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Abstract—Cognitive workload is a critical feature in related
psychology, ergonomics, and human factors for understanding
performance. However, it still is difficult to describe and thus,
to measure it. Since there is no single sensor that can give
a full understanding of workload, extended research has been
conducted in order to present robust biomarkers. During the last
years, machine learning techniques have been used to predict
cognitive workload based on various features. Gaze extracted
features, such as pupil size, blink activity and saccadic measures,
have been used as predictors. The aim of this study is to use gaze
extracted features as the only predictors of cognitive workload.
Two factors were investigated: time pressure and multi tasking.
The findings of this study showed that eye and gaze features
are useful indicators of cognitive workload levels, reaching up to
88% accuracy.

I. INTRODUCTION

Cognitive workload can be described as a mental construct
that reflects the mental strain resulting from performing a task
under specific conditions, coupled with the capability of the
operator to respond to those demands [1].

Several studies have focused on the identification of cog-
nitive workload relying solely in eye features for different
tasks. Most of them report binary classification results i.e.
high and low level of cognitive workload with some of the
studies reporting highly accurate results [2], [3], [4]. However,
there are only a few reported efforts that focus on multi-
class classification (high/medium/low) [5] and in this case the
achieved performance is lower.

In the literature, a large variety of eye features have been
shown to be useful predictors of cognitive workload. Pupil
size seems to be the most useful indicator of cognitive load.
However, blink and saccade related features also seem to be
correlated with the cognitive workload [6].

The present work involved an experimental study in which
participants performed a visual search task together with a
secondary demanding working memory task during which, an

eye tracking setup was used. At the end of the experimental
protocol, the participants filled the NASA-TLX questionnaire
[8]. The extracted features from all acquired gaze signals
were used as basis for a comparative study between different
classification algorithms, including decision trees, discriminant
analysis, support vector machine (SVM), k-Nearest Neighbor
(kNN) and ensemble learning algorithms, for providing a
detailed evaluation of utilizing machine learning to accurately
identify between the arousal and valence levels. To our knowl-
edge, this is the first NASA-TLX based workload estimation
attempt exploiting solely eye tracking data.

II. DATA COLLECTION

37 participants (22 females, 15 males) with mean age 29
(SD:7) years were recruited and the mean binocular visual
acuity at 80 cm was -0.10+£0.07 logMAR. Mean illuminance
at cornea when screen was on, was 450 (SD:24) lux.

The study had a 2x2 factorial design, with the two factors
being time pressure (with or without) and single vs dual task.
The combination of these factors determined four experimental
task conditions. Time pressure was imposed asking the partic-
ipants to complete the task “as fast as they could”, while the
“no time pressure” task was imposed when the participants
were asked to execute the task “with a comfortable pace”.

The main task of the study was a visual search task based
on a reCAPTCHA-like test, as seen in Fig. 1. A set of images
of indoor scenes taken from the free database “Indoor scene
recognition” [7] were presented to the participants and they
were asked to solve the CAPTCHA-like puzzles. In the dual
task, participants were asked to execute an interference task
i.e. to perform a backward counting from 1000 by subtracting
4 while executing the main visual search task.

All participants performed 20 trials/images in different con-
ditions (5 trials for each condition/task). Tasks were presented
in random order. At the end of each task the participants were



Fig. 1. A sample trial/image of the reCAPTCHA test. Instructions: “Choose
the squares in which candles are located.”

asked to complete the NASA-TLX questionnaire, a subjective
assessment tool that rates perceived workload. The design of
the study is shown in Fig. 2.

The reCAPTCHA-like images were presented on a screen
at a distance of 80cm from the participant as can be seen at
Fig. 3. All measurements were performed with the subjects
seated on a chair with their head stabilized by means of a
chin and head rest to minimize head movements. Eye tracking
measurements were recorded with the Pupil Labs “Pupil Core”
gaze tracker (https://pupil-labs.com/products/core/).

From the 20 trials/images the eye and gaze data were
processed and analyzed to ensure that the participants did not
close their eyes for a duration longer than the average blink or
look away from the computer screen for long period of time.
If any of the aforementioned cases is true, the relevant data
are omitted from the subsequent processing. A total of 740
examples were collected. From these examples, the classes in
which the data were split are shown in Table I.

TABLE I
COGNITIVE WORKLOAD CLASSIFICATION CATEGORIES
H Cognitive workload score Classes [ Sample size H
Mental workload score high / not high (186 / 554)
NASA-TLX mean score high / not high (186 / 554)

(186 7 260 7 294)
(101 / 172 / 467)

Mental workload score
NASA-TLX mean score

high / low / medium
high / low / medium

The study protocol was approved by the Ethics Committee
of FORTH and all participants have signed written consent.

III. METHODOLOGY
A. Parameter extraction and processing

In order to distinguish between the levels of cognitive
workload with high efficiency and precision by utilizing only
low level eye and gaze data from the eye tracker, it is critical
to extract the parameters that can become useful workload
indicators. In addition, the features are extracted based on the

eye and gaze metrics from the eye tracker. In total, 29 fixations,
saccades, blinks and pupil related features are extracted and
are shown in Table II. Fixations and saccades are identified
based on the I-VT algorithm proposed in [9].

TABLE II
FEATURES EXTRACTED FROM EYE AND GAZE DATA
H Fixations Saccades Blinks Pupil H
duration™ duration* frequency diameter™
total duration velocity* duration* | difference from
frequency frequency baseline metric
amplitude*

* max, min, mean and median values are calculated.

To amend the inequality between the number of data an-
notated in different classes and consequently to avoid the
ineffectiveness of the model to learn the decision boundary,
we generated synthetic samples based on the SMOTE over-
sampling technique [10]. Then, taking into consideration that
a) data was normally distributed and b) most machine learning
algorithms perform better when numerical input variables are
scaled to a standard range [11], we used the MinMax Scaler
to scale the features in the range 0-1.

B. Feature selection

After the features were extracted, we built a correlation
matrix to study which are highly correlated with each other.
Then, in an attempt to derive the most dominant features that
could improve the efficiency of our machine learning models,
a regularization method was employed and the results obtained
were compared with the ANOVA test. Finally, we estimated
feature importance using ensemble methods. Alternatively, we
performed LASSO regularization analysis, which does both
variable selection and regularization to enhance accuracy and
interpretability [12].

C. Training and testing

In total, 11 classifiers were examined and tested during the
classification procedure which is divided into binary and multi-
class. We split the data into training and testing, with the
number of the test data being 20% of the total number of
examples. The classification algorithms employed are shown
in Table III.

TABLE III
CLASSIFICATION ALGORITHMS TESTED

Binary [ Multi-class

Gaussian Naive Bayes
Random Forest
Linear Support Vector Machine (SVM)
Ensemble Gradient Boosting

K-Nearest Neighbor (KNN) Decision Tree

Linear Perceptron Ensemble Extra Tree
Bernoulli Naive Bayes

Logistic Regression
Extra Tree
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Fig. 2. Design of the study

Fig. 3. The experimental setup

D. Hyperparameter tuning

To fine tune the hyperparameters of the proposed model we
performed a RandomSearch iterating 1000 times through train-
ing data to find the combination of parameters that maximizes
the overall performance and accuracy.

E. Model evaluation

The evaluation of the models constructed was performed
based on accuracy as well as precision and recall. Combining
precision and recall with an armonic mean, we computed
the fl-score. In the multi-class cases, these 3 rates are cal-
culated on a per-class basis. Furthermore, we validated the
models using a k-fold cross-validation. In addition, for a more
comprehensive and graphical representation of our results we
plotted the confusion matrices and ROC curves for each fold,
thus illustrating how the ability of the classifier changes as its
discrimination threshold varies.

IV. RESULTS

From the 37 participants, a total of 740 valid examples
were collected. In this section, we illustrate the experimental
results of four classification attempts from which, the first
two concern the investigation of existence of high cognitive
workload (binary approach) while the other two refer to an

additional attempt to discriminate cognitive workload among
its respective levels (multi-class approach).

The features which were finally extracted were defined as
predictors and as response variables the classes presented
in Tables IV and V. The training examples were a total
of 592 and their respective numbers for each class before
the oversampling process are presented in Tables IV and V.
The data processing and the classification procedure were
processed in Python based programming environment. The
models with the higher accuracy were stored and used later
for predictions. For the test data, the cognitive workload level
prediction rates, recall, precision and fl-score were extracted
for the respective machine learning models chosen for each
trial. The test data included 148 examples.

Tables IV and V present the results of each classification
procedure as well as the response variables, the sample size,
the feature selection method, the superior classifier in terms
of accuracy, the precision, recall, fl-score and finally the
accuracy of the chosen model.

The results of our attempt to predict the presence of mental
workload are presented in Table IV. Almost 9 out of 10
examples were classified correctly by the Random Forest
classifier, while LASSO analysis was used for the selection of
the dominant features. In this binary classification problem,
the sensitivity rate of the high” instances was found to be
90% and the respective precision rate achieved was 86%.
Moreover, the 90% of the positively classified “not high”
mental workload cases were relevant. The fl-score for this
classification trial remains above 87% for both classes.

The Random Forest classifier was proven superior (Table
IV). The model achieved to correctly predict the existence
of “high” cognitive workload based on the NASA-TLX mean
score with 81% accuracy. The features for this procedure were
selected with the LASSO analysis. Furthermore, the model
managed to predict 84% of positive identifications of “high”
examples that were actually correct, while the respective
percentage for the “not high” examples was 78%. The recall
percentages for “high” and “not high” examples are 79 and
84%, respectively. Finally, by combining precision and recall
metrics we extracted the fl-score which is about 81% for



TABLE IV
COGNITIVE WORKLOAD BINARY CLASSIFICATION RESULTS

Class Feature selection | Classifier Precision Recall F1-score Accuracy

method (high/not high) (high/not high) (high/not high)
Mental LASSO Random Forest 0.86/0.90 0.90/0.85 0.88/0.87 0.88
workload
NASA-TLX LASSO Random Forest 0.84/0.78 0.79/0.84 0.81/0.81 0.81
mean score

TABLE V
COGNITIVE WORKLOAD MULTI-CLASS CLASSIFICATION RESULTS

Class Feature selection | Classifier Precision Recall F1-score Accuracy

method (high/low/med) (high/low/med) (high/low/med)
Mental ANOVA Random Forest 0.69/0.65/0.72 0.44/0.77/0.85 0.54/0.71/0.78 0.69
workload
NASA-TLX ANOVA Extra Trees 0.87/0.84/0.82 0.98/0.67/0.88 0.92/0.75/0.85 0.84
mean score

“high” and “not high” instances.

The last problem is related to the classification of three
levels of mental workload; high, medium and low. The Ran-
dom Forest classifier was once again the most efficient in
terms of accuracy reaching up to 69% correct predictions. In
more detail, correctly predicting the instances of “medium”
mental workload achieved the highest precision, recall and f1-
score percentages while the respective scores for the other two
mental workload levels remained lower.

Superior results are achieved within the next classification
procedure, where we attempted to identify between the three
levels of cognitive workload based on the mean score of
NASA-TLX test, low, medium and high. In this multi-class
problem 84% of the examples were predicted correctly (Table
V). The best classification algorithm in terms of accuracy was
the Extra Trees and the selection of the dominant features was
performed by ANOVA analysis. The precision, recall and f1-
score rates of “high” cognitive workload instances were 87,
98 and 92% respectively. In parallel, the Extra Trees achieved
satisfactory precision, sensitivity and f1-score for the other two
classes.

In summary, the binary classification of mental workload
into “high” and “not high” using the Random Forest model
achieved the most successful prediction rate 88%. However,
when the “medium” class was added to create a multi-class
problem, this percentage was reduced by 19%. Finally, re-
garding the cognitive workload level recognition based on the
NASA-TLX score, the success rates of the binary and multi-
class problems differ by 3%, with the multi-class identification
being more effective. In parallel, the identification of the
negative and positive instances of “high” cognitive load level,
which demonstrates significant mental effort, was correct in
the 98 and 87% of the predicted cases, respectively.

V. CONCLUSIONS

This manuscript presents the results of a study focused on
investigating the potential to identify and classify the levels of

cognitive workload based on low level eye and gaze features.
To this aim, an experimental procedure was designed and
performed, for collecting eye and gaze tracking data from
participants performing visual search and interference tasks
and self-accessing their performance using the NASA-TLX
workload index test. From the performed experimental trials
certain eye and gaze related identification parameters were
extracted and processed, while multiple algorithms were tested
for utilizing the ones with the highest success rates for making
predictions.

From the results presented in Section IV, the highest success
rate was observed during the binary classification attempt for
the Random Forest classifier between high and not high mental
workload with 88%. However, the inclusion of the “medium”
class proved to be challenging leading to a significant decrease
in the model’s performance. Regarding the cognitive load level
estimation based on NASA-TLX score, the binary as well as
the multi-class identification tasks provided very promising
results reaching up to 84% correct predictions for the multi-
class case. These findings provide a potential mechanism for
estimating the level of cognitive workload based solely on eye
and gaze related features.

Overall these findings are in accordance with findings
reported by [2], [3], [4] regarding the binary classification of
cognitive workload. However for a more discrete workload
level identification, our results go beyond previous reports such
as [5], showing the need to continue investigating towards this
direction.

VI. FUTURE WORK

Future work is necessary to validate the conclusions drawn
from this study. The results must be replicated at a larger scale
by adding more participants. Furthermore, it will be important
that future research investigate the potential of utilizing deep
learning in order to examine their efficiency in the cognitive
workload identification problem. We plan also to compare our
findings with research works that utilize additional biosignals



for the estimation of cognitive load levels and investigate the
necessity and the potential of combining eye and gaze data
with other biometrics for increased performance with respect
to the computational cost.
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