeom

L3Geom ‘ ScGridCoGeom ‘

GenericSpheresContact ‘ CylScGeom

ScGeom GridNodeGeom6D ‘

TTetraSimpleGeom ‘ ScGeom6D

ChCylGeom6D |

PolyhedraGeom | | GridCoGridCoGeom |

‘ CylScGeom6D ‘

Fig. 2.23: Inheritance graph of IGeom. See also: ChCylGeom6D, CylScGeom, CylScGeom6D, Generic-
SpheresContact, GridCoGridCoGeom, GridNodeGeom6D, L3Geom, L6Geom, PolyhedraGeom, ScGeom,
ScGeom6D, ScGridCoGeom, TTetraGeom, TTetraSimpleGeom.

class yade.wrapper.IGeom(inherits Serializable)
Geometrical configuration of interaction

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ChCylGeom6D (inherits ScGeom6D — ScGeom — GenericSpheresContact —
IGeom — Serializable)

Test

bending (=Vector3r::Zero())
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

174 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

incidentVel ((ScGeom)argl, (Intemctz’on}i[, (bool)avoz’dGmnularRatchetz’ng:True]) — Vec-

tord :
Return incident velocity of the interaction (see also Ig2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

shearInc (= Vector3r::Zero())
Shear displacement increment in the last step

twist (=0)
Elastic twist angle (around normal azis) of the contact.

twistCreep (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CylScGeom(inherits ScGeom — GenericSpheresContact — I1Geom — Seri-

alizable)
Geometry of a cylinder-sphere contact.

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

end (= Vector3r::Zero())
position of 2nd node (auto-updated)

1d3(=0)
id of next chained cylinder (auto-updated)

incidentVel ((ScGeom)argl, (Intemctz'on)i[, (bool)avoz’dGmnularRatchetz’ng:True]) — Vec-

tor3 :
Return incident velocity of the interaction (see also 1g2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

2.3.

Yade wrapper class reference 175

Yade Documentation, Release 3rd ed.

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

onNode (=false)
contact on node?

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

shearInc(=Vectordr::Zero())
Shear displacement increment in the last step

start (=Vector3r::Zero())
position of 1st node (auto-updated)

truelnt (=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CylScGeom6D (inherits ScGeom6D — ScGeom — GenericSpheresContact —

IGeom — Serializable)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2xshear,

twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

bending (=Vector3r::Zero())
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarc:hy((IGeom)argZ[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

end (=Vector3r::Zero())
position of 2nd node (auto-updated)

1d3(=0
id of next chained cylinder (auto-updated)

176 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

incidentVel ((ScGeom)argl, (Intemctz’on}i[, (bool)avoz’dGmnularRatchetz’ng:True]) — Vec-

tord :
Return incident velocity of the interaction (see also Ig2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

onNode (=false)
contact on node?

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

shearInc (= Vector3r::Zero())
Shear displacement increment in the last step

start (=Vector3r::Zero())
position of 1st node (auto-updated)

truelnt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

twist (=0)
Elastic twist angle (around normal azis) of the contact.

twistCreep (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.GenericSpheresContact (inherits IGeom — Serializable)
Class uniting ScGeom and L3Geom, for the purposes of GlobalStiffnessTimeStepper. (It might be
removed in the future). Do not use this class directly.

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 177

Yade Documentation, Release 3rd ed.

dispHierarchy((IGeom)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.GridCoGridCoGeom(inherits ScGeom — GenericSpheresContact — IGeom
— Serializable)
Geometry of a GridConnection- GridConnection contact.
contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarv::hy((IGeom)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel ((ScGeom)argl, (Intemctz'on)i[, (bool)avoz’dGmnularRatchetz’ng:True]) — Vec-

tord :
Return incident velocity of the interaction (see also 1g2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

relPos1(=0)
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

relPos2(=0)
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

shearInc (= Vectorsr::Zero())
Shear displacement increment in the last step

178 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper. GridNodeGeomGD(inherits ScGeomb6D — ScGeom — GenericSpheresCon-
act = IGeom — Serializable)
Geometry of a GridNode-GridNode contact Inherits almost everything from ScGeom6D.
bending (=Vector3r::Zero())
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

connectionBody (=uninitalized)
Reference to the GridNode Body who is linking the two GridNodes.

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel ((ScGeom)argl, (Intemction}i[, (bool)avoidGmnularRatchetmg:True]) — Vec-

tord :
Return incident velocity of the interaction (see also 1g2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

shearInc (= Vector3r::Zero())
Shear displacement increment in the last step

twist (=0)
Elastic twist angle (around normal azis) of the contact.

twistCreep (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3. Yade wrapper class reference 179

Yade Documentation, Release 3rd ed.

class yade.wrapper.L3Geom(inherits GenericSpheresContact — [Geom — Serializable)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]

F(=Vector8r::Zero())
Applied force in local coordinates [debugging only, will be removed|

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)argl[7 (bool)nameS:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

trsf (=Matriz3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())

Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate /GeomFunctor, resulting in u. This value can be changed for
instance

1. by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2. by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3. by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both /GeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in /Phys isntead
(this might be changed: have w0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.L6Geom(inherits L3Geom — GenericSpheresContact — IGeom — Serializ-

able)
Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]

F(=Vector3r::Zero())
Applied force in local coordinates [debugging only, will be removed]

180 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierachhy((IGeom)argl[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

phi (=Vectorsr::Zero())
Rotation components, in local coordinates. (auto-updated)

phi0(=Vector3r::Zero())
Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

trsf (=Matriz3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate /GeomFunctor, resulting in u. This value can be changed for
instance

1. by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2. by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3. by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in /Phys isntead
(this might be changed: have w0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.PolyhedraGeom (inherits [Geom — Serializable)
Geometry of interaction between 2 Polyhedra, including volumetric characteristics

contactPoint (=Vectordr:: Zero())
Contact point (global coords), centroid of the overlapping polyhedron

2.3. Yade wrapper class reference 181

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

equivalentCrossSection(=NalN)
Cross-section area of the overlap (perpendicular to the normal) - not used

equivalentPenetrationDepth(=NalN)
volume / equivalentCrossSection - not used

normal (=Vector3r::Zero())
Normal direction of the interaction

orthonormal_axis(=Vectordr::Zero())

penetrationVolume (=NaN)
Volume of overlap [m?]

shearInc (= Vectorsr::Zero())
Shear displacement increment in the last step

twist_axis(=Vector3r::Zero())

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ScGeom(inherits GenericSpheresContact — IGeom — Serializable)

Class representing geometry of a contact point between two bodies. It is more general than sphere-
sphere contact even though it is primarily focused on spheres contact interactions (reason for
the ‘Sc’ naming); it is also used for representing contacts of a Sphere with non-spherical bodies
(Facet, Plane, Box, ChainedCylinder), or between two non-spherical bodies (ChainedCylinder).
The contact has 3 DOFs (normal and 2xshear) and uses incremental algorithm for updating shear.

We use symbols x, v, w respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.
Then we define branch length and unit contact normal

(v2 —vi) — (22 +17w7) xn
where the fraction multiplying translational velocities is to make the definition objective and avoid
ratcheting effects (see Ig2 Sphere_Sphere_ScGeom.avoidGranularRatcheting). The shear compo-
nent is

vi, =vi2—(n-vip)n

Tangential displacement increment over last step then reads

AX?Z == Atviz.

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

182

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel ((ScGeom)argl, (Intemction}i[, (bool)avoidGmnularRatcheting:True]) — Vec-

tor3 :
Return incident velocity of the interaction (see also Ig2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

shearInc (= Vector3r::Zero())
Shear displacement increment in the last step

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ScGeom6D (inherits ScGeom — GenericSpheresContact — [Geom — Serial-

izable)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2xshear,

twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

bending (=Vector3r::Zero())
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel ((ScGeom)argl, (Intemction}i[, (bool)avoidGmnularRatcheting:True]) — Vec-

tor3 :
Return incident velocity of the interaction (see also 1g2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

2.3. Yade wrapper class reference 183

Yade Documentation, Release 3rd ed.

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist (=0)
Elastic twist angle (around normal azis) of the contact.

twistCreep (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ScGridCoGeom(inherits ScGeom6D — ScGeom — GenericSpheresContact

— IGeom — Serializable)
Geometry of a GridConnection-Sphere contact.

bending (=Vector3r::Zero())
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg][7 (bool)nameS:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

1d3(=0
id of the first GridNode. (auto-updated)

ida (=0
id of the second GridNode. (auto-updated)

ids(=-1)
id of the third GridNode. (auto-updated)

incidentVel ((ScGeom)argl, (Intemction}i[, (bool)avoidGmnularRatcheting:True]) — Vec-

tord :
Return incident velocity of the interaction (see also 1Ig2 Sphere Sphere Sc-

Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

184 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two Connections. A
duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2 (=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel ((ScGeom)argl, (Interaction)i) — Vector3 :
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the connection (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

truelnt(=-1)
Defines the body id of the GridConnection where the contact is real, when ScGridCo-
Geom::isDuplicate>0.

twist (=0)
Elastic twist angle (around normal azis) of the contact.

twistCreep (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

weight (=Vector3r(0, 0, 0))
barycentric coordinates of the projection point (auto-updated)

class yade.wrapper.TTetraGeom(inherits IGeom — Serializable)
Geometry of interaction between 2 tetrahedra, including volumetric characteristics

contactPoint (=uninitalized)
Contact point (global coords)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IGeom)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

2.3. Yade wrapper class reference 185

Yade Documentation, Release 3rd ed.

equivalentCrossSection(=NalN)
Cross-section of the overlap (perpendicular to the axis of least inertia

equivalentPenetrationDepth(=NalN)
27?

maxPenetrationDepthA(=NaN)
77

maxPenetrationDepthB(=NaN)
?27?

normal (=uninitalized)
Normal of the interaction, directed in the sense of least inertia of the overlap volume

penetrationVolume (=NaN)
Volume of overlap [m?]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.TTetraSimpleGeom(inherits [Geom — Serializable)

EXPERIMENTAL. Geometry of interaction between 2 tetrahedra

contactPoint (=uninitalized)
Contact point (global coords)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarc:hy((IGeom)argZ[7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

flag(=0)
TODO

normal (=uninitalized)
Normal of the interaction TODO

penetrationVolume (=NaN)
Volume of overlap [m?]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

IPhys

class yade.wrapper.IPhys (inherits Serializable)

Physical (material) properties of interaction.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

186

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

NormPhys NormShearPhys JCFpmPhys
- — \
[Comehs]

| KnKsPBPhys |

‘ LubricationPhys ‘

ViscEIPhys

ViscEICapPhys ‘

MindlinPhysCDM
| ViscoFrictPhys | | MindlinPhys
MindlinCapillaryPhys

‘ RotStiffFrictPhys }-—{ InelastCohFrictPhys ‘

Fricthys

CohFrictPhys

‘ FrictViscoPhys ‘

LudingPhys ‘

MortarPhys
CapillaryPhys
PolyhedraPhys

Fig. 2.24: Inheritance graph of IPhys. See also: BubblePhys, CapillaryPhys, CohFrictPhys, CpmPhys,
FrictPhys, FrictViscoPhys, InelastCohFrictPhys, JCFpmPhys, KnKsPBPhys, KnKsPhys, Lubrication-
Phys, LudingPhys, MindlinCapillaryPhys, MindlinPhys, MindlinPhysCDM, MortarPhys, NormPhys,
NormShearPhys, PolyhedraPhys, RotStiffFrictPhys, ViscElCapPhys, ViscElPhys, ViscoFrictPhys, Wire-

Phys.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.BubblePhys (inherits [Phys — Serializable)
Physics of bubble-bubble interactions, for use with BubbleMat

Dmax (=NaN)

Maximum penetrationDepth of the bubbles before the force displacement curve changes to
an artificial exponential curve. Setting this value will have no effect. See Law2_ScGeom_ -
BubblePhys_Bubble::pctMaxForce for more information

static computeForce((float)argl, (float)arg2, (float)args, (int)args4, (float)args, (float)argé,
(float)arg?, (BubblePhys)arg8) — float :
Computes the normal force acting between the two interacting bubbles using the Newton-

Rhapson method

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical

indices.

dispIndex
Return class index of this instance.

fN(=NaN)
Contact normal force

newtonIter(=50)
Maximum number of force iterations allowed

newtonTol(=1e-6)
Convergence criteria for force iterations

normalForce (=Vector3r::Zero())
Normal force

2.3.

Yade wrapper class reference

187

Yade Documentation, Release 3rd ed.

rAvg(=NaN)
Average radius of the two interacting bubbles

surfaceTension(=NalN)
Surface tension of the surrounding liquid

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CapillaryPhys (inherits FrictPhys — NormShearPhys — NormPhys —

IPhys — Serializable)
Physics (of interaction) for Law2 ScGeom_ CapillaryPhys Capillarity.
Deltal(=0.)
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

Delta2(=0.)
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

capillaryPressure(=0.)
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law?2 parameter

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argl[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

£Cap (=Vector3r::Zero())
Capillary force produced by the presence of the meniscus. This is the force acting on particle

42

fusionNumber (=0.)
Indicates the number of meniscii that overlap with this one

isBroken (=false)
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

kn(=0)
Normal stiffness
ks (=0)

Shear stiffness

meniscus (=false)
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

nnl11(=0.)
JJAmini dS = [[, nan, dS, A being the liquid-gas surface of the meniscus, n the associated
normal, and (1,2,3) a local basis with 3 the meniscus orientation (ScGeom.normal). NB: A
=2 nnll + nn3s.

nn33(=0.)
If AMn3nz dS, A being the liquid-gas surface of the meniscus, n the associated normal, and
(1,2,3) a local basis with 3 the meniscus orientation (ScGeom.normal). NB: A = 2 nnll +
nn3s.

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

188

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vMeniscus (=0.)
Volume of the meniscus

class yade.wrapper.CohFrictPhys (inherits RotStiffFrictPhys — FrictPhys — NormShearPhys

— NormPhys — IPhys — Serializable)
An interaction physics that extends RotStiffFrictPhys adding a breakable cohesive nature. Used
e.g. by Law2_ScGeom6D__CohFrictPhys CohesionMoment.

cohesionBroken (=true)
is cohesion active? Set to false at the creation of a cohesive contact, and set to true when a
fragile contact is broken

cohesionDisablesFriction(=false)
is shear strength the sum of friction and adhesion or only adhesion?

creep_viscosity(=-1)
creep viscosity [Pa.s/m].

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fragile(=true)
do cohesion disappear when contact strength is exceeded?

initCohesion (=false)
Initialize the cohesive behaviour with current state as equilibrium state (same as Ip2 Co-
hErictMat_CohFrictMat_ CohFrictPhys::setCohesionNow but acting on only one interaction)
kn(=0)
Normal stiffness
kr(=0)
rotational stiffness [N.m/rad]
ks(=0)
Shear stiffness

ktw(=0)
twist stiffness [N.m/rad]

maxRol1P1(=0.0)
Coefficient of rolling friction (negative means elastic).

maxTwistP1l(=0.0)
Coefficient of twisting friction (negative means elastic).

momentRotationLaw (=false)
set from CohFrictMat::momentRotationLaw in order to possibly use bending/twisting moment
at contacts (if true). See Law2 ScGeom6D CohFrictPhys CohesionMoment::always use -
moment_law for details.

2.3.

Yade wrapper class reference 189

Yade Documentation, Release 3rd ed.

moment_bending (= Vector3r(0, 0, 0))
Bending moment

moment_twist (=Vector3r(0, 0, 0))
Twist moment

normalAdhesion(=0)
tensile strength

normalForce (= Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearAdhesion(=0)
cohesive part of the shear strength (a frictional term might be added depending on CohFrict-
Phys::cohesionDisablesFriction)

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangensO0fFrictionAngle (=NalN)
tan of angle of friction

unp (=0)
plastic normal displacement, only used for tensile behaviour and if CohFrictPhys::fragile
=false.

unpMax (=0)
maximum value of plastic normal displacement (counted positively), after that the interaction
breaks even if CohFrictPhys::fragile =false. A negative value (i.e. -1) means no maximum.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CpmPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)

Representation of a single interaction of the Cpm type: storage for relevant parameters.

Evolution of the contact is governed by Law2 ScGeom__ CpmPhys Cpm, that includes damage
effects and chages of parameters inside CpmPhys. See c¢pm-model for details.

E(=NaN)
normal modulus (stiffness / crossSection) [Pal

Fn
Magnitude of normal force (auto-updated)

Fs
Magnitude of shear force (auto-updated)

G(=NaN)
shear modulus [Pa]

crossSection(=NaN)
equivalent cross-section associated with this contact [m?]

cummBetaCount = 0
cummBetalter = 0

damLaw(=1)
Law for softening part of uniaxial tension. 0 for linear, 1 for exponential (default)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,

190

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

dmgOverstress(=0)
damage viscous overstress (at previous step or at current step)

dmgRateExp (=0)

exponent in the rate-dependent damage evolution
dmgStrain(=0)

damage strain (at previous or current step)

dmgTau(=-1)
characteristic time for damage (if non-positive, the law without rate-dependence is used)

epsCrackOnset (=NaN)
strain at which the material starts to behave non-linearly

epsFracture(=NalN)
strain at which the bond is fully broken [-]

epsN

Current normal strain (auto-updated)
epsNP1

normal plastic strain (initially zero) (auto-updated)
epsT

Current shear strain (auto-updated)

epsTP1
shear plastic strain (initially zero) (auto-updated)

equivStrainShearContrib(=NalN)
Coefficient of shear contribution to equivalent strain

static funcG((float)kappaD, (float)epsCrackOnset, (ﬂoat)epschture[,

(bool)neverDamage:False[, (mt)damLaw:J]]) — float :
Damage evolution law, evaluating the w parameter. kp is historically maximum strain, ep-
sCrackOnset (e0) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage). TODO

static funcGInv((float)omega, (float)epsCrackOnset, (ﬂoat)epschture[,

(bool)neverDamage:False[, (int)damLaw:I]]) — float :
Inversion of damage evolution law, evaluating the kp parameter. w is damage, for other
parameters see funcG function

isCohesive (=false)
if not cohesive, interaction is deleted when distance is greater than zero.

isoPrestress(=0)
“prestress” of this link (used to simulate isotropic stress)

kappaD
Up to now maximum normal strain (semi-norm), non-decreasing in time (auto-updated)

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

neverDamage (=false)
the damage evolution function will always return virgin state

2.3.

Yade wrapper class reference 191

Yade Documentation, Release 3rd ed.

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

omega
Damage internal variable (auto-updated)

plRateExp (=0)
exponent in the rate-dependent viscoplasticity

plTau(=-1)
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

refLength(=NaN)
initial length of interaction [m]

refPD(=NalN)
initial penetration depth of interaction [m] (used with ScGeom)

relDuctility(=NaN)
Relative ductility of bonds in normal direction

relResidualStrength
Relative residual strength (auto-updated)

setDamage ((CpmPhys)argl, (float)arg2) — None :
TODO

setRelResidualStrength((CpmPhys)argl, (float)arg2) — None :
TODO

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

sigmaN
Current normal stress (auto-updated)

sigmaT
Current shear stress (auto-updated)

tanFrictionAngle (=NaN)
tangens of internal friction angle [-]

undamagedCohesion(=NaN)
virgin material cohesion [Pa]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FrictPhys (inherits NormShearPhys — NormPhys — [Phys — Serializable)
The simple linear elastic-plastic interaction with friction angle, like in the traditional
[CundallStrack1979]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

192 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ks (=0)
Shear stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FrictViscoPhys (inherits FrictPhys — NormShearPhys — NormPhys —
IPhys — Serializable)
Representation of a single interaction of the FrictViscoPM type, storage for relevant parameters
cn(=NaN)
Normal viscous constant defined as N = cn critPn-

cn_crit(=NaN)
Normal viscous constant for ctitical damping defined as n = Cy critPn-

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalViscous (= Vector3r::Zero())

Normal viscous component

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangensO0fFrictionAngle(=NalN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.InelastCohFrictPhys (inherits RotStiffFrictPhys — FrictPhys — Norm.S-
hearPhys — NormPhys — I[Phys — Serializable)

cohesionBroken (=false)
is cohesion active? will be set false when a fragile contact is broken

2.3. Yade wrapper class reference 193

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys}argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

isBroken (=false)
true if compression plastic fracture achieved

kDam(=0)
Damage coefficient on bending, computed from maximum bending moment reached and pure
creep behaviour. Its values will vary between InelastCohFrictPhys::kr and InelastCohFrict-
Phys::kRCrp .

kRCrp (=0.0)
Bending creep stiffness

kRUnld (=0.0)
Bending plastic unload stiffness

kTCrp (=0.0)
Tension/compression creep stiffness

kTUnld(=0.0)
Tension/compression plastic unload stiffness

kTwCrp(=0.0)
Twist creep stiffness

kTwUnld (=0.0)
Twist plastic unload stiffness

kn(=0)
Normal stiffness

knC(=0)

compression stiffness
knT(=0)

tension stiffness
kr(=0)

rotational stiffness [N.m/rad]
ks(=0)

shear stiffness

ktw(=0)
twist stiffness [N.m/rad|

maxBendMom (=0.0)
Plastic failure bending moment.

maxContract (=0.0)
Plastic failure contraction (shrinkage).

maxCrpRchdB (=Vector3r(0, 0, 0))
maximal bending moment reached on plastic deformation.

maxCrpRchdC (= Vector2r(0, 0))
maximal compression reached on plastic deformation. maxCrpRchdC[0] stores un and max-
CrpRchdC[1] stores Fn.

194

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

maxCrpRchdT (= Vector2r(0, 0))
maximal extension reached on plastic deformation. maxCrpRchdT[0] stores un and maxCr-
pRchdT(1] stores Fn.

maxCrpRchdTw (= Vector2r(0, 0))
maximal twist reached on plastic deformation. maxCrpRchdTw[0] stores twist angle and
maxCrpRchdTw(1] stores twist moment.

maxE1B(=0.0)
Maximum bending elastic moment.

maxE1C(=0.0)
Maximum compression elastic force.

maxE1T(=0.0)
Maximum tension elastic force.

maxE1Tw(=0.0)
Maximum twist elastic moment.

maxExten(=0.0)
Plastic failure extension (stretching).

maxTwist (=0.0)
Plastic failure twist angle

moment_bending (= Vectorsr(0, 0, 0))
Bending moment

moment_twist (=Vector3r(0, 0, 0))
Twist moment

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

onPlastB(=false)

true if plasticity achieved on bending

onPlastC(=false)
true if plasticity achieved on compression

onPlastT(=false)
true if plasticity achieved on traction

onPlastTw(=false)
true if plasticity achieved on twisting
pureCreep (= Vector3r(0, 0, 0))

Pure creep curve, used for comparison in calculation.

shearAdhesion(=0)
Maximum elastic shear force (cohesion).

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).
tangens0fFrictionAngle (=NalN)
tan of angle of friction
twp(=0)
plastic twist penetration depth describing the equilibrium state.
unp (=0)
plastic normal penetration depth describing the equilibrium state.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3.

Yade wrapper class reference 195

Yade Documentation, Release 3rd ed.

class yade.wrapper.JCFpmPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)
Representation of a single interaction of the JCFpm type, storage for relevant parameters

FnMax (=0.)
positiv value computed from tensile strength (or joint variant) to define the maximum admis-
sible normal force in traction: Fn >= -FnMax. [N]

FsMax (=0.)
computed from cohesion (or jointCohesion) to define the maximum admissible tangential force
in shear, for Fn=0. [N]

checkedForCluster (=false)
Have we checked if this int belongs in cluster?

clusterInts (=uninitalized)
vector of pointers to the broken interactions nearby constituting a cluster

clusteredEvent (=false)
is this interaction part of a cluster?

computedCentroid (=false)
Flag for moment calculation

crackJointAperture(=0.)
Relative displacement between 2 spheres (in case of a crack it is equivalent of the crack
aperture)

crossSection(=0.)
crossSection=pi*Rmin"2. [m2]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dilation(=0.)
defines the normal displacement in the joint after sliding treshold. [m]

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

elapsedIter(=0)
number of elapsed iterations for moment calculation

eventBeginTime (=0)
The time at which event initiated

eventNumber (=0)
cluster event number

firstMomentCalc (=true)
Flag for moment calculation (auto-updated)

initD(=0.)
equilibrium distance for interacting particles. Computed as the interparticular distance at
first contact detection.

interactionsAdded (=false)
have we added the ints associated with this event?

isBroken (=false)
flag for broken interactions

196 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

isCohesive (=false)
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensile strength (or their jointed variants).

isOnJoint (=false)
defined as true when both interacting particles are on joint and are in opposite sides of the
joint surface. In this case, mechanical parameters of the interaction are derived from the
“joint...”” material properties of the particles. Furthermore, the normal of the interaction may
be re-oriented (see Law2 ScGeom_JCFpmPhys JointedCohesiveFrictional PM.smoothJoint).

isOnSlot (=false)
defined as true when interaction is located in the perforation slot (surface).

jointCumulativeSliding(=0.)
sliding distance for particles interacting on a joint. Used, when is true, to take into account
dilatancy due to shearing. [-]

jointNormal (= Vector3r::Zero())
normal direction to the joint, deduced from e.g. .

kineticEnergy(=0)
kinetic energy of the two spheres participating in the interaction (easiest to store this value
with interaction instead of spheres since we are using this information for moment magnitude
estimations and associated interaction searches)

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

momentBroken (=false)
Flag for moment calculation

momentCalculated (=false)
Flag for moment calculation to avoid repeating twice the operations (auto-updated)

momentCentroid (= Vector3r::Zero())
centroid of the AE event (avg location of clustered breaks)

momentEnergy (=0)
reference strain (or kinetic) energy of surrounding interactions (particles)

momentEnergyChange (=0)
storage of the maximum strain (or kinetic) energy change for surrounding interactions (par-
ticles)

momentMagnitude (=0)
Moment magnitude of a failed interaction

more (=false)
specifies if the interaction is crossed by more than 3 joints. If true, interaction is deleted
(temporary solution).

nearbyFound (=0)

Count used to debug moment calc

nearbyInts (=uninitalized)
vector of pointers to the nearby ints used for moment calc

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

originalClusterEvent (=false)
the original AE event for a cluster

2.3.

Yade wrapper class reference 197

Yade Documentation, Release 3rd ed.

originalEvent (=uninitalized)
pointer to the original interaction of a cluster

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

strainEnergy(=0)
strain energy of interaction

tanDilationAngle(=0.)
tangent of the angle defining the dilatancy of the joint surface (auto. computed from JCFp-
mMat.jointDilationAngle). [-]

tanFrictionAngle (=0.)
tangent of Coulomb friction angle for this interaction (auto. computed). [-]

temporalWindow (=0)
temporal window for the clustering algorithm

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.KnKsPBPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys
— Serializable)
EXPERIMENTAL. IPhys for PotentialBlock.
cohesion(=0.0)
Cohesion (stress units)

cohesionBroken (=true)
Whether cohesion is already broken. Considered true for particles with isBoundary=True

contactArea(=0.0)
Contact area (auto-updated)

cumulative_us(=0.0)
Cumulative translation

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

effective_phi(=0.0)
Friction angle in clay after displacement

frictionAngle (=0.0)
Friction angle

initialShearDir (=Vector3r::Zero())
Initial shear direction

intactRock (=false)
Whether to consider cohesive force in the Mohr-Coulomb criterion, if allowBreakage=False
and cohesionBroken=False

isSliding(=false)
Check if the contact is sliding (useful to calculate the ratio of sliding contacts)

jointLength(=1.0)
Approximated contact length

198 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

jointType (=0

jointType
kn(=0)

Normal stiffness
knVol (=0.0)

Volumetric normal stiffness = Knormal
kn_i(=5.0)

initial normal stiffness, user must provide input during initialisation
ks (=0)

Shear stiffness
ksVol (=0.0)

Volumetric shear stiffness = Kshear
ks_i(=5.0)

initial shear stiffness, user must provide input during initialisation

mobilizedShear (=uninitalized)
Percentage of mobilized shear force as the ratio of the current shear force to the current
frictional limit. Represents a quantified measure of the isSliding parameter

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalViscous (= Vector3r::Zero())

Viscous normal force

phi_b(=0.0)
Basic friction angle (degrees)

phi_r(=0.0)
Residual friction angle (degrees)

prevNormal (=Vector3r::Zero())
Previous contact normal

prevSigma(=0.0)
Previous normal stress

ptOnP1(=Vector3r::Zero())
Point on particle 1

ptOnP2 (=Vectorsr::Zero())
Point on particle 2

shearDir (= Vector3r::Zero())
Shear direction

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearIncrementForCD(=0.0)
toSeeWhether it is necessary to update contactArea

shearViscous (=Vector3r::Zero())
Viscous shear force (assumed zero at the moment)

smallerID(=1)
id of particle with smaller plane

tangensO0fFrictionAngle (=NalN)
tan of angle of friction

Yade wrapper class reference 199

Yade Documentation, Release 3rd ed.

tension(=0.0)
Tension (stress units)

tensionBroken (=true)
Whether tension is already broken. Considered true for particles with isBoundary=True

u_cumulative (=0.0)
Cumulative translation

u_elastic(=0.0)
Elastic shear displacement, not fully in use

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

useFaceProperties (=false)
Whether to get face properties from the intersecting particles

viscousDamping (=0.0)
Viscous damping

warmstart (=false)
Warmstart for SOCP, not fully in use

class yade.wrapper.KnKsPhys (inherits FrictPhys — NormShearPhys — NormPhys — [Phys —
Serializable)
EXPERIMENTAL. IPhys for PotentialParticle.
brittleLength(=5.0)
Shear length where strength degrades, not fully in use

cohesion(=0.0)
Cohesion

cohesionBroken (=true)
Whether cohesion is already broken. Considered true for particles with isBoundary=True

contactArea(=0.0)
Contact area (auto-updated)

cumulative_us(=0.0)
Cumulative shear translation (not fully in use)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

effective_phi(=0.0)
Friction angle in clay after displacement

frictionAngle (=0.0)
Friction angle

initialShearDir (=Vectordr::Zero())
Initial shear direction

intactRock (=false)
Whether to consider cohesive force in the Mohr-Coulomb criterion, if allowBreakage=False
and cohesionBroken=False.

isSliding(=false)
Check if the contact is sliding (useful to calculate the ratio of sliding contacts)

200 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

jointLength(=1.0)
Approximated contact length
jointType (=0)
jointType
kn(=0)
Normal stiffness

knVol (=0.0)
Volumetric normal stiffness = Knormal

kn_i(=5.0)
Currently, we assume kn_ i and Knormal are adopting the same value in Ip2 initialisation

ks (=0)
Shear stiffness

ksVol(=0.0)
Volumetric shear stiffness = Kshear

ks_i(=5.0)
Currently, we assume ks_ i and Kshear are adopting the same value in Ip2 initialisation

maxClosure (=0.0002)
not fully in use, vmi

mobilizedShear (=uninitalized)
Percentage of mobilized shear force as the ratio of the current shear force to the current
frictional limit. Represents a quantified measure of the isSliding parameter

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalViscous (= Vector3r::Zero())
Viscous normal force

phi_b(=0.0)
Basic friction angle (degrees)

phi_r(=0.0)
Residual friction angle (degrees)

prevNormal (=Vector3r::Zero())
Previous normal

prevSigma(=0.0)
Previous normal stress

ptOnP1(=Vector3r::Zero())
Point on particle 1

ptOnP2 (=Vectorsr::Zero())
Point on particle 2

shearDir (= Vector3r::Zero())
Shear direction

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearIncrementForCD(=0.0)
toSeeWhether it is necessary to update contactArea

shearViscous (=Vector3r::Zero())
Viscous shear force (assumed zero at the moment)

2.3.

Yade wrapper class reference 201

Yade Documentation, Release 3rd ed.

tangensO0fFrictionAngle(=NalN)
tan of angle of friction

tension(=0.0)
Tension

tensionBroken (=true)
Whether tension is already broken. Considered true for particles with isBoundary=True

u_cumulative (=0.0)
Cumulative translation

u_elastic(=0.0)
Elastic shear displacement, not fully in use

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

useFaceProperties (=false)
Whether to get face properties from the intersecting particles

viscousDamping(=0.0)
Viscous damping

warmstart (=false)
Warmstart for SOCP, not fully in use

class yade.wrapper.LubricationPhys (inherits ViscElIPhys — FrictPhys — NormShearPhys —

NormPhys — IPhys — Serializable)
IPhys class for Lubrication w/o FlowEngine. Used by Law2_ScGeom_ ImplicitLubricationPhys.

Fn(=0.0)

Normal force of the contact
Fv(=0.0)

Viscous force of the contact
a(=0.)

Mean radius [m]
cn(=NaN)

Normal viscous constant

contact (=false)
The spheres are in contact

cs(=NaN)
Shear viscous constant

delta(=0)
log(u) - used for scheme with & = log(u) variable change

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

eps (=0.001)
Roughness: fraction of radius used as roughness [-]

eta(=1)
Fluid viscosity [Pa.s]

202

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

keps(=1)
stiffness coefficient of the asperities [N/m]. Only used with resolution method=0, with reso-
lution>0 it is always equal to kn.

kn(=0)
Normal stiffness

kno (=0.0)
Coefficient for normal stiffness (Hertzian-like contact) [N/m™(3/2)]

ks(=0)
Shear stiffness

mR(=0.0)
Rolling resistance, see [Zhoul9995306].

mRtype(=1)
Rolling resistance type, see [Zhoul999556]. mRtype=1 - equation (3) in [Zhoul999536];
mRtype=2 - equation (4) in [Zhou19995306]

mum (=0.3)
Friction coefficient [-]

normalContactForce (= Vector3r::Zero())
Normal contact force [N]

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalLubricationForce (= Vector3r::Zero())
Normal lubrication force [N]

normalPotentialForce (=Vector3r::Zero())
Normal force from potential other than contact [N]

nun (=0.0)
Coefficient for normal lubrication [N.s]

prevDotU(=0)
du/dt from previous integration - used for trapezoidal scheme (see Law2_ScGeom__Implic-
itLubricationPhys::resolution for choosing resolution scheme)

prev_un(=0)
Nondeformed distance (un) at t-dt [m]

shearContactForce (= Vectordr::Zero())
Frictional contact force [N]

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearLubricationForce (=Vectordr::Zero())
Shear lubrication force [N]

slip(=false)
The contact is slipping

tangensO0fFrictionAngle (=NalN)
tan of angle of friction

u(=-1)
Interfacial distance (u) at t-dt [m]
ue(=0.)

Surface deflection (ue) at t-dt [m]

2.3.

Yade wrapper class reference 203

Yade Documentation, Release 3rd ed.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.LudingPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys

— Serializable)
IPhys created from LudingMat, for use with Law?2 ScGeom LudingPhys Basic.

DeltMax(=NalN)
Maximum overlap between particles for a collision

DeltMin(=NaN)
MinimalDelta value of delta

DeltNull(=NaN)
Force free overlap, plastic contact deformation

DeltPMax(=NaN)
Maximum overlap between particles for the limit case

DeltPNull(=NaN)
Max force free overlap, plastic contact deformation

DeltPrev(=NaN)
Previous value of delta

GO(=NaN)

Viscous damping
PhiF(=NaN)

Dimensionless plasticity depth

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

k1(=NaN)
Slope of loading plastic branch

k2(=NaN)
Slope of unloading and reloading elastic branch

kc(=NaN)
Slope of irreversible, tensile adhesive branch

kn(=0)
Normal stiffness
kp(=NaN)
Slope of unloading and reloading limit elastic branch

ks (=0)
Shear stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (= VectorSr::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

204

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

tangensO0fFrictionAngle(=NalN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.MindlinCapillaryPhys (inherits MindlinPhys — RotStiffFrictPhys —
FrictPhys — NormShearPhys — NormPhys —

IPhys — Serializable)
Adds capillary physics to Mindlin’s interaction physics.

Deltal(=0.)
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

Delta2(=0.)
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

Fs(=Vector2r::Zero())
Shear force in local axes (computed incrementally)

adhesionForce (=0.0)
Force of adhesion as predicted by DMT

alpha(=0.0)
Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to =—<n

Cn,crit :

betas(=0.0)

Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to
Cs
Cs,crit :

capillaryPressure(=0.)
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law?2 parameter

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:TTue]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

£Cap (=Vector3r::Zero())
Capillary Force produces by the presence of the meniscus. This is the force acting on particle

#2
fusionNumber (=0.)

Indicates the number of meniscii that overlap with this one
initD(=0)

initial penetration distance, used for crackaperture estimate

isAdhesive (=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isBroken (=false)

Might be set to true by the user to make liquid bridge inactive (capillary force is zero)
isSliding(=false)

check if the contact is sliding (useful to calculate the ratio of sliding contacts)

2.3. Yade wrapper class reference 205

Yade Documentation, Release 3rd ed.

kn(=0)
Normal stiffness
kno (=0.0)
Constant value in the formulation of the normal stiffness
kr(=0)
rotational stiffness [N.m/rad]
ks (=0)
Shear stiffness
kso (=0.0)

Constant value in the formulation of the tangential stiffness

ktw(=0)
twist stiffness [N.m/rad]

maxBendP1 (=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

meniscus (=false)
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

momentBend (=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist (=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalViscous (= Vector3r::Zero())

Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom__ FrictPhys HertzMindlin.

radius(=NaN)
Contact radius (only computed with Law2 ScGeom_MindlinPhys Mindlin::calcEnergy)
shearElastic(=Vector3r::Zero())

Total elastic shear force

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearViscous (=Vector3r::Zero())
Shear viscous component

tangensOfFrictionAngle (=NaN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal (=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

vMeniscus (=0.)
Volume of the meniscus

206

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.MindlinPhys (inherits RotStiffFrictPhys — FrictPhys — NormShearPhys

— NormPhys — IPhys — Serializable)
Representation of an interaction of the Hertz-Mindlin type.

Fs(=Vector2r::Zero())
Shear force in local axes (computed incrementally)

adhesionForce (=0.0)
Force of adhesion as predicted by DMT

alpha(=0.0)
Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to ===

Cn,crit :
betas(=0.0)

Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to
Cs
Cs‘crit :

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

initD(=0)
initial penetration distance, used for crackaperture estimate

isAdhesive (=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isBroken(=0)
bool to keep a bond flagged as broken (only useful when displacement criteria is used in partial
sat for cracked cell estimates)

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

kn(=0)
Normal stiffness
kno (=0.0)
Constant value in the formulation of the normal stiffness
kr(=0)
rotational stiffness [N.m/rad]
ks (=0)
Shear stiffness
kso(=0.0)

Constant value in the formulation of the tangential stiffness

ktw(=0)
twist stiffness [N.m/rad]

maxBendP1 (=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

2.3. Yade wrapper class reference 207

Yade Documentation, Release 3rd ed.

momentBend (=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist (=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalViscous (= Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom_ FrictPhys HertzMindlin.

radius (=NalN)
Contact radius (only computed with Law2 ScGeom_ MindlinPhys Mindlin::calcEnergy)

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearViscous (= Vector3r::Zero())
Shear viscous component

tangensO0fFrictionAngle (=NaN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal (=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.MindlinPhysCDM (inherits MindlinPhys — RotStiffFrictPhys — FrictPhys
— NormShearPhys — NormPhys — IPhys — Serializ-
able)
Representation of an interaction of an extended Hertz-Mindlin type. Normal direction: parame-

ters for Conical Damage Model (Harkness et al. 2016, Suhr & Six 2017). Tangential direction:
parameters for stress dependent interparticle friction coefficient (Suhr & Six 2016). Both models
can be switched on/off separately, see FrictMatCDM.

E(=0.0)
[Pa] equiv. Young’s modulus

Fs(=Vector2r::Zero())
Shear force in local axes (computed incrementally)

G(=0.00
[Pa] equiv. shear modulus

R(=0.0)

[m] contact radius in conical damage model

adhesionForce (=0.0)
Force of adhesion as predicted by DMT

alpha(=0.0)
Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

208 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

alphaFac(=0.0)
factor considering angle of conical asperities

betan(=0.0)
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to —=<n

Cn,erit’
betas(=0.0)

Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to
Cs
Cs,r:r'lt !

c1(=0.0)
[-] parameter of pressure dependent friction model c1

c2(=0.0)
[-] parameter of pressure dependent friction model c¢2

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

initD(=0)
initial penetration distance, used for crackaperture estimate

isAdhesive (=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isBroken(=0)
bool to keep a bond flagged as broken (only useful when displacement criteria is used in partial
sat for cracked cell estimates)

isSliding(=false)

check if the contact is sliding (useful to calculate the ratio of sliding contacts)
isYielding(=false)

bool: is contact currently yielding?
kn(=0)

Normal stiffness
kno (=0.0)

Constant value in the formulation of the normal stiffness
kr(=0)

rotational stiffness [N.m/rad]
ks(=0)

Shear stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0)
twist stiffness [N.m/rad]

maxBendP1 (=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

momentBend (=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

2.3.

Yade wrapper class reference 209

Yade Documentation, Release 3rd ed.

momentTwist (=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

mu0 (=0.0)
[-] parameter of pressure dependent friction model mu0

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

normalViscous (= Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom__ FrictPhys HertzMindlin.

radius (=NaN)
Contact radius (only computed with Law2 ScGeom_ MindlinPhys Mindlin::calcEnergy)

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearViscous (=Vector3r::Zero())
Shear viscous component

sigmaMax (=0.0)
[Pa] max compressive strength of material

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal (=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.MortarPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys

— Serializable)
IPhys class containing parameters of MortarMat. Used by Law2_ ScGeom_ MortarPhys_ Lourenco.

cohesion(=NalN)
cohesion [Pa]

compressiveStrength(=NalN)
compressiveStrength [Pa)

crossSection(=NalN)
Crosssection of interaction

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg][7 (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

210 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ellAspect(=NalN)
aspect ratio of elliptical ‘cap’. Value >1 means the ellipse is longer along normal stress axis.

failureCondition((MortarPhys)argl, (float)arg2, (float)arg3) — bool :
Failure condition from normal stress and norm of shear stress (false=elastic, true=damaged)

kn(=0)
Normal stiffness
ks (=0)

Shear stiffness

neverDamage (=false)
If true, interactions remain elastic regardless stresses

normalForce (= Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

sigmaN

Current normal stress (auto-updated)
sigmaT

Current shear stress (auto-updated)

tangensOfFrictionAngle(=NaN)
tan of angle of friction

tensileStrength(=NaN)
tensileStrength [Pa]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.NormPhys (inherits IPhys — Serializable)

Abstract class for interactions that have normal stiffness.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.NormShearPhys (inherits NormPhys — IPhys — Serializable)

Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 211

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys}argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.PolyhedraPhys (inherits FrictPhys — NormShearPhys — NormPhys —
IPhys — Serializable)
Simple elastic material with friction for volumetric constitutive laws
dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argI[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (=VectorSr::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangensOfFrictionAngle (=NaN)

tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.RotStiffFrictPhys (inherits FrictPhys — NormShearPhys — NormPhys
— IPhys — Serializable)
Version of FrictPhys with a rotational stiffness
dict ((Serializable)argl) — dict :
Return dictionary of attributes.

212 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys}argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical

indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

kr(=0)
rotational stiffness [N.m/rad]

ks (=0)
Shear stiffness

ktw(=0)
twist stiffness [N.m/rad]

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from

particle #1).

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from

particle #1).

tangens0fFrictionAngle (=NalN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ViscElCapPhys (inherits ViscElIPhys — FrictPhys — NormShearPhys —

NormPhys — IPhys — Serializable)
IPhys created from ViscElCapMat, for use with Law2 ScGeom_ ViscElCapPhys Basic.

Capillar (=false)
True, if capillar forces need to be added.

CapillarType (=None_ Capillar)
Different types of capillar interaction: Willett_ numeric, Willett_ analytic, Weigert, Rabi-
novich, Lambert, Soulie

Fn(=0.0)
Normal force of the contact

Fv(=0.0)
Viscous force of the contact

Vb (=0.0)
Liquid bridge volume [m™3]

cn(=NaN)

Normal viscous constant

cs(=NaN)
Shear viscous constant

dcap(=0.0)
Damping coefficient for the capillary phase -]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,

2.3.

Yade wrapper class reference 213

Yade Documentation, Release 3rd ed.

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

gamma (=0.0)

Surface tension [N/m)]
kn(=0)

Normal stiffness
ks (=0)

Shear stiffness

ligBridgeActive(=false)
Whether liquid bridge is active at the moment

ligBridgeCreated (=false)
Whether liquid bridge was created, only after a normal contact of spheres
mR (=0.0)
Rolling resistance, see [Zhou1999536].
mRtype(=1)
Rolling resistance type, see [Zhoul999536]. mRtype=1 - equation (3) in [Zhoul999556];
mRtype=2 - equation (4) in [Zhoul999556]
normalForce (= Vector3r::Zero())

Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

sCrit (=false)
Critical bridge length [m]

shearForce (=Vector3r::Zero())

Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangens0fFrictionAngle (=NalN)
tan of angle of friction

theta(=0.0)
Contact angle [rad]

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ViscElPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys
— Serializable)
IPhys created from ViscElMat, for use with Law?2 ScGeom_ ViscEIPhys Basic.

Fn(=0.0)
Normal force of the contact

Fv(=0.0)
Viscous force of the contact

cn(=NaN)
Normal viscous constant

cs(=NaN)
Shear viscous constant

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

214 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dispHierarchy((IPhys}argZ[, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

mR(=0.0)
Rolling resistance, see [Zhoul999536].

mRtype (=1)
Rolling resistance type, see [Zhoul999536]. mRtype=1 - equation (3) in [Zhoul999536];
mRtype=2 - equation (4) in [Zhoul999556]

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

tangensO0fFrictionAngle (=NalN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ViscoFrictPhys (inherits FrictPhys — NormShearPhys — NormPhys —

IPhys — Serializable)
Temporary version of FrictPhys for compatibility reasons

creepedShear (= Vectorsr(0, 0, 0))
Creeped force (parallel)

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)arg][, (bool)names:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

normalForce (= Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

shearForce (= Vector3r::Zero())
Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

2.3. Yade wrapper class reference 215

Yade Documentation, Release 3rd ed.

tangensO0fFrictionAngle(=NalN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.WirePhys (inherits FrictPhys — NormShearPhys — NormPhys — [Phys —
Serializable)
Representation of a single interaction of the WirePM type, storage for relevant parameters
dL(=0.)
Additional wire length for considering the distortion for WireMat type=2 (see [Thoeni2013]).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

dispHierarchy((IPhys)argZ[, (bool)nameS:True]) — list :
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displForceValues (=uninitalized)
Defines the values for force-displacement curve.

initD(=0.)
Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

isDoubleTwist (=false)
If true the properties of the interaction will be defined as a double-twisted wire.

isLinked (=false)
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

isShifted (=false)
If true WireMat type=2 and the force-displacement curve will be shifted.

kn(=0)
Normal stiffness

ks (=0)
Shear stiffness

limitFactor(=0.)
This value indicates on how far from failing the wire is, e.g. actual normal displacement
divided by admissible normal displacement.

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

plastD
Plastic part of the inter-particular distance of the previous step.

Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
Z€ro.

216 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

shearForce (=Vector3r::Zero())

Shear force after previous step (in global coordinates), as sustained by particle #2 (from
particle #1).

stiffnessValues (=uninitalized)

Defines the values for the various stiffnesses (the elastic stiffness is stored as kn).

tangensO0fFrictionAngle (=NalN)
tan of angle of friction

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3.3 Global engines

GlobalEngine

InteractionLoop

Law2_ScGeom_CapillaryPhys_Capillarity

TimeStepper GlobalStiffnessTimeStepper ‘
RungeKuttaCashKarp54Integrator

! PeriodicEngine |
SpheresFactory CircularFactory
ElasticContactLaw

/
\

FacetTopologyAnalyzer

CohesiveFrictionalContactLaw ‘

I FieldApplier |

TetraVolumetricLaw

TesselationWrapper

FEInternalForceEngine

Fig. 2.25: Inheritance graph of GlobalEngine, gray dashed classes are discussed in their own sections:
Collider, PeriodicEngine, BoundaryController, FieldApplier. See also: BoxFuactory, CircularFactory, Co-
hesiweFrictionalContactLaw, ElasticContactLaw, FEInternalForceEngine, Facet TopologyAnalyzer, Foam-
Coupling, ForceResetter, GlobalStiffnessTimeStepper, HydrodynamicsLawLBM, Integrator, Interaction-
Loop, Law?2 ScGeom, CapillaryPhys _Capillarity, MicroMacroAnalyser, NewtonlIntegrator, RungeKut-
taCashKarpb4Integrator, SpheresFactory, Tesselation Wrapper, TetraVolumetricLaw, TimeStepper.

class yade.wrapper.GlobalEngine (inherits Engine — Serializable)
Engine that will generally affect the whole simulation (contrary to PartialEngine).

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

2.3. Yade wrapper class reference 217

Yade Documentation, Release 3rd ed.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.BoxFactory (inherits SpheresFactory — GlobalEngine — Engine — Serial-

izable)
Box geometry of the SpheresFactory region, given by extents and center

PSDcalculateMass (=true)
PSD-Input is in mass (true), otherwise the number of particles will be considered.

PSDcum (=uninitalized)
PSD-dispersion, cumulative procent meanings |-]

PSDsizes (=uninitalized)
PSD-dispersion, sizes of cells, Diameter [m]

blockedDOFs(="")
Blocked degress of freedom

center (=Vector3r(NaN, NaN, NaN))
Center of the region

color (=Vectorsr(-1, -1, -1))
Use the color for newly created particles, if specified

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes]i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

218 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

extents (= Vector3r(NaN, NaN, NaN))
Extents of the region

goalMass (=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids (=uninitalized)
ids of created bodies

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate (=NalN)
Mass flow rate [kg/s]

materialld(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt (=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass (=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal (=Vectordr(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel (= Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NalN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaNN)
Minimum radius of generated spheres (uniform distribution)

silent (=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

2.3.

Yade wrapper class reference 219

Yade Documentation, Release 3rd ed.

totalMass (=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume (=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vAngle (=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax (=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NalN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CircularFactory (inherits SpheresFactory — GlobalEngine — FEngine —

Serializable)
Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or

cylinder (given by radius, length and center).

PSDcalculateMass (=true)
PSD-Input is in mass (true), otherwise the number of particles will be considered.

PSDcum (=uninitalized)
PSD-dispersion, cumulative procent meanings -]

PSDsizes (=uninitalized)
PSD-dispersion, sizes of cells, Diameter [m]

blockedDOFs(="")
Blocked degress of freedom

center (=Vector3r(NaN, NaN, NaN))
Center of the region

color (=Vectorsr(-1, -1, -1))
Use the color for newly created particles, if specified

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes]i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

goalMass (=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids (=uninitalized)
ids of created bodies

220 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

length(=0)
Length of the cylindrical region (0 by default)

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NalN)
Mass flow rate [kg/s]

materialld(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt (=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass (=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal (=Vectordr(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel (= Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles (=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NalN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaNN)
Minimum radius of generated spheres (uniform distribution)

radius(=NaN)
Radius of the region

silent (=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass (=0)
Mass of spheres that was produced so far. (auto-updated)

2.3.

Yade wrapper class reference 221

Yade Documentation, Release 3rd ed.

totalVolume (=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vAngle (=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax(=NalN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CohesiveFrictionalContactLaw(inherits GlobalEngine — Engine — Se-

rializable)
[DEPRECATED)] Loop over interactions applying Law2 ScGeom6D __CohFrictPhys_CohesionMo-

ment on all interactions.

Note: Use InteractionLoop and Law2_ScGeom6D__CohFrictPhys CohesionMoment instead of
this class for performance reasons.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creep_viscosity(=false)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_ CohFrictMat_ -
CohFrictPhys...

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law?2 ScGeom CapillaryPhys Capillarity)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep viscosity.

222

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep viscosity.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ElasticContactLaw (inherits GlobalEngine — Engine — Serializable)
[DEPRECATED] Loop over interactions applying Law2 ScGeom_ FrictPhys CundallStrack on all
interactions.

Note: Use InteractionLoop and Law2_ScGeom_ FrictPhys CundallStrack instead of this class
for performance reasons.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2 ScGeom_ CapillaryPhys Capillarity)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FEInternalForceEngine (inherits GlobalEngine — Engine — Serializable)
Unified dispatcher for handling Finite Element internal force loop at every step, for parallel per-
formance reasons.

Special constructor

Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.

2.3. Yade wrapper class reference 223

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

internalforcedispatcher (=new InternalForceDispatcher)
InternalForceDispatcher object that is used for dispatching of element types.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FacetTopologyAnalyzer (inherits GlobalEngine — Engine — Serializable)

Initializer for filling adjacency geometry data for facets.

Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.

commonEdgesFound (=0)
how many common edges were identified during last run. (auto-updated)

commonVerticesFound (=0)
how many common vertices were identified during last run. (auto-updated)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

224

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

projectionAxis (= Vector3r::UnitX())
Axis along which to do the initial vertex sort

relTolerance(=1e-4)
maximum distance of ‘identical’ vertices, relative to minimum facet size

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FoamCoupling(inherits GlobalEngine — Engine — Serializable)

An engine for coupling Yade with the finite volume fluid solver OpenFOAM in parallel.
Requirements : Yade compiled with MPI libs, OpenFOAM-6 (openfoam is not required for
compilation).Yade is executed under MPI environment with OpenFOAM simultaneously,
and using MPI communication routines data is exchanged between the solvers.

1. Yade broadcasts the particle data -> position, velocity, ang-velocity, radius to all the
foam processes as in castParticle

2. In each foam process, particle is searched.Yade keeps a vector(cpp) of the rank of the openfoam
process containing that particular particle (FoamCoupling::procList), using updateProcList

3. In simple lagrangian point force coupling Yade recieves the particle hydrodynamic force
and torque from the openfoam process, the sender is identified from the vector FoamCou-
pling::procList. In the case of Gaussian interpolation, contribution from every process is summed
using function sumHydroForce . 4. The interval (substepping) is set automatically (FoamCou-
pling::dataExzchangelnterval) based on dtfoam/dtYade, calculated in function exchangeDeltaT

comm
Communicator to be used for MPI (converts mpidpy comm <-> c++ comm)

couplingModeParallel (=false)
set true if Yade-MPI is being used.

dataExchangeInterval
Number of iterations/substepping : for stability and to be in sync with fluid solver calculated
in exchangeDeltaT

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

eraseld((FoamCoupling)argl, (int)idToErase) — None :
remove a body from hydrodynamic force coupling

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.3.

Yade wrapper class reference 225

Yade Documentation, Release 3rd ed.

fluidDensity(=1)
fluidDensity

fluidDomains (=std::vector<Body::id_t>())
list of fluid domain bounding fictitious fluid bodies that has the fluid mesh bounds

foamDeltaT
timestep in openfoam solver from exchangeDeltaT

getFluidDomainBbox ((FoamCoupling)argl) — None :
get the fluid domain bounding boxes, called once during simulation initialization.

getIdList ((FoamCoupling)argl) — object :
get the ids of bodies in coupling

getNumBodies ((FoamCoupling)argl) — int :
get the number of bodies in the coupling

getRank ((FoamCoupling)argl) — None :
Initiallize MPI communicator for coupling. Should be called at the beginning of the script.
syref: initMPI <FoamCoupling::initMPI> Initializes the MPI environment.

insertBodyld((FoamCoupling)argl, (int)newld) — None :
insert a new body id for hydrodynamic force coupling

isGaussianInterp
switch for Gaussian interpolation of field varibles in openfoam. Uses sumHydroForce to obtain
hydrodynamic force

killMPI ((FoamCoupling)argl) — None :
Destroy MPI, to be called at the end of the simulation, from kilIMPI

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

numParticles(=1)
number of particles in coupling.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particleDensity(=1)
particle Density

setIdList ((FoamCoupling)argl, (object)bodyldlist) — None :
list of body ids in hydroForce coupling. (links to :yref: FoamCoupling::bodyList vector, used
to build particle data FoamCoupling::particleData. FoamCoupling::particleData contains the
particle pos, vel, angvel, radius and this is sent to foam.)

setNumParticles ((FoamCoupling)argl, (int)numparticles) — None :
number of particles in coupling

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ForceResetter (inherits GlobalEngine — Engine — Serializable)
Reset all forces stored in Scene::forces (0.forces in python). Typically, this is the first engine to

226 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.GlobalStiffnessTimeStepper (inherits TimeStepper — GlobalEngine —

Engine — Serializable)
An engine assigning the time-step as a fraction of the minimum eigen-period in the problem. The
derivation is detailed in the chapter on DEM formulation. The viscEl option enables to evaluate
the timestep in a similar way for the visco-elastic contact law Law2 ScGeom_ ViscEIPhys Basic,
more detail in GlobalStiffness Timestepper::viscEl.

active (=true)
is the engine active?

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defaultDt (=-1)
used as the initial value of the timestep (especially useful in the first steps when no contact
exist). If negative, it will be defined by wutils. PWaveTimeStep * GlobalStiffnessTimeStep-
per::timestepSafetyCoefficient

densityScaling(=false)
(auto-updated) don’t modify this value if you don’t plan to modify the scaling factor manually
for some bodies. In most cases, it is enough to set NewtonlIntegrator::densityScaling and let
this one be adjusted automatically.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.3.

Yade wrapper class reference 227

Yade Documentation, Release 3rd ed.

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxDt (=Mathr::MAX RFEAL)
if positive, used as max value of the timestep whatever the computed value

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

parallelMode (=false)
if parallelMode, dt is set to min of all subdomain dt.

previousDt (=Mathr::MAX_REAL)
last computed dt (auto-updated)

targetDt(=1)
if NewtonlIntegrator::densiltyScaling is active, this value will be used as the simulation timestep
and the scaling will use this value of dt as the target value. The value of targetDt is arbitrary
and should have no effect in the result in general. However if some bodies have imposed
velocities, for instance, they will move more or less per each step depending on this value.

timeStepUpdatelInterval(=1)
dt update interval

timestepSafetyCoefficient (=0.8)
safety factor between the minimum eigen-period and the final assigned dt (less than 1)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

viscEl (=false)
To use with ViscElPhys. if True, evaluate separetly the minimum eigen-period in the problem
considering only the elastic contribution on one hand (spring only), and only the viscous
contribution on the other hand (dashpot only). Take then the minimum of the two and
use the safety coefficient GlobalStiffnessTimestepper::timestepSafetyCoefficient to take into
account the possible coupling between the two contribution.

class yade.wrapper.HydrodynamicsLawLBM (inherits GlobalEngine — Engine — Serializable)

Engine to simulate fluid flow (with the lattice Boltzmann method) with a coupling with the discrete
element method. If you use this Engine, please cite and refer to F. Lominé et al. International
Journal For Numerical and Analytical Method in Geomechanics, 2012, doi: 10.1002/nag.1109

ConvergenceThreshold (=0.000001)

CstBodyForce (=Vector3r::Zero())
A constant body force (=that does not vary in time or space, otherwise the implementation
introduces errors)

DemIterLbmIterRatio(=-1)
Ratio between DEM and LBM iterations for subcycling

228

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

EndTime (=-1)
the time to stop the simulation

EngineIsActivated(=true)
To activate (or not) the engine

IterMax(=1)
This variable can be used to do several LBM iterations during one DEM iteration.

IterPrint(=1)
Print info on screen every IterPrint iterations

IterSave(=100)
Data are saved every IterSave LBM iteration (or see TimeSave)

IterSubCyclingStart (=-1)
Iteration number when the subcycling process starts

LBMSavedData(=" ")
a list of data that will be saved. Can use veloc-
ity,velXY forces,rho,bodies,nodeBD newNode,observedptc,observednode,contacts,spheres,bz2

Nu(=0.000001)
Fluid kinematic viscosity

Nx(=1000)
The number of grid division in x direction

ObservedNode (=-1)
The identifier of the node that will be observed (-1 means none)

ObservedPtc(=-1)
The identifier of the particle that will be observed (-1 means the first one)

RadFactor(=1.0)
The radius of DEM particules seen by the LBM is the real radius of particules*RadFactor

Rho (=1000.)
Fluid density

SaveGridRatio(=1)
Grid data are saved every SaveGridRatio * IterSave LBM iteration (with SaveMode=1)

SaveMode (=1)
Save Mode (1-> default, 2-> in time (not yet implemented)

TimeSave (=-1)
Data are saved at constant time interval (or see IterSave)

VbCutOff (=-1)
the minimum boundary velocity that is taken into account

VelocityThreshold(=-1.)
Velocity threshold when removingCriterion=2

WallXm_id(=2)
Identifier of the X- wall

WallXp_id(=3)
Identifier of the X+ wall

WallYm_id(=0)
Identifier of the Y- wall

WallYp_id(=1)
Identifier of the Y+ wall

WallZm_id(=4)
Identifier of the Z- wall

2.3. Yade wrapper class reference 229

Yade Documentation, Release 3rd ed.

WallZp_id(=5)
Identifier of the Z+ wall

XmBCType (=1)
Boundary condition for the wall in Xm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

XmBcRho (=-1)
(" not fully implemented !!) The density imposed at the boundary

XmBcVel (=Vector3r::Zero())
(" not fully implemented !!) The velocity imposed at the boundary

XmYmZmBCType (=-1)
Boundary condition for the corner node XmYmZm (not used with d2q9, -1: unused, 1: pres-
sure condition, 2: velocity condition).

XmYmZpBCType (=2)
Boundary condition for the corner node XmYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

XmYpZmBCType (=-1)
Boundary condition for the corner node XmYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

XmYpZpBCType (=2)
Boundary condition for the corner node XmYpZp (-1: unused, 1: pressure condition, 2:
velocity condition).

XpBCType (=1)
Boundary condition for the wall in Xp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

XpBcRho (=-1)
(" not fully implemented !!) The density imposed at the boundary

XpBcVel (=Vector3r::Zero())
(' not fully implemented !!) The velocity imposed at the boundary

XpYmZmBCType (=-1)
Boundary condition for the corner node XpYmZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

XpYmZpBCType (=2)
Boundary condition for the corner node XpYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

XpYpZmBCType (=-1)
Boundary condition for the corner node XpYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

XpYpZpBCType (=2)
Boundary condition for the corner node XpYpZp (-1: unused, 1: pressure condition, 2: velocity
condition).

YmBCType (=2)
Boundary condition for the wall in Ym (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

YmBcRho (=-1)
(" not fully implemented !!) The density imposed at the boundary

YmBcVel (=Vector3r::Zero())
(" not fully implemented !!) The velocity imposed at the boundary

230

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

YpBCType (=2)
Boundary condition for the wall in Yp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

YpBcRho (=-1)
(" not fully implemented !!) The density imposed at the boundary

YpBcVel (=Vector3r::Zero())
(" not fully implemented !') The velocity imposed at the boundary

ZmBCType (=-1)
Boundary condition for the wall in Zm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

ZmBcRho (=-1)
(" not fully implemented !!) The density imposed at the boundary

ZmBcVel (= Vector3r::Zero())
(! not fully implemented !!) The velocity imposed at the boundary

ZpBCType (=-1)
Boundary condition for the wall in Zp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

ZpBcVel (= Vector3r::Zero())
("M not fully implemented !!) The velocity imposed at the boundary

applyForcesAndTorques (=true)
Switch to apply forces and torques

bC (— »” }})
Boundary condition

dP (=Vector3r(0., 0., 0.))
Pressure difference between input and output

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defaultLbmInitMode (=0)
Switch between the two initialisation methods

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

model (="d2q97)
The LB model. Until now only d2q9 is implemented

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 231

Yade Documentation, Release 3rd ed.

periodicity(=" ")
periodicity

removingCriterion(=0)
Criterion to remove a sphere (1->based on particle position, 2->based on particle velocity

tau(=0.6)
Relaxation time

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

useWallXm(=false)
Set true if you want that the LBM see the wall in Xm

useWallXp(=false)
Set true if you want that the LBM see the wall in Xp

useWallYm(=true)
Set true if you want that the LBM see the wall in Ym

useWallYp (=true)
Set true if you want that the LBM see the wall in Yp

useWallZm(=false)
Set true if you want that the LBM see the wall in Zm

useWallZp (=false)
Set true if you want that the LBM see the wall in Zp

zpBcRho (=-1)
(" not fully implemented !!) The density imposed at the boundary

class yade.wrapper.Integrator (inherits TimeStepper — GlobalEngine — Engine — Serializ-

able)
Integration Engine Interface.

active (=true)
is the engine active?

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

integrationsteps (=uninitalized)
all integrationsteps count as all succesfull substeps

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocitySq(=Nal)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

232 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

timeStepUpdatelInterval(=1)
dt update interval

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.InteractionLoop (inherits GlobalEngine — Engine — Serializable)
Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.

Special constructor

Constructs from 3 lists of g2, Ip2, Law2 functors respectively; they will be passed to internal dis-
patchers, which you might retrieve as geomDispatcher, physDispatcher, lawDispatcher respectively.

callbacks (=uninitalized)
Callbacks which will be called for every Interaction, if activated.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

geomDispatcher (=new IGeomDispatcher)
IGeomDispatcher object that is used for dispatch.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lawDispatcher (=new LawDispatcher)
LawDispatcher object used for dispatch.

loopOnSortedInteractions (=false)
If true, the main interaction loop will occur on a sorted list of interactions. This is SLOW
but useful to workaround floating point force addition non reproducibility when debugging
parallel implementations of yade.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can

2.3. Yade wrapper class reference 233

Yade Documentation, Release 3rd ed.

depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

physDispatcher (=new IPhysDispatcher)
IPhysDispatcher object used for dispatch.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CapillaryPhys_Capillarity(inherits GlobalEngine — FEn-

gine — Serializable)
This law allows one to take into account capillary forces/effects between spheres coming from the
presence of interparticular liquid bridges (menisci).

The control parameter is the capillary pressure (or suction) Uc = Ugas - Uliquid. Liquid bridges
properties (volume V, extent over interacting grains deltal and delta2) are computed as a result
of the defined capillary pressure and of the interacting geometry (spheres radii and interparticular
distance).

References: in english [Scholtes2009b]; more detailed, but in french /Scholtes2009d).

The law needs ascii files M(r=i) with i=R1/R2 to work (see https://yade-dem.org/wiki/
CapillaryTriaxial Test). These ASCII files contain a set of results from the resolution of the Laplace-
Young equation for different configurations of the interacting geometry, assuming a null wetting
angle.

In order to allow capillary forces between distant spheres, it is necessary to enlarge the bounding
boxes using Bol Sphere_Aabb::aabbEnlargeFactor and make the Ig2 define define distant inter-
actions via interactionDetectionFactor. It is also necessary to disable interactions removal by the
constitutive law (Law2). The only combinations of laws supported are currently capillary law
4+ Law2_ScGeom__ FrictPhys CundallStrack and capillary law + Law2 ScGeom MindlinPhys -
Mindlin (and the other variants of Hertz-Mindlin).

See CapillaryPhys-example.py for an example script.

binaryFusion(=true)
If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected.
Otherwise fCap = fCap / (fusionNumber + 1)

capillaryPressure(=0.)
Value of the capillary pressure Uc defined as Uc=Ugas-Uliquid

createDistantMeniscii(=false)
Generate meniscii between distant spheres? Else only maintain the existing ones. For modeling
a wetting path this flag should always be false. For a drying path it should be true for one
step (initialization) then false, as in the logic of [Scholtes2009¢]

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

234

Chapter 2. Yade for users

https://yade-dem.org/wiki/CapillaryTriaxialTest
https://yade-dem.org/wiki/CapillaryTriaxialTest

Yade Documentation, Release 3rd ed.

fusionDetection(=false)
If true potential menisci overlaps are checked, computing fusionNumber for each capillary
interaction, and reducing fCap according to binaryFusion

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

suffCapFiles(="")
Capillary files suffix: M(r=X)suffCapFiles

surfaceTension(=0.07%)
Value of considered surface tension

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.MicroMacroAnalyser (inherits GlobalEngine — Engine — Serializable)

compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.

compDeformation (=false)
Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

compIncrt (=false)
Should increments of force and displacements be defined on [n,n+1]? If not, states will be
saved with only positions and forces (no displacements).

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

incrtNumber (=1)

interval(=100)
Number of timesteps between analyzed states.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nonSphereAsFictious (=true)
bodies that are not spheres will be used to defines bounds (else just skipped).

2.3.

Yade wrapper class reference 235

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

outputFile (="MicroMacroAnalysis”)
Base name for increment analysis output file.

stateFileName (="state”)
Base name of state files.

stateNumber (=0)
A number incremented and appended at the end of output files to reflect increment number.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.NewtonIntegrator (inherits GlobalEngine — Engine — Serializable)

Engine integrating newtonian motion equations.

dampGravity (=true)
By default, numerical damping applies to ALL forces, even gravity. If this option is set to
false, then the gravity forces calculated based on NewtonIntegrator.gravity are excluded from
the damping calculation. This option has no effect on gravity forces added by GravityEngine.

damping(=0.2)
damping coefficient for Cundall’s non viscous damping (see Numerical damping and
[Chareyre2005])

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

densityScaling
if True, then density scaling [Pfc3dManual30] will be applied in order to have a critical
timestep equal to GlobalStiffnessTimeStepper::targetDt for all bodies. This option makes the
simulation unrealistic from a dynamic point of view, but may speedup quasistatic simulations.
In rare situations, it could be useful to not set the scalling factor automatically for each body
(which the time-stepper does). In such case revert GlobalStiffnessTimeStepper.densityScaling
to False.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

exactAsphericalRot (=true)
Enable more exact body rotation integrator for aspherical bodies only, using formulation from

[Allen1989], pg. 89.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

gravity (=Vector3r::Zero())
Gravitational acceleration (effectively replaces GravityEngine).

236

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

kinSplit (=false)
Whether to separately track translational and rotational kinetic energy.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
If mask defined and the bitwise AND between mask and body‘s groupMask gives 0, the body
will not move/rotate. Velocities and accelerations will be calculated not paying attention to
this parameter.

maxVelocitySq(=0)
stores max. displacement, based on which we trigger collision detection. (auto-updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

prevVelGrad (=Matriz3r::Zero())
Store previous velocity gradient (Cell::velGrad) to track acceleration. (auto-updated)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

warnNoForceReset (=true)
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.wrapper.RungeKuttaCashKarp54Integrator (inherits Integrator — TimeStepper —

GlobalEngine — Engine — Serializ-

able)
RungeKuttaCashKarp54Integrator engine.

__init__((object)argl) — None
object ___init___ (tuple args, dict kwds)

___init___ ((object)argl, (list)arg2) -> object : Construct from (possibly nested) list
of slaves.
a_dxdt(=1.0)
a_x(=1.0)

abs_err(=Ie-6)
Relative integration tolerance

active (=true)
is the engine active?

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.3.

Yade wrapper class reference 237

Yade Documentation, Release 3rd ed.

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

integrationsteps (=uninitalized)
all integrationsteps count as all succesfull substeps

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocitySq(=NalN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rel_err(=1le-6)
Absolute integration tolerance

slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

stepsize(=Ie-6)
It is not important for an adaptive integration but important for the observer for setting the
found states after integration

timeStepUpdatelInterval (=1)
dt update interval

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.SpheresFactory (inherits GlobalEngine — Engine — Serializable)

Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMaz, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive mazParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overridden SpheresFactory::pickRandomPosition().

A sample script for this engine is in scripts/spheresFactory.py.

PSDcalculateMass (=true)
PSD-Input is in mass (true), otherwise the number of particles will be considered.

PSDcum (=uninitalized)
PSD-dispersion, cumulative procent meanings -]

PSDsizes (=uninitalized)
PSD-dispersion, sizes of cells, Diameter [m]

blockedDOFs(="")
Blocked degress of freedom

color (=Vector3r(-1, -1, -1))
Use the color for newly created particles, if specified

238

Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/scripts/spheresFactory.py

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes][i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

goalMass (=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids (=uninitalized)
ids of created bodies

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate (=NaN)
Mass flow rate [kg/s]

materialld(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt (=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass (=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal (=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel (= Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 239

Yade Documentation, Release 3rd ed.

rMax(=NalN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaNN)
Minimum radius of generated spheres (uniform distribution)

silent (=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass (=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume (=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vAngle (=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax (=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.TesselationWrapper (inherits GlobalEngine — Engine — Serializable)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities (see also the dedicated section in user manual). The calculation of microstrain
is explained in [Catalano2014a]

See example usage in script example/tesselationWrapper /tesselationWrapper.py.

Below is an output of the defTo Vik function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.)

0.000247

240 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

alphaCapsVol(=0.)
The volume of the packing as defined by the boundary alpha cap polygons

applyAlphaForces ((Tesselation Wrapper)argl, (Matm'xé’)stress[, (ﬂoat)alpha:O[,

(ﬂoat)shrinkedAlpha:O[, (bool)ﬁxedAlpha:False]]]) — None :
set permanent forces based on stress using an alpha shape

applyAlphaVel ((Tesselation Wrapper)argl, (Matrixé’)veled[, (float)alpha=0 [7

(ﬂoat}shrinkedAlpha:()[, (bool)ﬁ:cedAlpha:False]]]) — None :
set velocities based on a velocity gradient tensor using an alpha shape

calcAlphaStress ((Tesselation Wrapper)argl [, (ﬂoat)alpha:O[, (ﬂoat)shm’nkedAlpha:O[,
(bool)ﬁa:edAlpha:False]]]) — Matrix3 :
get the Love-Weber average of the Cauchy stress on the polyhedral caps associated to boundary
particles

calcVolPoroDef((Tesselationmeper)argl[, (bool)deformation:False]) — dict :
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

computeDeformations ((Tesselation Wrapper)argl) — None :
compute per-particle deformation. Get it with Tesselation Wrapper::deformation (id,i,j).

computeVolumes ((Tesselation Wrapper)argl) — None :
compute volumes of all Voronoi’s cells.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defTthk((Tesselationmeper)argZ[, (str)outputh'le:’def.vtk’]) — None :
Write local deformations in vtk format from states 0 and 1.

defToVtkFromPositions ((Tesselation Wrapper)argl [, (str)inputl="pos1 ’[,
(str)input2= ’pos?’[, (str)outputFile:’def.vtk’[, (bool)sz:FalseH
”) — None :

Write local deformations in vtk format from positions files (one sphere per line, with x,y,z,rad
separated by spaces).

defToVtkFromStates ((Tesselation Wrapper)argl [, (str)inputl="statel’ [,
(str)input2= ’stateQ’[, (str)outputFile:’def.vtk’[, (bool)sz:T'rue]
]H) — None :

Write local deformations in vtk format from state files (since the file format is very special,
consider using defToVtkFromPositions if the input files were not generated by Tesselation-
Wrapper).

deformation((Tesselation Wrapper)argl, (int)id, (int)i, (int)j) — float :
Get particle deformation

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

far (=10000.)
Defines the radius of the large virtual spheres used to define nearly flat boundaries around the
assembly. The radius will be the (scene’s) bounding box size multiplied by ‘far’ Higher values

2.3.

Yade wrapper class reference 241

Yade Documentation, Release 3rd ed.

will minimize the error theoretically (since the infinite sphere really defines a plane), but it
may increase numerical errors at some point. The default should give a resonable compromize.

getAlphaCaps ((Tesselation Wrapper)argl [, (float)alpha=0 [, (float)shrinked Alpha=0 [,

(bool)ﬁxedAlpha:False]]]) — list :
Get the list of area vectors for the polyhedral caps associated to boundary particles (‘extended’
alpha-contour). If alpha is not specified or null the minimum alpha resulting in a unique
connected domain is used. Taking a smaller ‘shrinked’ alpha for placing the virtual spheres
moves the enveloppe outside the packing, It should be ~(alpha-refRad) typically.

getAlphaFaces((Tesselatz'onme;mer)cwg][7 (ﬂoat)alpha:O]) — list :
Get the list of alpha faces for a given alpha. If alpha is not specified or null the minimum
alpha resulting in a unique connected domain is used

getAlphaGraph ((Tesselation Wrapper)arg1 [, (ﬂoat)alpha:[)[, (float)shrinked Alpha=0 [,

(bool)ﬁxedAlpha:False]]]) — list :
Get the list of area vectors for the polyhedral caps associated to boundary particles (‘extended’
alpha-contour). If alpha is not specified or null the minimum alpha resulting in a unique
connected domain is used

getAlphaVertices((Tesselatz’onmeper)argl[, (ﬂoat)alpha:O]) — list :
Get the list of ‘alpha’ bounding spheres for a given alpha. If alpha is not specified or null the
minimum alpha resulting in a unique connected domain is used. This function is generating
a new alpha shape for each call, not to be used intensively.

grad_u(=Matriz3r::Zero())
The Displacement Gradient Tensor

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

loadState ((Tesselation Wrapper)argl [, (str)inputFile="state ’[, (bool)statezO[,

(bool)sz:True]]]) — None :
Load a file with positions to define state 0 or 1.

n_spheres(=0)
(auto-computed)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

saveState ((Tesselation Wrapper)arg! [, (str)outputFile="state ’[, (bool)stcn‘e:O[7

(bool)sz:True]]]) — None :
Save a file with positions, can be later reloaded in order to define state 0 or 1.

setSt:a‘l:e((Tesselatz’onWm;oper)argl[7 (bool)state:()]) — None :
Make the current state of the simulation the initial (0) or final (1) configuration for the
definition of displacement increments, use only state=0 if you just want to get volmumes and
porosity.

testAlphaShape((Tesselationmeper)argl[, (ﬂoat)alpha:O]) — None :
transitory function, testing AlphaShape feature

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

242

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

triangulate((Tesselatz’onmeper)argl[, (bool)reset:True]) — None :
triangulate spheres of the packing

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

volume((Tesselationmeper)arg][, (z'nt)id:O]) — float :
Returns the volume of Voronoi’s cell of a sphere.

class yade.wrapper.TetraVolumetricLaw (inherits GlobalEngine — Engine — Serializable)

Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.TimeStepper (inherits GlobalEngine — Engine — Serializable)

Engine defining time-step (fundamental class)

active (=true)
is the engine active?

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

2.3.

Yade wrapper class reference 243

Yade Documentation, Release 3rd ed.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timeStepUpdatelInterval(=1)
dt update interval

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

PeriodicEngine

TorqueRecorder

RockBolt ‘ CapillaryStressRecorder ‘

'/ TriaxialStateRecorder ‘

ResetRandomPosition ‘
‘ SplitPolyMohrCoulomb ‘

VTKRecorder

PeriodicEngine

CpmStateUpdater

‘ PotentialBlockVTKRecorder ‘

SnapshotEngine
RockLiningGlobal
PDFEngine LubricationPDFEngine

‘ PotentialParticleVTKRecorder ‘

Fig. 2.26: Inheritance graph of PeriodicEngine. See also: CapillaryStressRecorder, CpmStateUpdater,
DomainLimiter, ForceRecorder, LubricationPDFFEngine, MeasureCapStress, PDFEngine, PolyhedraS-
plitter, PotentialBlockVTKRecorder, PotentialParticleVTKRecorder, PyRunner, Recorder, ResetRan-
domPosition, RockBolt, RockLiningGlobal, SnapshotEngine, SplitPolyMohrCoulomb, SplitPolyTauMaz,
TorqueRecorder, TriazialStateRecorder, VITKRecorder.

class yade.wrapper.PeriodicEngine (inherits GlobalEngine — Engine — Serializable)
Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.

244 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.

If initRun is set (false by default), the engine will run when called for the first time; otherwise
it will only start counting period (realLast, etc, interval variables) from that point, but without
actually running, and will run only once a period has elapsed since the initial run.

This class should not be used directly; rather, derive your own engine which you want to be run
periodically.

Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.

Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts:

PyRunner (realPeriod=5,iterPeriod=10000, command="'print 0.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whichever
comes first since it was last run.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

2.3.

Yade wrapper class reference 245

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast(=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.CapillaryStressRecorder (inherits Recorder — PeriodicEngine — Glob-

alEngine — Engine — Serializable)
Records information from capillary meniscii on samples submitted to triaxial compressions. Clas-

sical sign convention (tension positiv) is used for capillary stresses. -> New formalism needs to be
tested!!!

addIterNum(=false)
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

file (=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)

Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

246 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas

Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

truncate (=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.CpmStateUpdater (inherits PeriodicEngine — GlobalEngine — Engine —

Serializable)
Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In

particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.
This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.

avgRelResidual (=NaN)
Average residual strength at last run.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

firstIterRun(=0)

Sets the step number, at each an engine should be executed for the first time (disabled by
default).

2.3.

Yade wrapper class reference 247

Yade Documentation, Release 3rd ed.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxOmega (=NalN)
Globally maximum damage parameter at last run.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.DomainLimiter (inherits PeriodicEngine — GlobalEngine — Engine — Se-

rializable)
Delete particles that are out of axis-aligned box given by lo and hi.
dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

248

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

hi (=Vector3r(0, 0, 0))
Upper corner of the domain.

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lo(=Vectorsr(0, 0, 0))
Lower corner of the domain.

mDeleted (=0)
Mass of deleted particles.

mask(=-1)
If mask is defined, only particles with corresponding groupMask will be deleted.

nDeleted (=0)
Cummulative number of particles deleted.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas

Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

vDeleted (=0)
Volume of deleted spheres (clumps not counted, in that case check mDeleted)

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

2.3.

Yade wrapper class reference 249

Yade Documentation, Release 3rd ed.

class yade.wrapper.ForceRecorder (inherits Recorder — PeriodicEngine — GlobalEngine —

Engine — Serializable)
Engine saves the resultant force affecting to bodies, listed in ids. For instance, can be useful for

defining the forces, which affects to _buldozer__ during its work.

addIterNum(=false)
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

ids (=uninitalized)
List of bodies whose state will be measured

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast(=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
it <=0)

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalForce (= Vector3r::Zero())
Resultant force, returning by the function.

truncate (=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.LubricationPDFEngine (inherits PDFFEngine — PeriodicEngine — Glob-
alEngine — Engine — Serializable)
Implementation of PDFEngine for Lubrication law

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

filename (="PDF.tzt”)
Filename

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

numDiscretizeAnglePhi (=20)
Number of sector for phi-angle

numDiscretizeAngleTheta(=20)
Number of sector for theta-angle

2.3. Yade wrapper class reference 251

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

warnedOnce (=false)
For one-time warning. May trigger usefull warnings

class yade.wrapper.MeasureCapStress (inherits PeriodicEngine — GlobalEngine — Engine —

Serializable)
Post-processing engine giving the capillary stress tensor (the fluids mixture contribution to the total

stress in unsaturated, i.e. triphasic, conditions) according to the pUNSAT expression detailled in
[Duriez2017¢c]. Although this expression differs in nature from the one of utils.getCapillaryStress
(consideration of distributed integrals herein, vs resultant capillary force therein), both are equiv-
alent [Duriez2016b], [Duriez2017], [Duriez2017¢]. The REV volume V entering the expression is
automatically measured, from the Cell for periodic conditions, or from utils.aabbExtrema function
otherwise.

capillaryPressure(=0)
Capillary pressure u., to be defined equal to Law2 ScGeom CapillaryPhys Capillar-
ity.capillaryPressure.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug(=0)
To output some debugging messages.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

252

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

muGamma (=Matriz3r::Zero())
Tensorial contribution to sigmaCap from the contact lines I': pur = [r Viw @ x dl with vi,,
the fluid-fluid interface conormal [Duriez2017¢c/, and x the position. (auto-updated)

muSnw (=Matriz3r::Zero())
Tensorial contribution to sigmaCap from the wetting/non-wetting (e.g. liquid/gas) interface
Snw: Usnw = jsnw(é —n ®n)dS with n the outward normal and & the identity tensor.
(auto-updated)

muSsw (=Matriz3r::Zero())
Tensorial contribution to sigmaCap from the wetted solid surfaces Ssw: puggy, = Ist n®xdS
with n the outward normal and x the position. (auto-updated)

muVw (=Matriz3r::Zero())
Tensorial contribution (spherical i.e. isotropic) to sigmaCap from the wetting fluid volume:
Uvw = Vi, 8 with V,, = 0T and & the identity tensor. (auto-updated)

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

sigmaCap (=Matriz3r::Zero())
The capillary stress tensor o€®P itself, expressed as o“P = 1/V[uc(ptvw + Ussw) +
Yrw (Usnw + ur)] where the four microstructure tensors Hya, USsw, HSnw, Hr correspond
to muVw, muSsw, muSnw and muGamma attributes. (auto-updated)

surfaceTension(=0.07%)
Fluid-fluid surface tension Yy, to be defined equal to Law?2 ScGeom CapillaryPhys Cap-
illarity. surface Tension.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3.

Yade wrapper class reference 253

Yade Documentation, Release 3rd ed.

vW(=0)
Wetting fluid volume, summing menisci volumes (faster here than through python loops).
(auto-updated)

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

wettAngle (=0)
Wetting, i.e. contact, angle value (radians). To be defined consistently with the value upon
which the capillary files (used by Law2_ScGeom__ CapillaryPhys_ Capillarity) rely.

class yade.wrapper.PDFEngine (inherits PeriodicEngine — GlobalEngine — Engine — Serializ-

able)
Base class for spectrums calculations. Compute Probability Density Functions of normalStress,

shearStress, distance, velocity and interactions in spherical coordinates and write result to a file.
Column name format is: Data(theta, phi). Convention used: x: phi = 0, y: theta = 0, z: phi =
pi/2
dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

filename (="PDF.tzt”)
Filename

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

numDiscretizeAnglePhi (=20)
Number of sector for phi-angle

numDiscretizeAngleTheta(=20)
Number of sector for theta-angle

254 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

warnedOnce (=false)
For one-time warning. May trigger usefull warnings

class yade.wrapper.PolyhedraSplitter (inherits PeriodicEngine — GlobalEngine — Engine —

Serializable)
Engine that splits polyhedras.

Warning: PolyhedraSplitter returns different results depending on CGAL version! For details
see https://gitlab.com/yade-dev/trunk/issues/45

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

2.3.

Yade wrapper class reference 255

https://gitlab.com/yade-dev/trunk/issues/45

Yade Documentation, Release 3rd ed.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallLast(=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PotentialBlockVTKRecorder (inherits PeriodicEngine — GlobalEngine —

Engine — Serializable)
Engine recording potential blocks as surfaces into files with given periodicity.

REC_COLORS (=false)
Whether to record colors

REC_ID(=true)
Whether to record id

REC_INTERACTION (=false)
Whether to record contact point and forces

REC_VELOCITY (=false)
Whether to record velocity

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

256

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

fileName (=uninitalized)
File prefix to save to

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxDimension(=30)
Maximum allowed distance between consecutive grid lines

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallLast(=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

sampleX(=30)
Number of divisions in the X direction for triangulation

sampleY (=30)
Number of divisions in the Y direction for triangulation

sampleZ(=30)
Number of divisions in the Z direction for triangulation

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

twoDimension (=false)
Whether to render the particles as 2-D

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

2.3.

Yade wrapper class reference 257

Yade Documentation, Release 3rd ed.

class yade.wrapper.PotentialParticleVTKRecorder (inherits PeriodicEngine — GlobalEngine

— Engine — Serializable)
Engine recording potential blocks as surfaces into files with given periodicity.

REC_COLORS (=false)
Whether to record colors

REC_ID(=true)
Whether to record id

REC_INTERACTION (=false)
Whether to record contact point and forces

REC_VELOCITY (=false)
Whether to record velocity

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

fileName (=uninitalized)
File prefix to save to

firstIterRun(=0)

Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxDimension (=30)
Maximum allowed distance between consecutive grid lines

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

258

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

sampleX(=30)
Number of divisions in the X direction for triangulation

sampleY (=30)
Number of divisions in the Y direction for triangulation

sampleZ (=30)
Number of divisions in the Z direction for triangulation

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

twoDimension (=false)
Whether to render the particles as 2-D

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PyRunner (inherits PeriodicEngine — GlobalEngine — Engine — Serializ-

able)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-

cEngine documentation for details.

command (="")
Command to be run by python interpreter. Not run if empty.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

firstIterRun(=0)

Sets the step number, at each an engine should be executed for the first time (disabled by
default).

ignoreErrors (=false)
Debug only: set this value to true to tell PyRunner to ignore any errors encountered during
command execution.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

2.3.

Yade wrapper class reference 259

Yade Documentation, Release 3rd ed.

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updateGlobals
Whether to workaround ipython not recognizing local variables by calling globals().
update(locals()). If true then PyRunner is able to call functions declared later locally in
a running live yade session. The PyRunner call is a bit slower because it updates globals()
with recently declared python functions.

Warning:

When updateGlobals==False and a function was declared inside a live
yade session (ipython) then an error NameError: name 'command' is not
defined will occur unless python globals() are updated with command

globals() .update(locals())

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.Recorder (inherits PeriodicEngine — GlobalEngine — Engine — Serializ-

able)
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles

opening the file as needed. See PeriodicEngine for controlling periodicity.

addIterNum(=false)
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

260 Chapter 2. Yade for users

https://github.com/ipython/ipython/issues/62
http://ipython.org

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

file (=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

truncate (=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

2.3.

Yade wrapper class reference 261

Yade Documentation, Release 3rd ed.

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ResetRandomPosition (inherits PeriodicEngine — GlobalEngine — Engine
— Serializable)
Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.

angularVelocity (=Vector3r::Zero())
Mean angularVelocity of spheres.

angularVelocityRange (=Vector3r::Zero())
Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity+angularVelocityRange.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

factoryFacets (=uninitalized)
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxAttempts (=20)
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another
position.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

normal (=Vector3r(0, 1, 0))
77
ompThreads (=-1)

Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can

262 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

point (=Vector3r::Zero())
77

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

subscribedBodies (=uninitalized)
Affected bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

velocity (=Vector3r::Zero())
Mean velocity of spheres.

velocityRange (=Vector3r::Zero())
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocitytvelocityRange.

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

volumeSection(=false, define factory by facets.)
Create new spheres inside factory volume rather than on its surface.

class yade.wrapper.RockBolt (inherits PeriodicEngine — GlobalEngine — Engine — Serializ-

able)
Engine recording potential blocks as surfaces into files with given periodicity.

averageForce(=0.0)
averageForce

axialForces (=uninitalized)
force

axialMax (=1000000000)
maximum axial force

axialStiffness(=0.0)

EA
blockIDs (=uninitalized)
ids
boltDirection(=Vector3r(0, 0, 0))
direction

boltLength(=0.0)
startingPt

2.3.

Yade wrapper class reference 263

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

displacements (=uninitalized)
ids

distanceFrCentre (=uninitalized)
nodePosition

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

fileName (=uninitalized)
File prefix to save to

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

forces (=uninitalized)
force

halfActiveLength(=0.02)
stiffness

initRun(=false)
Run the first time we are called as well.

initialDirection(=uninitalized)
initial length
initialLength(=uninitalized)
initial length
installed(=false)
installed?

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

localCoordinates (=uninitalized)
local coordinates of intersection

maxForce(=0.0)
maxForce

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

name (=uninitalized)
File prefix to save to

264

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

nodeDistanceVec (=uninitalized)
nodeDistance

nodePosition(=uninitalized)
nodePosition

normalStiffness(=0.0)
EA/L

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

openingCreated (=false)
opening created?
openingRad (=5.0)
estimated opening radius

preTension(=0.0)
prestressed tension

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

resetLengthInit (=false)
reset length for pretension

ruptured (=uninitalized)
ruptured

shearForces (=uninitalized)
force

shearMax (=1000000000)
maximum shear force

shearStiffness(=0.0)
stiffness

startingPoint (=Vector3r(0, 0, 0))
startingPt

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

useMidPoint (=false)
large length

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

2.3.

Yade wrapper class reference 265

Yade Documentation, Release 3rd ed.

vtkIteratorInterval (=10000)
how often to print vtk

vtkRefTimeStep(=1)
first timestep to print vtk

class yade.wrapper.RockLiningGlobal (inherits PeriodicEngine — GlobalEngine — Engine —

Serializable)
Engine recording potential blocks as surfaces into files with given periodicity.

Area(=0.02)
A

EA(=0.0)
EA

EI(=0.0)
EI

ElasticModulus (=0.0)
E

Inertia(=0.0)
I

assembledKglobal (=false)
global stiffness matrix

axialForces (=uninitalized)
force

axialMax (=1000000000)

maximum axial force

blockIDs (=uninitalized)
ids

contactLength(=1.0)
contactLength

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

density(=0.0)
density

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

displacement (=uninitalized)
force

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

expansionFactor (=pow(10, -5))
alpha deltaT

fileName (=uninitalized)
File prefix to save to

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

266

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

init0Overlap(=pow(10, -5))
initialOverlap

initRun(=false)
Run the first time we are called as well.

installed(=false)
installed?

interfaceCohesion(=0.5*pow(10, 6))
L

interfaceFriction(=30.0)
L

interfaceStiffness(=pow(10, 8))
L

interfaceTension (=0.8*pow(10, 6))
L

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lengthNode (=uninitalized)
L

liningThickness(=0.1)
liningThickness

localCoordinates (=uninitalized)
local coordinates of intersection

lumpedMass (=0.0)
lumpedMass

moment (=uninitalized)
moment

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

name (=uninitalized)
File prefix to save to

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

openingCreated(=false)
opening created?
openingRad (=5.0)
estimated opening radius

Yade wrapper class reference 267

Yade Documentation, Release 3rd ed.

radialDisplacement (=uninitalized)
force

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

refAngle (=uninitalized)
initial theta

refDir (=uninitalized)
initial v

refOri (=uninitalized)
initial theta

refPos (=uninitalized)
initial u

ruptured (=uninitalized)
ruptured

shearForces (=uninitalized)
force

shearMax (=1000000000)

maximum shear force

sigmaMax (=uninitalized)
sigma max

sigmaMin (=uninitalized)
sigma min

startingPoint (=Vector3r(0, 0, 0))
startingPt

stickIDs (=uninitalized)
L

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalNodes (=0)
L

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

vtkIteratorInterval (=10000)
how often to print vtk

vtkRefTimeStep (=1)
first timestep to print vtk

class yade.wrapper.SnapshotEngine (inherits PeriodicEngine — GlobalEngine — Engine —

Serializable)
Periodically save snapshots of GLView(s) as .png files. Files are named fileBase + counter + ‘png’

(counter is left-padded by Os, i.e. snap00004.png).

268 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

counter (=0)
Number that will be appended to fileBase when the next snapshot is saved (incremented at
every save). (auto-updated)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

deadTimeout (=3)
Timeout for 3d operations (opening new view, saving snapshot); after timing out, throw
exception (or only report error if ignoreErrors) and make myself dead. [s]

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

fileBase(="")
Basename for snapshots

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

format (="PNG”)
Format of snapshots (one of JPEG, PNG, EPS, PS, PPM, BMP) QGLViewer documentation.
File extension will be lowercased format. Validity of format is not checked.

ignoreErrors (=true)
Only report errors instead of throwing exceptions, in case of timeouts.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

msecSleep(=0)
number of msec to sleep after snapshot (to prevent 3d hw problems) [ms]

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 269

http://www.libqglviewer.com/refManual/classQGLViewer.html#abbb1add55632dced395e2f1b78ef491c

Yade Documentation, Release 3rd ed.

plot (=uninitalized)
Name of field in plot.imgData to which taken snapshots will be appended automatically.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

snapshots (=uninitalized)
Files that have been created so far

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.SplitPolyMohrCoulomb (inherits PolyhedraSplitter — PeriodicEngine —

GlobalEngine — Engine — Serializable)
Split polyhedra according to Mohr-Coulomb criterion.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

fileName(="")
Base.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

270 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast(=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.SplitPolyTauMax (inherits PolyhedraSplitter — PeriodicEngine — Glob-

alEngine — Engine — Serializable)
Split polyhedra along TauMax.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.3.

Yade wrapper class reference 271

Yade Documentation, Release 3rd ed.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.TorqueRecorder (inherits Recorder — PeriodicEngine — GlobalEngine —

Engine — Serializable)
Engine saves the total torque according to the given axis and ZeroPoint, the force is taken from
bodies, listed in ids For instance, can be useful for defining the torque, which affects on ball mill
during its work.

addIterNum(=false)
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

file (=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

ids (=uninitalized)
List of bodies whose state will be measured

272

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

rotationAxis (=Vector3r::UnitX())

Rotation axis

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalTorque (=0)
Resultant torque, returning by the function.

truncate (=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

zeroPoint (=Vector3r::Zero())
Point of rotation center

class yade.wrapper.TriaxialStateRecorder (inherits Recorder — PeriodicEngine — Glob-

alEngine — FEngine — Serializable)
Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriazialCompressionEngine or ThreeD TriazialEngine present in the simulation).

addIterNum(=false)
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

2.3.

Yade wrapper class reference 273

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

file (=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

porosity(=1)
porosity of the packing [-]

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

truncate (=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

274

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.VTKRecorder (inherits PeriodicEngine — GlobalEngine — Engine — Seri-

alizable)
Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-

processing programs such as Paraview. Both bodies (depending on their shapes) and interactions
can be recorded, with various vector/scalar quantities that are defined on them.

PeriodicEngine.initRun is initialized to True automatically.

Key(:” H)
Necessary if recorders contains ‘cracks’ or ‘moments’. A string specifying the name of file
‘cracks .txt’ that is considered in this case (see corresponding attribute).

ascii(=false)
Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter: :Ascii, while the default is Appended)

compress (=false)
Compress output XML files [experimental].

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

fileName(="")
Base file name; it will be appended with {lsBody* spheres,intrs facets}.243100.vtu (unless
multiblock or multiblockLS is True) depending on active recorders and step number (243100
in this case). It can contain slashes, but the directory must exist already.

firstIterRun(=0)

Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

multiblock (=false)
Use multi-block (.vtm) files to store data, rather than separate .vtu files.

2.3. Yade wrapper class reference 275

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html

Yade Documentation, Release 3rd ed.

multiblockLsS (=false)
For executing, when True and with IsBodies in recorders, a serial export of the LevelSet bodies
into one unique multi-block (.vtm) file, rather than a OpenMP export of separate .vtu files,
when False. Compatibility with multiblock has not been implemented yet

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

parallelMode (=false)
For MPI parallel runs, each proc writes their own vtu/vtp files. Master proc writes a
pvtu/pvtp file containing metadata about worker vtu files. load the pvtu/pvtp in paraview
for visualization.

reallast (=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time in seconds (deactivated
if <=0)

recorders
List of active recorders (as strings). all (the default value) enables all base (‘‘IsBodies”
excepted) and generic recorders.

Base recorders

Base recorders save the geometry (unstructured or structured grids) on which other
data is defined. They are implicitly activated by many of the other recorders. Each
of them creates a new file (or a block, if multiblock is set).

spheres Saves positions and radii (radii) of spherical particles.
facets Save facets positions (vertices).
boxes Save bozes positions (edges).

1sBodies Exports LevelSet shaped bodies in global frame, after mapping to current
positions and orientations their grid with distance fields.

intr Store interactions as lines between nodes at respective particles positions. Ad-
ditionally stores magnitude of normal (forceN) and shear (absForceT) forces on
interactions (the geom).

Generic recorders

Generic recorders do not depend on specific model being used and save commonly
useful data.

id Saves id’s (field id) of spheres; active only if spheres is active.
mass Saves masses (field mass) of spheres; active only if spheres is active.

clumpId Saves id’s of clumps to which each sphere belongs (field clumpId); active
only if spheres is active.

colors Saves colors of spheres and of facets (field color); only active if spheres or
facets are activated.

276

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

mask Saves groupMasks of spheres and of facets (field mask); only active if spheres
or facets are activated.

materialld Saves materiallD of spheres and of facets; only active if spheres or
facets are activated.

coordNumber Saves coordination number (number of neighbours) of spheres and of
facets; only active if spheres or facets are activated.

velocity Saves linear and angular velocities of spherical particles as Vector3 and
length(fields 1inVelVec, linVellen and angVelVec, angVelLen respectively*);
only effective with spheres.

stress Saves stresses of spheres and of facets as Vector3 and length; only active if
spheres or facets are activated.

force Saves force and torque of spheres, facets and bozes as Vector3 and length
(norm); only active if spheres, facets or boxes are activated.

pericell Saves the shape of the cell (simulation has to be periodic).

bstresses Considering the per-particle stress tensors as given by bodyStress Tensors,
saves the per-particle principal stresses, sigl (most tensile)
geq sigll
geq siglIl (most compressive), and the associated principal directions dirl, dirII,
dirITI.

Specific recorders

The following should only be activated in when appropriate engines/contact
laws are in use, otherwise crashes can occur due to violation of type presup-
positions.

cpm Saves data pertaining to the concrete model: cpmDamage (normalized
residual strength averaged on particle), cpmStress (stress on particle);
intr is activated automatically by cpm

wpm Saves data pertaining to the wire particle model: wpmForceNFactor
shows the loading factor for the wire, e.g. normal force divided by threshold
normal force.

jecfpm Saves data pertaining to the rock (smooth)-jointed model: damage is
defined by JCFpmState.tensBreak + JCFpmState.shearBreak; intr is ac-
tivated automatically by jcfpm, and on joint or cohesive interactions can
be vizualized.

cracks Saves other data pertaining to the rock model: cracks shows loca-
tions where cohesive bonds failed during the simulation, with their types
(0/1 for tensile/shear breakages), their sizes (0.5*(R14+-R2)), and their nor-
mal directions. The corresponding attribute has to be activated, and Key
attributes have to be consistent.

moments Saves data pertaining to the required corresponding at-
tribute:yref:acoustic emissions model<Law2_ScGeom__JCFpmPhys -
JointedCohesiveFrictionalPM.recordMoments>: moments shows locations
of acoustic emissions, the number of broken bonds comprising the acoustic
emission, the magnitude.

thermal Saves temperature of bodies computed using Yade’s Ther-
malEngine.

liquid Saves the liquid volume associated with capillary models.

cohfrict Saves interaction information associated with the cohesive fric-
tional model, including isBroken, unp, and breakType.

SPH Saves sphere information associated with Yade’s SPH module.

2.3. Yade wrapper class reference 277

Yade Documentation, Release 3rd ed.

deform Saves interaction information associated with Yade’s deformation
module.

lubrication Saves lubrications stress from LubricationPhys. spheres must
be active.

partialsat Saves suction and radii changes of spheres associated with Par-
tialSatClayEngine. spheres must be active.

hertz Saves bond data from hertzmindlin such as displacement or ‘bro-
ken’ where broken follows a displacement criteria set by user in Law2 -
ScGeom__MindlinPhys__Mindlin.

skipFacetIntr (=true)
Skip interactions that are not of sphere-sphere type (e.g. sphere-facet, sphere-box...), when
saving interactions

skipNondynamic (=false)
Skip non-dynamic spheres (but not facets).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

virtLast (=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

BoundaryController

KinemCNLEngine

KinemCNSEngine

‘ KinemSimpleShearBox |——{ KinemCNDEngine ‘

KinemCTDEngine

‘ TriaxialStressController H ThreeDTriaxialEngine ‘

‘ PeriTriaxController ‘ ‘ TriaxialCompressionEngine ‘

BoundaryController }<—{ UniaxialStrainer ‘

Peri3dController
PerilsoCompressor

‘ Disp2DPropLoadEngine ‘

Fig. 2.27: Inheritance graph of BoundaryController. See also: Disp2DPropLoadEngine,
KinemCNDEngine, KinemCNLEngine, KinemCNSEngine, KinemCTDEngine, KinemSimpleShearBoz,
PerisdController, PerilsoCompressor, PeriTriaxController, ThreeD TriaxialEngine, TriaxialCompressio-
nEngine, TriaxialStressController, UniaxialStrainer.

class yade.wrapper.BoundaryController (inherits GlobalEngine — Engine — Serializable)
Base for engines controlling boundary conditions of simulations. Not to be used directly.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

278 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.Disp2DPropLoadEngine (inherits BoundaryController — GlobalEngine —

Engine — Serializable)
Disturbs a simple shear sample in a given displacement direction

This engine allows one to apply, on a simple shear sample, a loading controlled by du/dgamma =
cste, which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so,
the upper plate of the simple shear box is moved in a given direction (corresponding to a given
du/dgamma), whereas lateral plates are moved so that the box remains closed. This engine can
easily be used to perform directionnal probes, with a python script launching successivly the same
.xml which contains this engine, after having modified the direction of loading (see theta attribute).
That’s why this Engine contains a saveData procedure which can save data on the state of the
sample at the end of the loading (in case of successive loadings - for successive directions - through
a python script, each line would correspond to one direction of loading).

Key (— » 77)
string to add at the names of the saved files, and of the output file filled by saveData

LOG (=false)
boolean controling the output of messages on the screen

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

id_boxback(=4)
the id of the wall at the back of the sample

2.3.

Yade wrapper class reference 279

Yade Documentation, Release 3rd ed.

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nbre_iter(=0)
the number of iterations of loading to perform

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

theta(=0.0)
the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

v(=0.0)
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v .= V__shear - | (V_shear-
V__comp)*sin(theta) | => v=V_shear in shear; V_comp in compression [m/s]

class yade.wrapper.KinemCNDEngine (inherits KinemSimpleShearBox — BoundaryController —

GlobalEngine — Engine — Serializable)
To apply a Constant Normal Displacement (CND) shear for a parallelogram box
This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows one to perform a constant normal displacement shear, by translat-
ing horizontally the upper plate, while the lateral ones rotate so that they always keep contact
with the lower and upper walls.

Key (- »” 77)
string to add at the names of the saved files

LOG (=false)
boolean controling the output of messages on the screen

alpha(=Mathr::PI/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

280

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

£0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma (=0.0)
the current value of the tangential displacement

gamma_save (=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m)]

gammalim(=0.0)
the value of the tangential displacement at wich the displacement is stopped [m)]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=9%)
the id of the upper wall

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control o (CNL or CNS cases) [m/s]

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 281

Yade Documentation, Release 3rd ed.

shearSpeed (=0.0)
the speed at which the shear is performed : speed of the upper plate [m/s]

temoin_save (=uninitalized)
vector (same length as ‘gamma_ save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control ¢ (CNL or CNS cases) are in fact damped,
through this wallDamping

yo(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNLEngine (inherits KinemSimpleShearBox — BoundaryController —
GlobalEngine — Engine — Serializable)
To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram
box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)

This engine allows one to translate horizontally the upper plate while the lateral ones rotate so
that they always keep contact with the lower and upper walls.

In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)

The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)

The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.

Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

Key (- ” 77)
string to add at the names of the saved files

LOG(=false)
boolean controling the output of messages on the screen

alpha(=Mathr::P1/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

282 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

£0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma (=0.0)
current value of tangential displacement [m]

gamma_save (=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m)]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=9%)
the id of the upper wall

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control o (CNL or CNS cases) [m/s]

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

2.3. Yade wrapper class reference 283

Yade Documentation, Release 3rd ed.

shearSpeed (=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

temoin_save (=uninitalized)
vector (same length as ‘gamma_ save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control ¢ (CNL or CNS cases) are in fact damped,
through this wallDamping

yo(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNSEngine (inherits KinemSimpleShearBox — BoundaryController —

GlobalEngine — Engine — Serializable)
To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)

This engine, useable in simulations implying one deformable parallelepipedic box, allows one to
translate horizontally the upper plate while the lateral ones rotate so that they always keep contact
with the lower and upper walls. The upper plate can move not only horizontally but also vertically,
so that the normal rigidity defined by DeltaF (upper plate) /DeltaU(upper plate) = constant (= KnC
defined by the user).

The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.

Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

Key (— ” !7)
string to add at the names of the saved files

KnC(=10.0e6)
the normal rigidity chosen by the user [MPa/mm)] - the conversion in Pa/m will be made

LOG (=false)
boolean controling the output of messages on the screen

alpha(=Mathr::P1/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

284

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

£0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma (=0.0)
current value of tangential displacement [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=9%)
the id of the upper wall

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control o (CNL or CNS cases) [m/s]

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed (=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

temoin_save (=uninitalized)
vector (same length as ‘gamma_ save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

2.3.

Yade wrapper class reference 285

Yade Documentation, Release 3rd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control ¢ (CNL or CNS cases) are in fact damped,
through this wallDamping

yo(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCTDEngine (inherits KinemSimpleShearBox — BoundaryController —
GlobalEngine — Engine — Serializable)
To compress a simple shear sample by moving the upper box in a vertical way only, so that the
tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (targetSigma). Moreover
saves are executed at each value of stresses stored in the vector sigma_save, and at targetSigma

Key (— »” 77)
string to add at the names of the saved files

LOG (=false)
boolean controling the output of messages on the screen

alpha(=Mathr::P1/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

compSpeed (=0.0)
(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

£0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

286 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control o (CNL or CNS cases) [m/s]

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sigma_save (=uninitalized)
vector with the values of sigma at which a save of the simulation should be performed [kPa]

targetSigma(=0.0)
the value of sigma at which the compression should stop [kPa]

temoin_save (=uninitalized)
vector (same length as ‘gamma_ save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control ¢ (CNL or CNS cases) are in fact damped,
through this wallDamping

yo(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemSimpleShearBox (inherits BoundaryController — GlobalEngine —
Engine — Serializable)
This class is supposed to be a mother class for all Engines performing loadings on the simple shear
box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.

Key (- »” 7})
string to add at the names of the saved files

LOG (=false)
boolean controling the output of messages on the screen

2.3. Yade wrapper class reference 287

Yade Documentation, Release 3rd ed.

alpha(=Mathr::P1/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

£0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control o (CNL or CNS cases) [m/s]

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

temoin_save (=uninitalized)
vector (same length as ‘gamma_ save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

288

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control ¢ (CNL or CNS cases) are in fact damped,
through this wallDamping

yo(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.Peri3dController (inherits BoundaryController — GlobalEngine — FEn-
gine — Serializable)
Class for controlling independently all 6 components of “engineering” stress and strain of periodic
Cell. goal are the goal values, while stressMask determines which components prescribe stress and
which prescribe strain.

If the strain is prescribed, appropriate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.

Stress error (difference between actual and ideal stress) is evaluated in current and previous steps
(doi,doi—1). Linear extrapolation is used to estimate error in the next step

dO'pH = ZdO'i — d()'i,1

According to this error, the strain rate is modified by mod parameter

>0—> €41 =& — max(abs(éi)) - mod
o { <0 — éi41 = & +max(abs(&;)) - mod
i+1 i i
According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and
compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).

The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix ¢rsf 7 = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented
yet). A prescribed strain increment in global coordinates dt - € is properly rotated to cell’s local
coordinates and added to P

Pi1=P+U'dt-eU

The new value of ¢rsf is computed at T;17 = UP;i ;. From current and next ¢rsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V=TT ' —1)/dt

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.

2.3. Yade wrapper class reference 289

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition

Yade Documentation, Release 3rd ed.

Examples examples/test/peri3dController examplel.py and examples/test/peri3dController -
triaxialCompression.py ~ explain usage and inputs of Peri3dController, exam-
ples/test /periddController shear.py is an example of using shear components and also simulation
on rotated cell.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doneHook (=uninitalized)
Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

goal (=Vector6r::Zero())
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lenPe(=0)
Peri3dController internal variable

lenPs(=0)
Peri3dController internal variable

maxStrain(=Ie6)
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

maxStrainRate(=Ie3)
Maximal absolute value of strain rate (both normal and shear components of strain)

mod(=.1)
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

nSteps (=1000)
Number of steps of the simulation.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

pathSizes (= Vector6i::Zero())
Peri3dController internal variable

pathsCounter (= Vector6i:: Zero())
Peri3dController internal variable

pe (=Vector6i::Zero())
Peri3dController internal variable

290

Chapter 2. Yade for users

https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_example1.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_shear.py
https://gitlab.com/yade-dev/trunk/blob/master/examples/test/peri3dController_shear.py

Yade Documentation, Release 3rd ed.

poissonEstimation(=.25)
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

progress(=0.)
Actual progress of the simulation with Controller.

ps (=Vectorti::Zero())
Peri3dController internal variable

strain(=Vector6r::Zero())
Current strain (deformation) vector (ex,ey,€2,Yyz,Yzx:Yxy) (auto-updated).

strainGoal (=Vector6r::Zero())
Peri3ddController internal variable

strainRate (=Vector6r::Zero())
Current strain rate vector.

stress (=Vector6r::Zero())
Current stress vector (0x,0y,02,Tyz,Tzx,Txy)|yupdate|.

stressGoal (=Vector6r::Zero())
Peri3dController internal variable

stressIdeal (=Vector6r::Zero())
Ideal stress vector at current time step.

stressMask (=0, all strains)
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

stressRate (=Vector6r::Zero())
Current stress rate vector (that is prescribed, the actual one slightly differ).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.

Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))

at step 400 (=5%1000/2) the value is 450 (=3*300/2),

at step 800 (=4*1000/5) the value is 150 (=1*300/2),

at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).
See example scripts/test/peri3dController examplel for illusration.

xyPath (=vector<Vector2r>(1, Vector2r::Ones()))
Time function for xy direction, see zzPath

youngEstimation(=1e20)
Estimation of macroscopic Young’s modulus, used for the first simulation step

yyPath (=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yy direction, see zzPath

yzPath (=vector< Vector2r>(1, Vector2r::Ones()))
Time function for yz direction, see zzPath

2.3.

Yade wrapper class reference 291

https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/peri3dController_example1

Yade Documentation, Release 3rd ed.

zxPath (=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zx direction, see xzPath

zzPath (=vector< Vector2r>(1, Vector2r::Ones()))
Time function for zz direction, see zzPath

class yade.wrapper.PeriIsoCompressor (inherits BoundaryController — GlobalEngine — En-
gine — Serializable)
Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.

charLen(=-1.)
Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

currUnbalanced
Current value of unbalanced force

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doneHook(="")
Python command to be run when reaching the last specified stress

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

globalUpdatelInt (=20)
how often to recompute average stress, stiffness and unbalanced force

keepProportions (=true)
Exactly keep proportions of the cell (stress is controlled based on average, not its components

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxSpan(=-1.)
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

maxUnbalanced(=1e-4)
if actual unbalanced force is smaller than this number, the packing is considered stable,

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sigma
Current stress value

state(=0)
Where are we at in the stress series

292 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

stresses (=uninitalized)
Stresses that should be reached, one after another

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.PeriTriaxController (inherits BoundaryController — GlobalEngine —
Engine — Serializable)

Engine for independently controlling stress or strain in periodic simulations.
PeriTriazController.goal contains absolute values for the controlled quantity, and Peri-
TriaxzController.stressMask determines meaning of those values (0 for strain, 1 for stress):
eg. (1<<0 | 1<<2) =1 | 4 = 5means that goal[0] and goal[2] are stress values,
and goal[1] is strain.

See scripts/test /periodic-triax.py for a simple example.

absStressTol(=1e3)
Absolute stress tolerance

currUnbalanced(=NaN)
current unbalanced force (updated every globUpdate) (auto-updated)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doneHook (=uninitalized)
python command to be run when the desired state is reached

dynCell (=false)
Imposed stress can be controlled using the packing stiffness or by applying the laws of dynamic
(dynCell=true). Don’t forget to assign a mass to the cell.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

externalWork(=0)
Work input from boundary controller.

globUpdate (=5)
How often to recompute average stress, stiffness and unbalaced force.

goal
Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii).

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

growDamping (=.25)
Damping of cell resizing (O=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

2.3. Yade wrapper class reference 293

Yade Documentation, Release 3rd ed.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mass (=NalN)
mass of the cell (user set); if not set and dynCell is used, it will be computed as sum of masses
of all particles.

maxBodySpan (= Vector3r::Zero())
maximum body dimension (auto-computed)

maxStrainRate (= Vector3r(1, 1, 1))
Maximum strain rate of the periodic cell.

maxUnbalanced(=171e-4)
maximum unbalanced force.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

prevGrow (= VectorSr::Zero())
previous cell grow

relStressTol (=3¢-5)
Relative stress tolerance

stiff (=Vector3r::Zero())
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

strain(=Vector3r::Zero())
cell strain (auto-updated)

strainRate (= Vector3r::Zero())
cell strain rate (auto-updated)

stress (=Vectordr::Zero())
diagonal terms of the stress tensor

stressMask (=0, all strains)
mask determining strain/stress (0/1) meaning for goal components

stressTensor (=Matriz3r::Zero())
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.ThreeDTriaxialEngine (inherits TriazialStressController — Bound-

aryController — GlobalEngine — Engine —

Serializable)
The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl i)

else in strain.

For a stress control the imposed stress is specified by ‘sigma_ i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using

294

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

TriaxialStressController: :controlInternalStress. For that, just switch on ‘internalCom-
paction=1" and fix sigma_ iso=value of mean pressure that you want at the end of the internal
compaction.

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

Key (— » 77)
A string appended at the end of all files, use it to name simulations.

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

boxVolume
Total packing volume.

computeStressStrainInterval(=10)

currentStrainRatel (=0)
current strain rate in direction 1 - converging to ThreeD TriaxzialEngine::strainRatel (./s)

currentStrainRate2(=0)
current strain rate in direction 2 - converging to ThreeD TriazialEngine::strainRate2 (./s)

currentStrainRate3(=0)
current strain rate in direction 3 - converging to ThreeD TriazialEngine::strainRate3 (./s)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

externalWork(=0)
Mechanical work associated to the boundary conditions, i.e. fa o I -uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - 77ri-
axialStressController::mazMultiplier is used in the initial stage)
frictionAngleDegree(=-1)
Value of friction used in the simulation if (updateFrictionAngle)

goall(=0)

prescribed stress/strain rate on axis 1, as defined by TriazialStressController::stressMask

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriazialStressController::stressMask

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriazialStressController::stressMask

2.3.

Yade wrapper class reference 295

Yade Documentation, Release 3rd ed.

height (=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction (=true)
Switch between ‘external’” (walls) and ‘internal’ (growth of particles) compaction.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriazialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_ vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriazialStressController::maz_wvell).

max_vell
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriazialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress (=0)
Mean stress in the packing. (auto-updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

porosity
Porosity of the packing, computed from particles Volume and boxzVolume. (auto-updated)

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval (=10)

setContactProperties ((ThreeD TriazialEngine)argl, (float)arg2) — None :
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

spheresVolume
Shorthand for TriazialStressController::particles Volume

stiffnessUpdateInterval (=10)
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

296

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

strainDamping(=0.9997)
factor used for smoothing changes in effective strain rate. If target rate is TR, then (1-
damping)*(TR-currentRate) will be added at each iteration. With damping=0, rate=target
all the time. With damping=1, it doesn’t change.

strainRate
Current strain rate in a vector d/dt(exx,eyy,ezz).

strainRatel(=0)
target strain rate in direction 1 (./s, >0 for compression)

strainRate2(=0)
target strain rate in direction 2 (./s, >0 for compression)

strainRate3(=0)
target strain rate in direction 3 (./s, >0 for compression)

stress ((TriazialStressController)argl, (int)id) — Vector3 :
Returns the average stress on boundary ‘id. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

stressControl_1(=true)
Switch to choose a stress or a strain control in directions 1

stressControl_2(=true)
Switch to choose a stress or a strain control in directions 2

stressControl_3(=true)
Switch to choose a stress or a strain control in directions 3

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

stressMask(=7)
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updateFrictionAngle (=false)
Switch to activate the update of the intergranular frictionto the value ThreeDTriaxi-
alEngine::frictionAngle Degree.

updatePorosity(=false)
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

volumetricStrain(=0)
Volumetric strain (see TriazialStressController::strain). (auto-updated)

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

2.3.

Yade wrapper class reference 297

Yade Documentation, Release 3rd ed.

wall_back_id(=/)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

width(=0)
size of the box (0-axis) (auto-updated)

width0o(=0)
Reference size for strain definition. See TriazialStressController: :width

class yade.wrapper.TriaxialCompressionEngine (inherits TriazialStressController — Bound-
aryController — GlobalEngine — Engine —
Serializable)
The engine is a state machine with the following states; transitions my be automatic, see below.
1. STATE_ISO__COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmalsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (linternalCompaction) or by growing size of grains (internalCom-
paction).

2. STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmalLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmaLateralConfinement == sigmalsoCom-
paction.

3. STATE_TRIAX_ LOADING: confined uniaxial compression: constant sigmaLateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

298 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

4. STATE_FIXED_POROSITY_COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5. STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;

Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

Note: Most of the algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used
in e.g. [Kozicki2008],[Scholtes2009b]__,[Jerier2010b].

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

Key (— ” 77)
A string appended at the end of all files, use it to name simulations.

StabilityCriterion(=0.001)
tolerance in terms of TriazialCompressionEngine::UnbalancedForce to consider the packing is
stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

autoCompressionActivation(=true)
Auto-switch from isotropic compaction (or unloading state if sigmalateralConfine-
ment<sigmalsoCompaction) to deviatoric loading

autoStopSimulation(=false)
Stop the simulation when the sample reach STATE_ LIMBO, or keep running

autoUnload (=true)
Auto-switch from isotropic compaction to unloading

boxVolume
Total packing volume.

computeStressStrainInterval (=10)

currentState(=1)
There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per. Triaxzial CompressionEngine

currentStrainRate (=0)
current strain rate - converging to TriazialCompressionEngine::strainRate (./s)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriazialStressController::depth

2.3.

Yade wrapper class reference 299

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

epsilonMax (=0.5)
Value of axial deformation for which the loading must stop

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

externalWork(=0)
Mechanical work associated to the boundary conditions, i.e. fa o I -uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - 77ri-
azialStressController::maxMultiplier is used in the initial stage)

fixedPoroCompaction(=false)
A special type of compaction with imposed final porosity TriazialCompressio-
nEngine::fizedPorosity (WARNING : can give unrealistic results!)

fixedPorosity(=0)
Value of porosity chosen by the user

frictionAngleDegree(=-1)
Value of friction assigned just before the deviatoric loading

goall(=0)
prescribed stress/strain rate on axis 1, as defined by TriazialStressController::stressMask

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriazialStressController::stressMask

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriazialStressController::stressMask

height (=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriazialStressController::height

internalCompaction (=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

isAxisymetric(=false)
if true, sigma_iso is assigned to sigmal, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriazialStress-
Controller::finalMaxMultiplier is used in a second stage)

maxStress (=0)
Max absolute value of axial stress during the simulation (for post-processing)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_ vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis

300

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriazialStressController::maz_vell).

max_vell
see TriazialStressController::maz_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriazialStressController::maz_vel (auto-computed)

meanStress (=0)
Mean stress in the packing. (auto-updated)

noFiles(=false)
If true, no files will be generated (*.xml, *.spheres,...)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

porosity
Porosity of the packing, computed from particles Volume and boxzVolume. (auto-updated)

previousMultiplier(=1)
(auto-updated)

previousSigmaIso(=1)
Previous value of inherited sigma__iso (used to detect manual changes of the confining pressure)

previousState(=1)
Previous state (used to detect manual changes of the state in .xml)

previousStress(=0)
(auto-updated)

radiusControlInterval (=10)

setContactProperties ((TriaxvialCompressionEngine)argl, (float)arg2) — None :
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

sigmaIlsoCompaction(=1)
Prescribed isotropic pressure during the compaction phase (< 0 for real - compressive - com-
paction)

sigmalateralConfinement (=1)
Prescribed confining pressure in the deviatoric loading (< 0 for classical compressive cases);
might be different from TriaxzialCompressionEngine::sigmalsoCompaction
sigma_iso(=0)
prescribed confining stress (see :yref:Triaxial CompressionEngine::isAxisymetric’)
spheresVolume
Shorthand for TriazialStressController::particles Volume

stiffnessUpdateInterval(=10)
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

2.3.

Yade wrapper class reference 301

Yade Documentation, Release 3rd ed.

strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

strainDamping(=0.99)
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like d™ reaches 0, where d is the damping coefficient and n is the number of steps

strainRate(=0)
target strain rate (./s, >0 for compression)

stress ((TriaxialStressController)argl, (int)id) — Vector3 :
Returns the average stress on boundary ‘id. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

stressMask(=7)
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

testEquilibriumInterval (=20)
interval of checks for transition between phases, higher than 1 saves computation time.

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

translationAxis (=TriazialStressController::normalfwall_bottom])
compression axis

uniaxialEpsilonCurr(=1)
Current value of axial deformation during confined loading (is reference to strain[1])

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updatePorosity(=false)
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

volumetricStrain(=0)
Volumetric strain (see TriazialStressController::strain). (auto-updated)

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

302

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

warn(=0)
counter used for sending a deprecation warning once

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialStressController (inherits BoundaryController — GlobalEngine

— Engine — Serializable)
An engine maintaining constant stresses or constant strain rates on some boundaries of a par-

allepipedic packing. The stress/strain control is defined for each axis using TriaxialStressCon-
troller::stressMask (a bitMask) and target values are defined by goall,goal2, and goal3. The sign
conventions of continuum mechanics are used for strains and stresses (positive traction).

Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used
in e.g. [Kozicki2008],[Scholtes2009b]__,[Jerier2010b].

boxVolume
Total packing volume.

computeStressStrainInterval (=10)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriazialStressController::depth

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

2.3. Yade wrapper class reference 303

Yade Documentation, Release 3rd ed.

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

externalWork(=0)
Mechanical work associated to the boundary conditions, i.e. fa o T -uds with T the surface
traction and u the displacement at the boundary. (auto-updated)

finalMaxMultiplier (=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - 77ri-
axialStressController::maxMultiplier is used in the initial stage)

goall(=0)
prescribed stress/strain rate on axis 1, as defined by TriazialStressController::stressMask

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriazialStressController::stressMask

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriazialStressController::stressMask

height (=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriazialStressController::height

internalCompaction (=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriazialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_ vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriazialStressController::maz_vell).

max_vell
see TriazialStressController::maz_vel (auto-computed)

max_vel2
see TriazialStressController::maz_vel (auto-computed)

max_vel3
see TriaxialStressController::maz_vel (auto-computed)

meanStress (=0)
Mean stress in the packing. (auto-updated)

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particlesVolume
Total volume of particles (clumps and dynamic spheres). (auto-computed)

304

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

porosity
Porosity of the packing, computed from particles Volume and boxVolume. (auto-updated)

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval (=10)

spheresVolume
Shorthand for TriazialStressController: :particles Volume

stiffnessUpdatelInterval (=10)
iteration period for measuring the resultant packing-boundaries stiffnesses, for stress servo-
control

strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

strainDamping(=0.99)
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like d™ reaches 0, where d is the damping coefficient and n is the number of steps

strainRate
Current strain rate in a vector d/dt(exx,eyy,ezz).

stress ((TriazialStressController)argl, (int)id) — Vector3 :
Returns the average stress on boundary ‘id. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

stressDamping (=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

stressMask(=7)
Bitmask determining wether the imposed goal values are stresses (0 for none, 7 for all, 1 for
direction 1, 5 for directions 1 and 3, etc.) or strain rates

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updatePorosity(=false)
If true, solid volume will be updated once (will automatically reset to false after one calculation
step) e.g. for porosity calculation purpose. Can be used when volume of particles changes
during the simulation (e.g. when particles are erased or when clumps are created).

volumetricStrain(=0)
Volumetric strain (see TriazialStressController::strain). (auto-updated)

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

2.3.

Yade wrapper class reference 305

Yade Documentation, Release 3rd ed.

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

width(=0)
size of the box (0-axis) (auto-updated)

width0o(=0)
Reference size for strain definition. See TriazialStressController: :width

class yade.wrapper.UniaxialStrainer (inherits BoundaryController — GlobalEngine — FEn-

gine — Serializable)
Axial displacing two groups of bodies in the opposite direction with given strain rate.

absSpeed(=NaN)
alternatively, absolute speed of boundary motion can be specified; this is effective only at the
beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms!]

active (=true)
Whether this engine is activated

asymmetry (=0, symmetric)
If 0, straining is symmetric for neglds and poslds; for 1 (or -1), only poslds are strained and
neglds don’t move (or vice versa)

avgStress (=0)
Current average stress (auto-updated) [Pal

axis(=2)
The axis which is strained (0,1,2 for x,y,z)
blockDisplacements (=false)

Whether displacement of boundary bodies perpendicular to the strained axis are blocked or
are free

blockRotations (=false)
Whether rotations of boundary bodies are blocked.

306 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

crossSectionArea(=NaN)
crossSection perpendicular to he strained axis; must be given explicitly [m?]

currentStrainRate(=NalN)
Current strain rate (update automatically). (auto-updated)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

idleIterations(=0)
Number of iterations that will pass without straining activity after stopStrain has been reached

initAccelTime (=-200)
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

limitStrain(=0, disabled)
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

neglds (=uninitalized)
Bodies on which strain will be applied (on the negative end along the axis)

notYetReversed (=true)
Flag whether the sense of straining has already been reversed (only used internally).

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

originalLength(=NaN)
Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

posIds (=uninitalized)
Bodies on which strain will be applied (on the positive end along the axis)

setSpeeds (=false)
should we set speeds at the beginning directly, instead of increasing strain rate progressively?

stopStrain(=NaN)
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

strain(=0)
Current strain value, elongation/originalLength (auto-updated) [-]

2.3.

Yade wrapper class reference 307

Yade Documentation, Release 3rd ed.

strainRate(=NaN)
Rate of strain, starting at 0, linearly raising to strainRate. [-]

stressUpdateInterval (=10)
How often to recompute stress on supports.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :

Update object attributes from given dictionary

Collider

FlatGridCollider

‘ Collider H InsertionSortCollider }-—{ GeneralIntegratorInsertionSortCollider

\ SpatialQuickSortCollider \

Fig. 2.28: Inheritance graph of Collider. See also: FlatGridCollider, GenerallntegratorinsertionSortCol-
lider, InsertionSortCollider, SpatialQuickSortCollider.

class yade.wrapper.Collider (inherits GlobalEngine — FEngine — Serializable)

Abstract class for finding spatial collisions between bodies.

Special constructor

Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.

avoidSelfInteractionMask(=0)
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfinteractionMask as for their binary representations.

boundDispatcher (=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

308

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FlatGridCollider (inherits Collider — GlobalEngine — Engine — Serial-

izable)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly

multiple) cells, which are arranged in regular grid between aabbMin and aabbMaz, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMaz) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.

Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: objects Body::bound are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).

aabbMax (= Vector3r::Zero())
Upper corner of grid (approximate, might be rouded up to minStep.

aabbMin (= Vector3r::Zero())
Lower corner of grid.

avoidSelfInteractionMask(=0)
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfinteractionMask as for their binary representations.

boundDispatcher (=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

2.3. Yade wrapper class reference 309

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

step(=0)
Step in the grid (cell size)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

verletDist (=0)
Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.wrapper.GeneralIntegratorInsertionSortCollider (inherits InsertionSort-

Collider — Collider —
GlobalEngine — FEngine —

Serializable)
This class is the adaptive version of the InsertionSortCollider and changes the NewtonIntegrator

dependency of the collider algorithms to the Integrator interface which is more general.

allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

avoidSelfInteractionMask(=0)
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

boundDispatcher (=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doSort (=false)
Do forced resorting of interactions.

dumpBounds ((InsertionSortCollider)argl) — tuple :
Return representation of the internal sort data. The format is ([...]1,[...]1,[...]) for 3
axes, where each . .. is a list of entries (bounds). The entry is a tuple with the fllowing items:

« coordinate (float)
e body id (int), but negated for negative bounds
 period numer (int), if the collider is in the periodic regime.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

310

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

fastestBodyMaxDist (=0)
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

isActivated ((InsertionSortCollider)argl) — bool :
Return true if collider needs execution at next iteration.

keepListsShort (=false)
if true remove bounds of non-existent or unbounded bodies from the lists (auto-updated);
turned true automatically in MPI mode and if bodies are erased with BodyCon-
tainer.enableRedirection‘="True. :ydefault:‘false

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor (=0.1)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

newton (=shared_ ptr<NewtonIntegrator>())
reference to active Newton integrator. (auto-updated)

numAction(=0)
Cummulative number of collision detection.

numReinit (=0)
Cummulative number of bound array re-initialization.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

overlapTolerance(=Ie-7)
Tolerance on determining overlap. In rare cases different parts of the code can inconsistently
lead to different results in terms of overlap, with false negative by spatialOverlapPeri possibly
leading to nasty bugs in contact detection (false positive are harmless). This tolerance is to
avoid false negative, the value can be understood as relative to 1 (i.e. independent of particle
size or any other reference length). The default should be ok.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

smartInsertErase (=false)
Use an algorithm optimized for heavy insert/delete (avoid initSort) - experimental.

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide (=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

2.3.

Yade wrapper class reference 311

Yade Documentation, Release 3rd ed.

targetInterv(=100)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updatingDispFactor (=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

verletDist (=-.5, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be wverletDist X minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.wrapper.InsertionSortCollider (inherits Collider — GlobalEngine — Engine —

Serializable)
Collider with O(n log(n)) complexity, using Aabb for bounds.

At the initial step, Bodies’ bounds (along sortAwzis) are first std::sort’ed along this (sortAxis)
axis, then collided. The initial sort has O(n?) complexity, see Colliders’ performance for some
information (There are scripts in examples/collider-perf for measurements).

Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).

Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.

This collider handles periodic boundary conditions. There are some limitations, notably:

1. No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception if it does and gets in interaction. One way to explicitly by-pass this restriction is
offered by allowBiggerThanPeriod, which can be turned on to insert a floor in the form of a
very large box for instance (see examples/periodicSandPile.py).

2. No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their displacements and only re-run if they might have gone out of that bounds (see Verlet
list for brief description and background) . This requires cooperation from NewtonlIntegrator as
well as BoundDispatcher, which will be found among engines automatically (exception is thrown if
they are not found).

If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 x typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.

If targetInterv is >1, not all particles will have their bound enlarged by verletDist; instead,
they will have bounds increased by a length in order to trigger a new colliding after targetInterv
iteration, assuming they move at almost constant velocity. Ideally in this method, all particles
would reach their bounds at the sime iteration. This is of course not the case as soon as velocities
fluctuate in time. Bound::sweepLength is tuned on the basis of the displacement recorded between

312

Chapter 2. Yade for users

https://yade-dem.org/wiki/Colliders_performace
http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Verlet_list

Yade Documentation, Release 3rd ed.

the last two runs of the collider. In this situation, verletDist defines the maximum sweep length.

allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

avoidSelfInteractionMask(=0)
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this
avoidSelfInteractionMask as for their binary representations.

boundDispatcher (=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doSort (=false)
Do forced resorting of interactions.

dumpBounds ((InsertionSortCollider)argl) — tuple :
Return representation of the internal sort data. The format is ([...],[...]1,[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

« coordinate (float)
e body id (int), but negated for negative bounds
o period numer (int), if the collider is in the periodic regime.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

fastestBodyMaxDist (=0)
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

isActivated((InsertionSortCollider)argl) — bool :
Return true if collider needs execution at next iteration.

keepListsShort (=false)
if true remove bounds of non-existent or unbounded bodies from the lists (auto-updated);
turned true automatically in MPI mode and if bodies are erased with BodyCon-
tainer.enableRedirection‘=True. :ydefault:‘false

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor(=0.1)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

newton (=shared_ptr<NewtonIntegrator>())
reference to active Newton integrator. (auto-updated)

2.3.

Yade wrapper class reference 313

Yade Documentation, Release 3rd ed.

numAction(=0)
Cummulative number of collision detection.

numReinit (=0)
Cummulative number of bound array re-initialization.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

overlapTolerance(=Ie-7)
Tolerance on determining overlap. In rare cases different parts of the code can inconsistently
lead to different results in terms of overlap, with false negative by spatialOverlapPeri possibly
leading to nasty bugs in contact detection (false positive are harmless). This tolerance is to
avoid false negative, the value can be understood as relative to 1 (i.e. independent of particle
size or any other reference length). The default should be ok.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

smartInsertErase (=false)
Use an algorithm optimized for heavy insert/delete (avoid initSort) - experimental.

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide (=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

targetInterv(=100)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updatingDispFactor (=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

verletDist (=-.5, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be wverletDist x minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

314

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

class yade.wrapper.SpatialQuickSortCollider (inherits Collider — GlobalEngine — Engine

— Serializable)
Collider using quicksort along axes at each step, using Aabb bounds.

Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the

algorithm is simple enought to make it good for checking other collider’s correctness.

avoidSelfInteractionMask(=0)

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the exact same mask and that mask should have one bit in common with this

avoidSelfInteractionMuask as for their binary representations.

boundDispatcher (=new BoundDispatcher)

BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead (=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated

and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime

Cumulative time in nanoseconds this Engine took to run (only wused

O.timingEnabled==True).

label (=uninitalized)

if

Textual label for this object; must be valid python identifier, you can refer to it directly from

python.
ompThreads (=-1)

Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in

nested OMP loops with different number of threads at each level.

timingDeltas

Detailed information about timing inside the Engine itself. Empty unless enabled in the source

code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

FieldApplier

GravityEngine HdapsGravityEngine

FieldApplier H CentralConstantAccelerationEngine ‘

AxialGravityEngine

Fig. 2.29: Inheritance graph of FieldApplier. See also: AwxialGravityEngine, CentralConstantAccelera-

tionEngine, GravityEngine, HdapsGravityEngine.

class yade.wrapper.FieldApplier (inherits GlobalEngine — Engine — Serializable)
Base for engines applying force files on particles. Not to be used directly.

2.3. Yade wrapper class reference

315

https://yade-dem.org/wiki/Colliders_performace

Yade Documentation, Release 3rd ed.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.AxialGravityEngine (inherits FieldApplier — GlobalEngine — Engine —
Serializable)

Apply acceleration (independent of distance) directed towards an axis.

acceleration(=0)
Acceleration magnitude [kgms 2]

axisDirection(=Vector3r::UnitX())
direction of the gravity axis (will be normalized automatically)

axisPoint (=Vectordr::Zero())
Point through which the axis is passing.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

316 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CentralConstantAccelerationEngine (inherits FieldApplier — Glob-

alEngine — Engine — Serializ-

able
Engine applying constant acceleration to all bodies, towards a central body. Ignoring the distance
between them.

accel(=0)
Acceleration magnitude [kgms 2]

centralBody (=Body::ID__NONE)
The body towards which all other bodies are attracted.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reciprocal (=false)
If true, acceleration will be applied on the central body as well.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

2.3.

Yade wrapper class reference 317

Yade Documentation, Release 3rd ed.

class yade.wrapper.GravityEngine (inherits FieldApplier — GlobalEngine — Engine — Seri-

alizable)
Engine applying constant acceleration to all bodies. DEPRECATED, use Newton::gravity unless

you need energy tracking or selective gravity application using groupMask).

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

gravity (=Vector3r::Zero())
Acceleration [kgms 2]

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

warnOnce (=true)
For deprecation warning once.

class yade.wrapper.HdapsGravityEngine (inherits GravityEngine — FieldApplier — Glob-

alEngine — Engine — Serializable)
Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-

tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.

accel (=Vector2i::Zero())
reading from the sysfs file

calibrate (=Vector2i::Zero())
Zero position; if NaN, will be read from the hdapsDir / calibrate.

calibrated(=false)
Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

318

Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
https://gitlab.com/yade-dev/trunk/blob/master/scripts/test/hdaps.py

Yade Documentation, Release 3rd ed.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

gravity (=Vector3r::Zero())
Acceleration [kgms 2]

hdapsDir (="/sys/devices/platform/hdaps”)
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

msecUpdate (=50)
How often to update the reading.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updateThreshold (=4)
Minimum difference of reading from the file before updating gravity, to avoid jitter.

warnOnce (=true)
For deprecation warning once.

zeroGravity (=Vector3r(0, 0, -1))
Gravity if the accelerometer is in flat (zero) position.

2.3.4 Partial engines

class yade.wrapper.PartialEngine (inherits Engine — Serializable)

Engine affecting only particular bodies in the simulation, namely those defined in ids attribute. See
also GlobalEngine.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

2.3.

Yade wrapper class reference 319

Yade Documentation, Release 3rd ed.

‘ FlowEngine_PeriodicInfo PeriodicFlowEngine
‘ TwoPhaseFlowEngineT TwoPhaseFlowEngine

HarmonicForceEngine ‘

‘ CombinedKinematicEngine ‘ ‘ InterpolatingDirectedForceEngine ‘

HelixEngine InterpolatingHelixEngine

BicyclePedalEngine
| '/ HarmonicMotionEngine ‘
.‘"
I PartialSatClayEngineT

HarmonicRotationEngine ‘

Fig. 2.30: Inheritance graph of PartialEngine. See also: BicyclePedalEngine, CombinedKinemati-
cEngine, DragEngine, FlowEngine, FlowEngineT, FlowEngine PeriodicInfo, ForceEngine, Harmon-
icForceEngine, HarmonicMotionEngine, HarmonicRotationEngine, HelixEngine, HydroForceEngine,
InterpolatingDirectedForceEngine, InterpolatingHelizEngine, KinematicEngine, LawTester, LinearDra-
gEngine, PartialSatClayEngine, PartialSatClayEngineT, PeriodicFlowEngine, RadialForceEngine, Ro-
tationEngine, ServoPIDController, StepDisplacer, ThermalEngine, TorqueEngine, TranslationFEngine,
TwoPhaseFlowEngine, TwoPhaseFlowEngineT, UnsaturatedEngine.

320 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.BicyclePedalEngine (inherits KinematicEngine — PartialEngine — En-

gine — Serializable)
Engine applying the linear motion of bicycle pedal e.g. moving points around the axis without
rotation

angularVelocity(=0)
Angular velocity. [rad/s]

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

£i(=Mathr::P1/2.0)
Initial phase [radians]

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

2.3.

Yade wrapper class reference 321

Yade Documentation, Release 3rd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

radius(=-1.0)
Rotation radius. [m]

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.CombinedKinematicEngine (inherits PartialEngine — Engine — Serializ-

able)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator

on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).

comb (=uninitalized)
Kinematic engines that will be combined by this one, run in the order given.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.DragEngine (inherits PartialEngine — FEngine — Serializable)
Apply drag force on some particles at each step, decelerating them proportionally to their linear

322 Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Drag_equation

Yade Documentation, Release 3rd ed.

velocities. The applied force reads

v
Fa = ——-pv[>C4A
a IvIZpM d

where p is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cq is the drag coefficient (0.47 for Sphere),

Note: Drag force is only applied to spherical particles, listed in ids.

ca(=0.47)
Drag coefficient <http://en.wikipedia.org/wiki/Drag coefficient>*_ .

Rho (=1.225)
Density of the medium (fluid or air), by default - the density of the air.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.FlowEngine (inherits FlowEnginel — PartialEngine — Engine — Serializ-

able)
An engine to solve flow problem in saturated granular media. Model description can be found in

[Chareyre2012a] and [Catalano201ja]. See the example script FluidCouplingPFV /oedometer.py.
More documentation to come.

0SI((FlowEngineT)argl) — float :
Return the number of interactions only between spheres.

alphaBound (=-1)
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

2.3. Yade wrapper class reference 323

http://en.wikipedia.org/wiki/Drag_coefficient

Yade Documentation, Release 3rd ed.

alphaBoundValue (=0)
value of alpha constant pressure condition

avF1VelOnSph ((FlowEngineT)argl, (int)idSph) — object :
compute a sphere-centered average fluid velocity

averageCavityPressure (=false)
true means the pressure in the cavity will be averaged each iteration.

averagePressure ((FlowEngineT)argl) — float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure ((FlowEngineT)argl, (float)posY) — float :
Measure slice-averaged pore pressure at height posY

averageVelocity ((FlowEngineT)argl) — Vector3 :
measure the mean velocity in the period

blockCell((FlowEngineT)argl, (int)id, (bool)blockPressure) — None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook(="")
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

bndCondIsPressure (=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::zmin and friends.

bndCondIsTemperature (=vector<bool>(6, false))
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

bndCondValue (=vector<Real>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed

pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress ((FlowEngineT)argl, (int)idSph) — Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress ((FlowEngineT)argl, (int)idSph) — Matrix3 :
Return the shear lubrication stress on sphere idSph.

boundaryPressure (=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

boundaryUseMaxMin (=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity (=vector< Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundary Vel

boundaryXPos (=vector<Real>())
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

breakControlledRemesh(=0))
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

324

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

cavityFactor(=1.)
Permeability /viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

cavityFluidDensity (=0)
>0 means cavity compressibility model considers density changes instead of volume changes.

cavityFlux(=0)
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats ((FlowEngineT)argl) — None :
get statistics of cholmod solver activity

clampKValues (=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux ((FlowEngineT)argl) — None :
Clear the list of points with flux imposed.

clearImposedPressure((FlowEngineT)argl) — None :
Clear the list of points with pressure imposed.

compTessVolumes ((FlowEngineT)argl) — None :
Like TesselationWrapper::computeVolumes()

controlCavityPressure (=false)
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

controlCavityVolumeChange (=false)
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

convertClumps (=true)
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug (=false)
Activate debug messages

decoupleForces (=false)
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

defTolerance (=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdatelnterval

desiredPorosity (=0)
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

2.3.

Yade wrapper class reference 325

Yade Documentation, Release 3rd ed.

dt (=0)
timestep]

edgeSize ((FlowEngineT)argl) — float :
Return the number of interactions.

emulateAction((FlowEngineT)argl) — None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps (=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

epsVolMax (=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

exportMatrix((FlowEngineT)argl[, (str)ﬁlename:’matm’m’]) — None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngineT)arg][, (str)ﬁlename:’triplets’]) — None :
Export system matrix to a file with only non-zero entries.

first (=true)
Controls the initialization/update phases

fixTriUpdatePermInt (=-1)
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdateInt and
FlowEngine::defTolerance to -1 (never retriangulate).

fixedAlpha (=false)

If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

flatThreshold(=-1)
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

fluidBulkModulus (=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidCp(=4181.9)
Heat capacity of fluid (for thermalEngine).

fluidForce ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the fluid force on sphere idSph.

fluidRho (=1000.)
Density of fluid (for thermalEngine).

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngineT)argl, (int)boundary) — float :
Get total fluid area associated with boundary defined by its body id.

326

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getBoundaryFlux ((FlowEngineT)argl, (int)boundary) — float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel ((FlowEngineT)argl, (int)boundary) — object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume ((FlowEngineT)argl, (int)arg2, (float)boundary) — float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

getCHOLMODPerfTimings (=false)
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity ((FlowEngineT)argl) — float :
Return the density of cavity fluid.

getCavityFlux ((FlowEngineT)argl) — float :
Return the flux through the edge of the cavity.

getCell ((FlowEngineT)argl, (float)X, (float)Y, (float)Z) — int :
get id of the cell containing (X,Y,Z).

getCellBarycenter ((FlowEngineT)argl, (int)id) — Vector3 :
get barycenter of cell ‘id’.

getCellCenter ((FlowEngineT)argl, (int)id) — Vector3 :
get voronoi center of cell ‘id’.

getCellFlux ((FlowEngineT)argl, (int)cond) — float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId ((FlowEngineT)argl, (int)id) — float :
Get influx in cell.

getCellInvVoidVolume ((FlowEngineT)argl, (int)id) — float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-
tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluid BulkModulus.

getCellPImposed ((FlowEngineT)argl, (int)id) — bool :

get the status of cell ‘id” wrt imposed pressure.

getCellPressure ((FlowEngineT)argl, (int)id) — float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed ((FlowEngineT)argl, (int)id) — bool :
get the status of cell ‘id’” wrt imposed temperature.

getCellTemperature ((FlowEngineT)argl, (int)id) — float :
get pressure in cell ‘id’.

getCellVelocity ((FlowEngineT)argl, (Vector3)pos) — object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

2.3. Yade wrapper class reference 327

Yade Documentation, Release 3rd ed.

getCellVolume ((FlowEngineT)argl, (Vector3)pos) — float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity ((FlowEngineT)argl, (int)cellld, (int)throat) — float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowE’ngz’neT)argl[7 (boal)all:True]) — list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngz’neT)argZ[, (bool)all:True]) — list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{celll,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff ((FlowEngineT)argl, (int)cellld, (int)throat) — float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility ((FlowEngineT)argl) — float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells ((FlowEngineT)argl, (int)vertexld) — list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors ((FlowEngineT)argl, (int)arg2) — list :
get 4 neigboring cells

getPorePressure ((FlowEngineT)argl, (Vector3)pos) — float :
Measure pore pressure in position pos[0],pos[1],pos|2]

getPoreTemperature ((FlowEngineT)argl, (Vector3)pos) — float :
Measure pore pressure in position pos[0],pos[1],pos|2]

getVertices ((FlowEngineT)argl, (int)id) — list :
get the vertices of a cell

id0ffset (=0)
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::walllds.

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

ignoredBody (=-1)
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity ((FlowEngineT)argl, (Vector3)pos) — int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux ((FlowEngineT)argl, (Vectors)pos, (float)p) — None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure ((FlowEngineT)argl, (Vector3)pos, (float)p) — int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

328

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

imposePressureFromld ((FlowEngineT)argl, (int)id, (float)p) — int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

iniVoidVolumes (=false)
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes ((FlowEngineT)argl) — None :
initialize pore volumes.

isActivated (=true)
Activates Flow Engine

isCellNeighbor ((FlowEngineT)argl, (int)celll ID, (int)cell2_ID) — bool :
check if celll and cell2 are neigbors.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

maxKdivKmean (=100)
define the max K value (see FlowEngine::clampK Values)

meanKStat (=false)
report the local permeabilities’ correction

meshUpdateInterval (=1000)
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed ((FlowEngineT)argl) — bool :
check wether metis lib is effectively used

minKdivKmean (=0.0001)
define the min K value (see FlowEngine::clampK Values)

minimumPorosity (=0)
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells ((FlowEngineT)argl) — int :
get the total number of finite cells in the triangulation.

normalLubForce ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the normal vector between particles.

normalVelocity ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

2.3.

Yade wrapper class reference 329

Yade Documentation, Release 3rd ed.

numSolveThreads (=1)
number of openblas threads in the solve phase.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions ((FlowEngineT)argl, (int)interaction) — int :
Return the id of the interaction only between spheres.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
Permability multiplier (m): m = 1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity —m

permeabilityMap (=false)

Enable/disable stocking of average permeability scalar in cell infos.
phiZero(=0)

if >0, considers water aircontent impact on fluid compressibility.
porosity(=0)

Porosity computed at each retriangulation (auto-updated)

pressureForce (=true)
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile ((FlowEngineT)argl, (float)wallUpY, (float)wallDownY) — None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

printVertices((FlowFEngineT)argl) — None :
Export vertex positions and types

pumpTorque (=false)
Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

resetLinearSystem((FlowEngineT)argl) — None :
trigger rebuild of the linear system while keeping the same triangulation

savthk((FlowEngz'neT)arg][, (str)folder:Z/VTK’[, (bool)withBoundam’es:False]]) —

None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to

the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal ((FlowEngineT)argl, (int)arg2, (Vector3)arg3) — None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed ((FlowEngineT)argl, (int)id, (bool)pImposed) — None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure ((FlowEngineT)argl, (int)id, (float)pressure) — None :
set pressure in cell ‘id’.

330

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

setCellTImposed ((FlowEngineT)argl, (int)id, (bool)tImposed) — None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature ((FlowEngineT)argl, (int)id, (float)temperature) — None :
set temperature in cell ‘id’.

setImposedPressure ((FlowEngineT)argl, (int)cond, (float)p) — None :
Set pressure value at the point indexed ‘cond’.

shearLubForce ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the shear velocity of the interaction.

sineAverage (=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude (=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p)

slipBoundary (=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle ((FlowEngineT)argl, (int)interaction) — float :
Return the distance between particles.

surfaceSolidThroatInPore ((FlowEngineT)argl, (int)cellld, (int)throatIndex) — float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

tZero(=0)
The value used for initializing pore temperatures in thermalEngine.

tempDependentViscosity (=false)
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

thermalBndCondValue (=vector<Real>(6, 0))
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

thermalEngine (=false)
activate thermalEngine within FlowEngine.

thermalPorosity (=0)
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

tolerance (=1e-06)
Gauss-Seidel tolerance

twistTorque (=false)
Compute twist torque applied on particles

2.3.

Yade wrapper class reference 331

Yade Documentation, Release 3rd ed.

updateAttrs ((Serializable)argl, (dict)arg2) — None :

Update object attributes from given dictionary

updateBCs ((FlowEngineT)argl) — None :

Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondlsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

updateTriangulation(=0)

If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdatelnterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes ((FlowEngineT)argl) — None :

update rates of volume change

useSolver(=3)

Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

viscosity(=1.0)

viscosity of the fluid

viscousNormalBodyStress (=false)

compute normal viscous stress applied on each body

viscousShear (=false)

compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress (=false)

compute shear viscous stress applied on each body

volume((FlowEngmeT)argl[7 (int)z'd:()]) — float :

Returns the volume of Voronoi’s cell of a sphere.

volumeCorrection(=1)

Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
I=0)

volumeFactor(=1.)

Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

wallIds(=vector<int>(6))

body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness (=0)

Walls thickness

waveAction(=false)

Allow sinusoidal pressure condition to simulate ocean waves

xmax (=1)

See FlowEngine::xmin.

xmin(=0)

Index of the boundary Xmin- This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallld[flow.xmin],...).

332

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

ymax (=3)

See FlowEngine::xmin.
ynin(=2)

See FlowEngine::xmin.
zmax (=5)

See FlowEngine::zmin.
zmin(=4)

See FlowEngine::xmin.

class yade.wrapper.FlowEngineT (inherits PartialEngine — Engine — Serializable)

A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes Celllnfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

0SI((FlowEngineT)argl) — float :
Return the number of interactions only between spheres.

alphaBound (=-1)
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

alphaBoundValue (=0)
value of alpha constant pressure condition

avF1VelOnSph ((FlowEngineT)argl, (int)idSph) — object :
compute a sphere-centered average fluid velocity

averageCavityPressure (=false)
true means the pressure in the cavity will be averaged each iteration.

averagePressure ((FlowEngineT)argl) — float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

averageSlicePressure ((FlowEngineT)argl, (float)posY) — float :
Measure slice-averaged pore pressure at height posY

averageVelocity ((FlowEngineT)argl) — Vector3 :
measure the mean velocity in the period

blockCell ((FlowEngineT)argl, (int)id, (bool)blockPressure) — None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook(="")
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

bndCondIsPressure (=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowFEngine::xmin and friends.

bndCondIsTemperature (=vector<bool>(6, false))
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

bndCondValue (=vector<Real>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed

2.3.

Yade wrapper class reference 333

Yade Documentation, Release 3rd ed.

pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress ((FlowEngineT)argl, (int)idSph) — Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress ((FlowEngineT)argl, (int)idSph) — Matrix3 :
Return the shear lubrication stress on sphere idSph.

boundaryPressure (=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

boundaryUseMaxMin (=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity (=vector< Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundary Vel

boundaryXPos (=vector<Real>())
values of the =x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

breakControlledRemesh(=0)
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

cavityFactor(=1.)
Permeability /viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

cavityFluidDensity (=0)
>0 means cavity compressibility model considers density changes instead of volume changes.

cavityFlux(=0)
For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats ((FlowEngineT)argl) — None :
get statistics of cholmod solver activity

clampKValues (=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux ((FlowEngineT)argl) — None :
Clear the list of points with flux imposed.

clearImposedPressure ((FlowEngineT)argl) — None :
Clear the list of points with pressure imposed.

compTessVolumes ((FlowEngineT)argl) — None :
Like TesselationWrapper::computeVolumes()

controlCavityPressure (=false)
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

controlCavityVolumeChange (=false)
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

convertClumps (=true)
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,

334

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug (=false)
Activate debug messages

decoupleForces (=false)
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdatelnterval

desiredPorosity(=0)
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

dt (=0)
timestep [s]

edgeSize ((FlowEngineT)argl) — float :
Return the number of interactions.

emulateAction((FlowEngineT)argl) — None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps (=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

epsVolMax (=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

exportMatrix((FlowEngz'neT)argl[, (str)ﬁlename:’matrix’]) — None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEngineT)argl[, (str)ﬁlename:’triplets’]) — None :
Export system matrix to a file with only non-zero entries.

first (=true)
Controls the initialization/update phases

fixTriUpdatePermInt (=-1)
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdatelnt and
FlowEngine::defTolerance to -1 (never retriangulate).

2.3.

Yade wrapper class reference 335

Yade Documentation, Release 3rd ed.

fixedAlpha(=false)
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

flatThreshold(=-1)
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

fluidBulkModulus (=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidCp(=4181.9)
Heat capacity of fluid (for thermalEngine).

fluidForce ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the fluid force on sphere idSph.

fluidRho (=1000.)
Density of fluid (for thermalEngine).

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea((FlowEngineT)argl, (int)boundary) — float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux ((FlowEngineT)argl, (int)boundary) — float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel ((FlowEngineT)arg1, (int)boundary) — object :
Get total avg cell velocity associated with boundary defined by its body id.

getBoundaryVolume ((FlowEngineT)argl, (int)arg2, (float)boundary) — float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

getCHOLMODPerfTimings (=false)
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity ((FlowEngineT)argl) — float :
Return the density of cavity fluid.

getCavityFlux ((FlowEngineT)argl) — float :
Return the flux through the edge of the cavity.

getCell((FlowEngineT)argl, (float)X, (float)Y, (float)Z) — int :
get id of the cell containing (X,Y,Z).

getCellBarycenter ((FlowEngineT)argl, (int)id) — Vector3 :
get barycenter of cell ‘id”.

336

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getCellCenter ((FlowEngineT)argl, (int)id) — Vector3 :
get voronoi center of cell ‘id’.

getCellFlux ((FlowEngineT)argl, (int)cond) — float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId ((FlowEngineT)argl, (int)id) — float :
Get influx in cell.

getCellInvVoidVolume ((FlowEngineT)argl, (int)id) — float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-

tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluid BulkModulus.

getCellPImposed ((FlowEngineT)argl, (int)id) — bool :
get the status of cell ‘id” wrt imposed pressure.

getCellPressure ((FlowEngineT)argl, (int)id) — float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed ((FlowEngineT)argl, (int)id) — bool :
get the status of cell ‘id” wrt imposed temperature.

getCellTemperature ((FlowEngineT)argl, (int)id) — float :
get pressure in cell ‘id’.

getCellVelocity ((FlowEngineT)argl, (Vector3)pos) — object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume ((FlowEngineT)argl, (Vector3)pos) — float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity ((FlowEngineT)argl, (int)cellld, (int)throat) — float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowE'ngineT)argl[7 (bool)all:True]) — list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull((FlowEngineT)argl[, (bool)all:True]) — list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{celll,cell2}{rad,nx,ny,nz}}

getDiffusionCoeff ((FlowFEngineT)argl, (int)cellld, (int)throat) — float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility ((FlowEngineT)argl) — float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells ((FlowEngineT)argl, (int)vertexId) — list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors ((FlowEngineT)argl, (int)arg2) — list :
get 4 neighoring cells

getPorePressure ((FlowEngineT)argl, (Vector3)pos) — float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature ((FlowEngineT)argl, (Vector3)pos) — float :
Measure pore pressure in position pos[0],pos[1],pos|2]

2.3. Yade wrapper class reference 337

Yade Documentation, Release 3rd ed.

getVertices((FlowEngineT)argl, (int)id) — list :
get the vertices of a cell

id0ffset (=0)
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::walllds.

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

ignoredBody (=-1)
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity ((FlowEngineT)argl, (Vector3)pos) — int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux ((FlowEngineT)argl, (Vector3)pos, (float)p) — None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure ((FlowEngineT)argl, (Vector3)pos, (float)p) — int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId ((FlowEngineT)argl, (int)id, (float)p) — int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

iniVoidVolumes (=false)
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes ((FlowFEngineT)argl) — None :
initialize pore volumes.

isActivated (=true)
Activates Flow Engine

isCellNeighbor ((FlowEngineT)argl, (int)celll_ID, (int)cell2_ID) — bool :
check if celll and cell2 are neigbors.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

maxKdivKmean (=100)
define the max K value (see FlowEngine::clampK Values)

meanKStat (=false)
report the local permeabilities’ correction

meshUpdatelInterval (=1000)
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowFEngine::defTolerance.

metisUsed ((FlowEngineT)argl) — bool :
check wether metis lib is effectively used

338

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

minKdivKmean (=0.0001)
define the min K value (see FlowEngine::clampK Values)

minimumPorosity (=0)
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells ((FlowEngineT)argl) — int :
get the total number of finite cells in the triangulation.

normalLubForce ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the normal vector between particles.

normalVelocity ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions ((FlowEngineT)argl, (int)interaction) — int :
Return the id of the interaction only between spheres.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
Permability multiplier (m): m =1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity —m

permeabilityMap (=false)

Enable/disable stocking of average permeability scalar in cell infos.
phiZero(=0)

if >0, considers water aircontent impact on fluid compressibility.
porosity(=0)

Porosity computed at each retriangulation (auto-updated)

pressureForce (=true)

compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile ((FlowEngineT)argl, (float)wallUpY, (float)wallDownY) — None :
Measure pore pressure in 6 equally-spaced points along the height of the sample

2.3.

Yade wrapper class reference 339

Yade Documentation, Release 3rd ed.

printVertices ((FlowEngineT)argl) — None :
Export vertex positions and types

pumpTorque (=false)
Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

resetLinearSystem((FlowEngineT)argl) — None :
trigger rebuild of the linear system while keeping the same triangulation

savthk((FlowEngineT)argl[, (str)folder:’./VTK’[, (bool)withBoundam’eS:False]]) —

None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to

the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal ((FlowFEngineT)argl, (int)arg2, (Vector3)arg3) — None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed((FlowEngineT)argl, (int)id, (bool)pImposed) — None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure ((FlowEngineT)argl, (int)id, (float)pressure) — None :
set pressure in cell ‘id’.

setCellTImposed((FlowEngineT)argl, (int)id, (bool)tImposed) — None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature ((FlowEngineT)argl, (int)id, (float)temperature) — None :
set temperature in cell ‘id’.

setImposedPressure ((FlowEngineT)argl, (int)cond, (float)p) — None :
Set pressure value at the point indexed ‘cond’.

shearLubForce ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the shear lubrication force on sphere idSph.

shearLubTorque ((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngineT)argl, (int)idSph) — Vector3 :
Return the shear velocity of the interaction.

sineAverage (=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude (=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p)

slipBoundary (=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle ((FlowEngineT)argl, (int)interaction) — float :
Return the distance between particles.

surfaceSolidThroatInPore ((FlowEngineT)argl, (int)cellld, (int)throatIndex) — float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

tZero (=0)
The value used for initializing pore temperatures in thermalEngine.

340 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

tempDependentViscosity (=false)
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

thermalBndCondValue (=vector<Real>(6, 0))
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

thermalEngine (=false)
activate thermalEngine within FlowEngine.

thermalPorosity (=0)
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

tolerance(=1e-06)
Gauss-Seidel tolerance

twistTorque (=false)
Compute twist torque applied on particles

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updateBCs ((FlowEngineT)argl) — None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). Tt is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondIsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdatelnterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes ((FlowEngineT)arg!) — None :
update rates of volume change

useSolver(=3)
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress (=false)
compute normal viscous stress applied on each body

viscousShear (=false)
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress (=false)
compute shear viscous stress applied on each body

volume((FlowEngineT)arg][, (int)z'd:O]) — float :
Returns the volume of Voronoi’s cell of a sphere.

2.3.

Yade wrapper class reference 341

Yade Documentation, Release 3rd ed.

volumeCorrection(=1)

Volume correction factor (not user controlled. auto computed if FlowEngine::desired Porosity
I=0)

volumeFactor(=1.)
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness (=0)
Walls thickness

waveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

xmax (=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary Xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin]|, flow.wallld[flow.xmin],...).

ymax (=3)
See FlowEngine::xmin.

ynin(=2)
See FlowEngine::zmin.

zmax (=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::zmin.

class yade.wrapper.FlowEngine_PeriodicInfo (inherits PartialEngine — Engine — Serializ-

able)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose

of inserting the right data classes Celllnfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.

0SI((FlowEngine_ PeriodicInfo)argl) — float :
Return the number of interactions only between spheres.

alphaBound (=-1)
if 0, use an alphaBoundary condition where CGAL finds minimum alpha necessary for a single
solid object. Any positive value will be used for the alpha. All negative values deactivate the
functionality.

alphaBoundValue (=0()
value of alpha constant pressure condition

avF1VelOnSph ((FlowEngine PeriodicInfo)argl, (int)idSph) — object :
compute a sphere-centered average fluid velocity

averageCavityPressure (=false)
true means the pressure in the cavity will be averaged each iteration.

averagePressure ((FlowEngine PeriodicInfo)argl) — float :
Measure averaged pore pressure in the entire volume, the cells adjacent to the boundaries are
ignored if includeBoundaries=False

342 Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

averageSlicePressure ((FlowEngine_ PeriodicInfo)argl, (float)posY) — float :
Measure slice-averaged pore pressure at height posY

averageVelocity ((FlowEngine PeriodicInfo)argl) — Vector3 :
measure the mean velocity in the period

blockCell ((FlowEngine_PeriodicInfo)argl, (int)id, (bool)blockPressure) — None :
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook (="")
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
FlowEngine.blockCell), or apply exotic types of boundary conditions which need to visit the
newly built mesh

bndCondIsPressure (=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::zmin and friends.

bndCondIsTemperature (=vector<bool>(6, false))
defines the type of boundary condition for each side of triangulation (used with ThermalEngine
only). True if temperature is imposed, False for no heat-flux. Indexes can be retrieved with
FlowEngine::xmin and friends.

bndCondValue (=vector<Real>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress ((FlowEngine_ PeriodicInfo)argl, (int)idSph) — Matrix3 :
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress ((FlowEngine_PeriodicInfo)argl, (int)idSph) — Matrix3 :
Return the shear lubrication stress on sphere idSph.

boundaryPressure (=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngine::boundaryXPos

boundaryUseMaxMin (=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity (=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundary Vel

boundaryXPos (=vector<Real>())
values of the x-coordinate for which pressure is defined. See also
FlowEngine::boundaryPressure

breakControlledRemesh (=0))
If true, remesh will occur everytime a break occurs in JCFpmPhys. Designed to increase
accuracy and efficiency in hydraulic fracture simulations.

cavityFactor(=1.)
Permeability /viscosity for cavity cell neighbors (arbitrarily high to model triangulated fluid
filled cavity).

cavityFluidDensity (=0)
>0 means cavity compressibility model considers density changes instead of volume changes.
cavityFlux(=0)

For adding flux to pressuremanaged cavity model (FlowEngine::controlCavityPressure). Ne-
gavite influx, postive outflux.

cholmodStats ((FlowEngine PeriodicInfo)argl) — None :
get statistics of cholmod solver activity

2.3.

Yade wrapper class reference 343

Yade Documentation, Release 3rd ed.

clampKValues (=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux((FlowEngine PeriodicInfo)argl) — None :
Clear the list of points with flux imposed.

clearImposedPressure ((FlowEngine PeriodicInfo)argl) — None :
Clear the list of points with pressure imposed.

compTessVolumes ((FlowEngine PeriodicInfo)argl) — None :
Like TesselationWrapper::computeVolumes()

controlCavityPressure (=false)
use full cavity flux and fluidbulkmodulus to control cavity as dynamic pressure (dirichlet)
boundary condition.

controlCavityVolumeChange (=false)
cavity imposes a volume change on neighbor cells (shouldnt be used with controlCavityPres-
sure)

convertClumps (=true)
If true the clumps will be temptatively converted into equivalent spheres in the triangulation,
and clump members are skipped. Else clumps are ignored and spherical clump members are
triangulated as independent bodies.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug (=false)
Activate debug messages

decoupleForces (=false)
If true, viscous and pressure forces are not imposed on particles. Useful for speeding up
simulations in ultra-stiff cohesive materials.

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdatelInterval

desiredPorosity (=0)
Correct the cell volumes to reflect this desired porosity (not active by default (0)).

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

dt (=0)
timestep [g]

edgeSize ((FlowEngine_ PeriodicInfo)argl) — float :
Return the number of interactions.

emulateAction((FlowEngine_ PeriodicInfo)argl) — None :
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps (=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

344

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

epsVolMax (=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

expor‘cMatrix((FlowEngz’nefPeModicInfo)argl[7 (str)ﬁlename:’matrim’]) — None :
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets((FlowEnginefPeriodicInfo)argl[, (str)ﬁlename:’triplets’]) — None :
Export system matrix to a file with only non-zero entries.

first (=true)
Controls the initialization/update phases

fixTriUpdatePermInt (=-1)
If positive, triangulation is fixed and DFNFlow trickPermeability is run according
to the interval. Activating this automatically sets FlowEngine::meshUpdatelnt and
FlowEngine::defTolerance to -1 (never retriangulate).

fixedAlpha (=false)
If true, a constant-sized alpha vertex will be placed exactly above each facet. If false, logic is
used to improve cell sizes in concave regions.

flatThreshold(=-1)
If >=0, pore volumes below flatThreshold value are blocked from flow calc. Useful for com-
pressible flow involving odd triangulations with some very flat pores.

fluidBulkModulus (=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

£1luidCp(=4181.3)
Heat capacity of fluid (for thermalEngine).

fluidForce((FlowEngine_PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the fluid force on sphere idSph.

fluidRho (=1000.)
Density of fluid (for thermalEngine).

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFluidArea ((FlowEngine PeriodicInfo)argl, (int)boundary) — float :
Get total fluid area associated with boundary defined by its body id.

getBoundaryFlux ((FlowEngine_ PeriodicInfo)argl, (int)boundary) — float :
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getBoundaryVel ((FlowEngine_PeriodicInfo)argl, (int)boundary) — object :
Get total avg cell velocity associated with boundary defined by its body id.

2.3. Yade wrapper class reference 345

Yade Documentation, Release 3rd ed.

getBoundaryVolume ((FlowEngine_PeriodicInfo)argl, (int)arg2, (float)boundary) — float :
Get total volume flowing through boundary defined by its body id in current timestep dt.

Note: The volume may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such volume evaluation on impermeable boundary is just irrelevant, it does not imply that
the boundary condition is not applied properly.

getCHOLMODPerfTimings (=false)
Print CHOLMOD build, analyze, and factorize timings

getCavityDensity ((FlowEngine_PeriodicInfo)argl) — float :
Return the density of cavity fluid.

getCavityFlux ((FlowEngine PeriodicInfo)argl) — float :
Return the flux through the edge of the cavity.

getCell ((FlowEngine_ PeriodicInfo)argl, (float)X, (float)Y, (float)Z) — int :
get id of the cell containing (X,Y,Z).

getCellBarycenter ((FlowEngine_PeriodicInfo)argl, (int)id) — Vector3 :
get barycenter of cell ‘id’.

getCellCenter ((FlowEngine PeriodicInfo)argl, (int)id) — Vector3 :
get voronoi center of cell ‘id’.

getCellFlux ((FlowFEngine PeriodicInfo)argl, (int)cond) — float :
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellFluxFromId ((FlowEngine PeriodicInfo)argl, (int)id) — float :
Get influx in cell.

getCellInvVoidVolume ((FlowEngine PeriodicInfo)argl, (int)id) — float :
get the inverse of the cell volume for cell ‘id’ after pore volumes have been ini-

tialized and FlowEngine:iniVoidVolumes = True, or compressibility scheme active with
FlowEngine::fluid BulkModulus.

getCellPImposed ((FlowEngine_ PeriodicInfo)argl, (int)id) — bool :
get the status of cell ‘id” wrt imposed pressure.

getCellPressure ((FlowEngine_ PeriodicInfo)argl, (int)id) — float :
get pressure by cell ‘id’. Note: getting pressure at position (x,y,z) might be more usefull, see
:yref‘FlowEngine::getPorePressure‘:

getCellTImposed ((FlowEngine PeriodicInfo)argl, (int)id) — bool :
get the status of cell ‘id” wrt imposed temperature.

getCellTemperature ((FlowEngine_ PeriodicInfo)argl, (int)id) — float :
get pressure in cell ‘id’.

getCellVelocity ((FlowEngine_ PeriodicInfo)argl, (Vector3)pos) — object :
Get relative cell velocity at position pos[0] pos [1] pos[2].

getCellVolume ((FlowEngine PeriodicInfo)argl, (Vector3)pos) — float :
Get volume of cell at position pos[0] pos [1] pos[2].

getConductivity ((FlowEngine_ PeriodicInfo)argl, (int)cellld, (int)throat) — float :
get conductivity from cell and throat, with throat between 0 and 3 (same ordering as incident
cells)

getConstrictions((FlowEngz'nefPeriodicInfo)argl[, (bool)all:True]) — list :
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

346

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

getConstrictionsFull((FlowEngz’ne_PeriodicInfo)argl[, (bool)all:True]) — list :
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{celll,cell2}{rad nx,ny,nz}}

getDiffusionCoeff ((FlowEngine PeriodicInfo)argl, (int)cellld, (int)throat) — float :
get the ratio of throat cross-sectional area and distance between two cells

getEquivalentCompressibility ((FlowEngine_ PeriodicInfo)argl) — float :
Return the equivalent compressibility used for modeling air water mixture in cavity.

getIncidentCells ((FlowEngine PeriodicInfo)argl, (int)vertexld) — list :
get ids of all cells of which vertexId is a vertex. Typical usage is for getting cells indident to
a boundary.

getNeighbors ((FlowEngine_PeriodicInfo)argl, (int)arg2) — list :
get 4 neigboring cells

getPorePressure ((FlowEngine_ PeriodicInfo)argl, (Vector3)pos) — float :
Measure pore pressure in position pos[0],pos[1],pos[2]

getPoreTemperature ((FlowEngine_PeriodicInfo)argl, (Vector3)pos) — float :
Measure pore pressure in position pos[0],pos[1],pos|2]

getVertices ((FlowEngine PeriodicInfo)argl, (int)id) — list :
get the vertices of a cell

id0ffset (=0)
If the bounding walls of the fluid mesh are not walls of the scene (i.e. are not elements of
O.bodies), the offset should be set equal to the size of O.bodies. If the bounding walls are
bodies of the scene but are not numbered as 0-5 then offset should be the number of bodies
comming before the walls. Set offset<0 to get it set equal to O.bodies.size(), it will also update
FlowEngine::walllds.

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

ignoredBody (=-1)
DEPRECATED, USE MASK - Id of a sphere to exclude from the triangulation.)

imposeCavity ((FlowEngine_ PeriodicInfo)argl, (Vector3)pos) — int :
Cell with location ‘pos’ participates in a cavity (high conductivity and no volume factoring).
The index of the condition is returned (for multiple imposed pressures at different points).

imposeFlux ((FlowEngine PeriodicInfo)argl, (Vector3)pos, (float)p) — None :
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure ((FlowEngine_ PeriodicInfo)argl, (Vector3)pos, (float)p) — int :
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId ((FlowEngine_PeriodicInfo)argl, (int)id, (float)p) — int :
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

iniVoidVolumes (=false)
activate the computation of the inverse of the initial void volumes in each cell when pore
volumes are initialized.

initializeVolumes ((FlowEngine_PeriodicInfo)argl) — None :
initialize pore volumes.

2.3.

Yade wrapper class reference 347

Yade Documentation, Release 3rd ed.

isActivated (=true)
Activates Flow Engine

isCellNeighbor ((FlowEngine_ PeriodicInfo)argl, (int)celll_ID, (int)cell2_ID) — bool :
check if celll and cell2 are neigbors.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

maxKdivKmean (=100)
define the max K value (see FlowEngine::clampK Values)

meanKStat (=false)
report the local permeabilities’ correction

meshUpdateInterval (=1000)
Maximum number of timesteps between re-triangulation events (a negative value will never
re-triangulate). See also FlowEngine::defTolerance.

metisUsed ((FlowEngine_ PeriodicInfo)argl) — bool :
check wether metis lib is effectively used

minKdivKmean (=0.0001)
define the min K value (see FlowEngine::clampK Values)

minimumPorosity (=0)
value used to limit the allowable minimum porosity for pore volume calculations. Particularly
useful if very small volumes are impacting stability

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells ((FlowEngine_ PeriodicInfo)argl) — int :
get the total number of finite cells in the triangulation.

normalLubForce ((FlowEngine PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect ((FlowEngine_ PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the normal vector between particles.

normalVelocity ((FlowEngine_PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads (=1)
number of openblas threads in the solve phase.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM__ THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions ((FlowEngine PeriodicInfo)argl, (int)interaction) — int :
Return the id of the interaction only between spheres.

348

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
Permability multiplier (m): m =1 (default) attempts to predicty the actual hydraulic conduc-
tivity using a Poiseuille equation; m > 0 multiplies the default values by m; m < 0 defines the
conductivity independently of particle size and viscosity as if the material was a homogeneous
continuum of conductivity —m

permeabilityMap (=false)

Enable/disable stocking of average permeability scalar in cell infos.
phiZero(=0)

if >0, considers water aircontent impact on fluid compressibility.
porosity(=0)

Porosity computed at each retriangulation (auto-updated)

pressureForce (=true)
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile ((FlowEngine_PeriodicInfo)argl, (float)wallUpY, (float)wallDownY) —
None :

Measure pore pressure in 6 equally-spaced points along the height of the sample
printVertices ((FlowFEngine PeriodicInfo)argl) — None :

Export vertex positions and types
pumpTorque (=false)

Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

resetLinearSystem((FlowEngine PeriodicInfo)argl) — None :
trigger rebuild of the linear system while keeping the same triangulation

saveVtk ((FlowEngine__PeriodicInfo)argl [, (str)folder= ’./VTK’[7

(bool)withBoundam’es:False]]) — None :
Save pressure field in vtk format. Specify a folder name for output. The cells adjacent to
the bounding spheres are generated conditionally based on FlowEngine::withBoundaries (not
compatible with periodic boundaries)

setBoundaryNormal ((FlowEngine_ PeriodicInfo)argl, (int)arg2, (Vector3)arg3) — None :
define the unit outward-pointing normal of a boundary (0<=index<=5).

setCellPImposed ((FlowEngine PeriodicInfo)argl, (int)id, (bool)pImposed) — None :
make cell ‘id’ assignable with imposed pressure.

setCellPressure ((FlowEngine PeriodicInfo)argl, (int)id, (float)pressure) — None :
set pressure in cell ‘id’.

setCellTImposed ((FlowEngine_ PeriodicInfo)argl, (int)id, (bool)tImposed) — None :
make cell ‘id’ assignable with imposed temperature.

setCellTemperature ((FlowEngine PeriodicInfo)argl, (int)id, (float)temperature) — None :
set temperature in cell ‘id".

setImposedPressure ((FlowEngine_PeriodicInfo)argl, (int)cond, (float)p) — None :
Set pressure value at the point indexed ‘cond’.

shearLubForce ((FlowEngine PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the shear lubrication force on sphere idSph.

2.3.

Yade wrapper class reference 349

Yade Documentation, Release 3rd ed.

shearLubTorque ((FlowEngine_ PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((FlowEngine PeriodicInfo)argl, (int)idSph) — Vector3 :
Return the shear velocity of the interaction.

sineAverage (=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude (=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p)

slipBoundary (=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle ((FlowEngine_PeriodicInfo)argl, (int)interaction) — float :
Return the distance between particles.

surfaceSolidThroatInPore ((FlowEngine PeriodicInfo)argl, (int)cellld, (int)throatIndex)

— float :
returns solid area in the throat (index 0-3), keeping only that part of the throat in cell.

tZero (=0)
The value used for initializing pore temperatures in thermalEngine.

tempDependentViscosity (=false)
boolean to vary viscosity (ultimately cell permeability) with cell temperature. Linear model
for viscosity b/w 20-70 degC. If true, kFactor must also be set negative, and becomes the
darcy permeability.

thermalBndCondValue (=vector<Real>(6, 0))
Imposed temperature boundary condition value for the cells in the triangulation (used with
ThermalEngine only).

thermalEngine (=false)
activate thermalEngine within FlowEngine.

thermalPorosity (=0)
>0 means the void volume space will be factored by thermalPorosity for pore internal energy
considerations.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingFEnabled==True.

tolerance(=1e-06)
Gauss-Seidel tolerance

twistTorque (=false)
Compute twist torque applied on particles

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

updateBCs ((FlowEngine_ PeriodicInfo)argl) — None :
Update the boundary condition to reflect changes of boundary pressure (needed typically
after changing FlowEngine::bndCondValue). It is not sufficient to reflect changes of the
type of boundary condition (FlowEngine::bndCondlsPressure), in such case re-triangulation
or at least updating the linear system is needed (see FlowEngine::updateTriangulation and
FlowEngine::updateLinearSystem). Conversely, the update is not necessary for changing the
value of point-wise imposed pressure (FlowEngine::imposePressure)

350

Chapter 2. Yade for users

Yade Documentation, Release 3rd ed.

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdatelnterval. Of course, it costs CPU time. Note that the new trian-
gulation will start to be effectively used only after one iteration (i.e. O.run(2) gives a result
with the new one, O.run(1) does not).

updateVolumes ((FlowEngine_PeriodicInfo)argl) — None :
update rates of volume change

useSolver(=3)
Solver to use. 0:Gauss-Seidel, 3: Cholesky factorization (via Eigen3 interface), 4:multicore
CPU or GPU accelerated CHOLMOD (without Eigen3), 1-2: undefined.

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress (=false)
compute normal viscous stress applied on each body

viscousShear (=false)
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress (=false)
compute shear viscous stress applied on each body

volume((FlowEngine_PeriodicInfo)argl[, (int)id:O]) — float :
Returns the volume of Voronoi’s cell of a sphere.

volumeCorrection(=1)
Volume correction factor (not user controlled. auto computed if FlowEngine::desiredPorosity
I=0)

volumeFactor(=1.)
Factor used for simulating low porosity (for thermal considerations only) in high porosity
DEM packings.

walllIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness (=0)
Walls thickness

waveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

xmax (=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary Xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin]|, flow.wallld[flow.xmin],...).

ymax (=3)
See FlowEngine::xmin.

ynin(=2)

See FlowEngine::zmin.
zmax (=5)

See FlowEngine::xmin.
zmin(=4)

See FlowEngine::xmin.

2.3.

Yade wrapper class reference 351

Yade Documentation, Release 3rd ed.

class yade.wrapper.ForceEngine (inherits PartialEngine — Engine — Serializable)

Apply contact force on some particles at each step.

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only used if
O.timingEnabled==True).

force(=Vector3r::Zero())
Force to apply.

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM__THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs ((Serializable)argl, (dict)arg2) — None :
Update object attributes from given dictionary

class yade.wrapper.HarmonicForceEngine (inherits PartialEngine — Engine — Serializable)

This engine adds a harmonic (sinusoidal) force to a set of bodies. It is identical to Harmonic-
MotionFEngine except a force amplitude is prescribed instead of motion, see also the dynamics of
harmonic motion

A(=Vector8r::Zero())
Amplitude [N]

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict ((Serializable)argl) — dict :
Return dictionary of attributes.

execCount
Cumulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cumulative time in nanoseconds this Engine took to run (only wused if
O.timingEnabled==True).

£ (=Vector3r::Zero())
Frequency [hertz]

352

Chapter 2. Yade for users

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Documentation, Release 3rd ed.

fi(=Vector3r::Zero())
Initial phase [radians]. By default, the phase is zero such that the force starts at zero.

ids (=uninitalized)
Ids list of bodies affected by this PartialEngine.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads (=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP__NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior