
Music Classification: Beyond
Supervised Learning, Towards

Real-world Applications

Minz Won, Janne Spijkervet, Keunwoo Choi

Nov 26, 2021

CONTENTS

I The Basics 3
1 What is Music Classification? 5

1.1 Single-label classification . 5
1.2 Multi-label classification . 5
1.3 Music classification tasks . 6
1.4 Applications . 6

2 Input Representations 7
2.1 Biological Plausibility . 7
2.2 Waveforms . 8
2.3 Spectrograms: time-frequency representations . 9
2.4 STFT . 11
2.5 Even more modifications . 14
2.6 Melspectrograms . 15
2.7 Constant-Q Transform . 16
2.8 Practical Issue: How to compute them? . 18

3 Datasets 21
3.1 Overview . 21
3.2 Gtzan Music Genre (2002) . 22
3.3 MagnaTagATune (2009) . 23
3.4 Million Song Dataset (2011) . 24
3.5 FMA (2017) . 25
3.6 MTG-Jamendo (2019) . 25
3.7 AudioSet (2017) . 26
3.8 NSynth (2017) . 27
3.9 Summary . 27
3.10 Resources . 27

4 Problem Formulation 29
4.1 Genre Classification . 29
4.2 Mood classification . 30
4.3 Instrument identification . 30
4.4 Music tagging . 31

5 Evaluation 33
5.1 Accuracy . 34
5.2 Precision . 34
5.3 Recall . 34
5.4 F-measure . 35

i

5.5 High precision vs high recall? . 35
5.6 Area under receiver operating characteristic curve (ROC-AUC) . 36
5.7 Area under precision-recall curve (PR-AUC) . 36

II Supervised Learning 39
6 Introduction 41

7 Architectures 43
7.1 Overview . 43
7.2 Fully Convolutional Networks (FCNs) . 44
7.3 VGG-ish / Short-chunk CNNs . 44
7.4 Harmonic CNNs . 44
7.5 MusiCNN . 44
7.6 Sample-level CNNs . 44
7.7 Convolutional Recurrent Neural Networks (CRNNs) . 45
7.8 Music tagging transformer . 45
7.9 Which model should we use? . 45

8 Audio Data Augmentations 47
8.1 Code Libraries . 48
8.2 Listening . 48
8.3 Sequential Audio Data Augmentations . 53
8.4 Stochastic Audio Data Augmentations . 55
8.5 Conclusion . 58

9 PyTorch tutorial 59
9.1 Data collection . 59
9.2 Data loader . 59
9.3 Model . 62
9.4 Training . 64
9.5 Evaluation . 66

III Semi-supervised Learning 69
10 Beyond Supervision 71

11 Transfer Learning 73
11.1 Pretext using editorial information . 73
11.2 Pretext using cultural information . 73

12 Semi-Supervised Learning 75
12.1 Noisy student training . 75
12.2 Knowledge expansion and distillation . 76

IV Self-supervised Learning 77
13 Introduction 79

13.1 Pre-training . 79
13.2 Self-supervised learning . 80
13.3 Should I use self-supervised learning? . 80

ii

14 Methods for Self-Supervised Learning 81
14.1 Contrastive Learning . 81
14.2 Contrastive Predictive Coding . 81
14.3 Momentum Contrast (MoCO) . 82
14.4 SimCLR . 84
14.5 Contrastive Losses . 85
14.6 PASE . 85
14.7 More papers on self-supervised learning . 86

15 PyTorch Tutorial 89
15.1 CLMR . 89
15.2 SampleCNN Encoder . 94
15.3 SimCLR . 97
15.4 Loss . 98
15.5 Pre-training CLMR . 99
15.6 Linear Evaluation . 100
15.7 How does a supervised SampleCNN model compare? . 107
15.8 Conclusion . 109

V Towards Real-world Applications 111
16 MLOps 113

16.1 Dataset Creation . 113
16.2 Dataset Management . 114
16.3 Evaluation: It is more than a single number . 115
16.4 Deployment . 115

17 Under-Explored Problems in Academia 117
17.1 What makes a topic difficult to work on in academia? . 117
17.2 Let’s talk about research topics . 117

VI Conclusion 121
18 Conclusion 123

VII Resources 125
19 References 127

Bibliography 129

iii

iv

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Con-
ference, Nov 8-12, 2021 in an online format. The ISMIR conference is the world’s leading research forum on processing,
searching, organising and accessing music-related data.

The scope

The history of music classification dates back to at least 1996 [WBKW96]. The motivation of music classification remains
the same since then.

The rapid increase in speed and capacity of computers and networks has allowed the inclusion of audio as a
data type in many modern computer applications.

It was further clarified in [TC02].
..gaining importance as a way to structure and organize the increasingly large numbers of music files available
digitally...

In this book, we focus on the more modern history of music classification since the popularization of deep learning in
mid 2010s. Please refer to [FLTZ10] for the earlier progress in 2000s, which was mainly the design of audio features and
adoption of classifiers as well as the birth of many music classification problems. [NCL+18] includes detailed discussion
of the transition to deep learning approaches. There also exist other existing tutorials, [SLBock20] and [CFCS17], that
include more general MIR topics with a special focus on deep learning.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-
driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various
ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking
access to the information without personal contact. These are tremendous obstacles when new researchers want to dive
into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce
miscommunication between researchers by sharing the secrets.
Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data.
Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expen-
sive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces
the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond
supervised learning.
Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some im-
portant procedures and considerations for real-world applications are rarely discussed as research topics. In this book,
based on the various industry experiences of the authors, we try our best to raise awareness of these questions and provide
answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona,
Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge
into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance
as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical
Genre.

CONTENTS 1

https://music-classification.github.io/tutorial
https://ismir2021.ismir.net/tutorials/
https://ismir2021.ismir.net/
https://ismir2021.ismir.net/
https://ismir.net/
https://minzwon.github.io/
https://www.upf.edu/web/mtg

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master’s thesis titled “Contrastive
Learning of Musical Representations”. The paper with the same title was published in 2020 on self-supervised learning
on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative
models for music creation. She is also a songwriter and music producer, and explores the design and use of machine
learning technology in her music.
Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recom-
mendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a
researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source
projects such as Kapre, librosa, and torchaudio. He also writes some music.

Software

We use Jupyter Book[Com20], Librosa 0.8.1[MRL+15] [MMM+21], Pytorch[PGM+19], Torchaudio[YHN+21], Mat-
plotlib[Hun07], and Numpy[HMvdW+20].

Citing this book

@book{musicclassification:book,
Author = {Won, Minz and Spijkervet, Janne and Choi, Keunwoo},
Month = Nov.,
Publisher = {https://music-classification.github.io/tutorial},
Title = {Music Classification: Beyond Supervised Learning, Towards Real-world␣

↪Applications},
Year = 2021,
Url = {https://music-classification.github.io/tutorial},
doi = {10.5281/zenodo.5703780}

}

Note

• You can download a pdf of this book from zenodo. If the pdf is not up-to-date, you can build it by yourself on
your local machine.

2 CONTENTS

https://jspijkervet.com/
https://keunwoochoi.github.io/
https://c4dm.eecs.qmul.ac.uk/
https://kapre.readthedocs.io/en/latest/
https://www.youtube.com/channel/UC6WGQvwwM3M7sX98zJ14XPA
https://zenodo.org/record/5703780/files/book.pdf
https://zenodo.org/record/5703780#.YZliDi2z2CM
https://github.com/music-classification/tutorial/tree/main/scripts

Part I

The Basics

3

CHAPTER

ONE

WHAT IS MUSIC CLASSIFICATION?

Music classification is a music information retrieval (MIR) task whose objective is the computational understanding of
music semantics. For a given song, the classifier predicts relevant musical attributes. Based on the task definition, there
are a nearly infinite number of classification tasks – from genres, moods, and instruments to broader concepts including
music similarity and musical preferences. The retrieved information can be further utilized in many applications including
music recommendation, curation, playlist generation, and semantic search.

1.1 Single-label classification

Let’s say there are two record stores in your town. ‘ABC Records’ curates all the records in alphabetic order, while ‘MIR
Records2/7’ categorizes their stocks based on musical genres. When you already know what you want to buy, ‘ABC Records’
is a good place to go as you can search by the alphabetic index. However, when you want to browse and discover new
music, ‘MIR Records’ will be preferable as you can visit the section with your favorite genre. Like this, well-designed
categorization (i.e., music classification) helps customers browse music more efficiently. This record store scenario can
be interpreted as a single-label classification task. One item can be in a single section; hence categories (genres in this
example) are exclusive.

Warning: Genres are not always exclusive to each other. One song can belong to multiple genres.

1.2 Multi-label classification

Different from the example above, one item may belong to multiple categories. For example, one song can be Disco and
K-Pop simultaneously, and these categories are not exclusive to each other. Also, listeners would like to browse music by
instruments, languages, moods, or context, not only musical genres. We can handle these multiple musical attributes with
multi-label classification. The multi-label classification is often referred to as “music tagging” since it puts various music
tags for a given song.
Multi-label classification is handled as a binary classification for each musical attribute. For each label, the system de-
termines whether a given song is positive to the label or not. In contrast with single-label classification, labels are not
exclusive, and multiple tags can exist together.

5

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

1.3 Music classification tasks

There can be an almost infinite number of music classification tasks based on product requirements. Among them, the
most explored music classification tasks in MIR research are listed as follow:

• Genre classification [TC02]
• Mood classification [KSM+10]
• Instrument identification [HBPD03]
• Music tagging [Lam08]

We discuss music classification tasks in more detail later in this chapter.

Note: Music tagging subsumes all other classification tasks as any class (label) can be musical tags.

1.4 Applications

The explosion of digital music has dramatically changed our music consumption behavior. Massive music libraries are
available through streaming platforms, and it is impossible to browse the entire collections item-by-item. As a result, we
need robust knowledge management systems more than ever. Music classification is a technique that supports knowl-
edge management. Music classification models enhance users’ music experience through many applications, including
recommendation, curation, playlist generation, semantic search, and analysis of listening behavior.

• Recommendation: Once we have labeled or predicted musical attributes, a system can recommend music to users
based on frequently consumed musical attributes of the users. Unlike collaborative filtering, a prevalent recom-
mender system using user-item interactions, this content-based recommendation does not suffer from cold-start
problems and popularity bias [Cel10].

• Curation: As we checked from the previous record store example, well-designed music curation helps users browse
enormous music libraries efficiently. Hence, music streaming services curate music by genres, subgenres, or moods.
Human agents can manually do this process, but music classification models can replace human efforts.

• Playlist generation: The usage of music classification models in playlist generation is similar to the use in music
recommendation. But playlist generation needs to consider the order of the songs and more user context.

• Listening behavior analysis: Most modern streaming services provide annual reports of personal listening trends.
This report helps users to understand their taste better and is basically fun!

6 Chapter 1. What is Music Classification?

https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Cold_start_(recommender_systems)
https://en.wikipedia.org/wiki/Cold_start_(recommender_systems)

CHAPTER

TWO

INPUT REPRESENTATIONS

In this notebook, we’ll study various audio input representations that are used for music classification. Choosing the right
input representation is crucial to successful training of neural networks. This may sound against the spirit of deep learning
– assume minimally and let the model learn.
This is because the optimal choice of audio input representations is more difficult than in other domains as you’ll see here.
In other words, this is an important design choices that music/audio researchers should make as opposed to people in
natural language processing or computer vision.

Note: In this section, you will be introduced to various input representations as well as their relationship with our
perception of sound. The connection is rarely mentioned, but it provides rigorous explainations about why we choose
some design choices.

2.1 Biological Plausibility

Neural networks are inspired by biological neural networks. However, that doesn’t mean we have to follow every detail
of them. It is a classic debate topic where airplanes are often mentioned as a counterexample.
How about audio representations? Does biological plausibility matter when designing it?
The answer would depend on the problem we solve as well as the empirical evidence. For music classifcation, the answer
seems to be “Yes”. The way we perceive sounds decides what we care about and how we label music. Our understanding of
music, then, defines music classification tasks. For example, no one cares about pattern recognition of inaudible frequency
ranges.
In this section, I will help the readers to connect many choices we make regarding input representations to related concepts
in psychoacoustics, a study of our perception of sound.

Alright, let’s get started! Let me prepare some modules and variables first.

import numpy as np
import matplotlib.pyplot as plt
import librosa
import librosa.display
import IPython.display as ipd

plt.rcParams.update({'font.size': 16, 'axes.grid': True})

SR = 22050 # sample rate of audio
wide = (18, 3) # figure size

(continues on next page)

7

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
big = (18, 8) # figure size

print(f"{librosa.__version__=}")

librosa.__version__='0.8.1'

src, sr = librosa.load('are-you-here-with-me(mono).mp3', sr=SR, mono=True, duration=5.
↪0)

print(f'{src.shape=}, {sr=}')

/Users/admin/miniconda3/lib/python3.8/site-packages/librosa/core/audio.py:165:␣
↪UserWarning: PySoundFile failed. Trying audioread instead.
warnings.warn("PySoundFile failed. Trying audioread instead.")

src.shape=(110250,), sr=22050

2.2 Waveforms

The first representation we’ll discuss is waveforms.

Note: Waveforms are records of amplitudes of audio signals.

plt.figure(figsize=wide) # plot using matplotlib
plt.title('Waveform of the example signal')
plt.plot(src);plt.ylim([-1, 1]);

ipd.Audio(src, rate=sr) # load a NumPy array

<IPython.lib.display.Audio object>

Effective visualization of audio representations is trickier than you think. FYI, you can ask librosa to take care of it
as below. We’ll use both matplotlib directly and librosa depending on what I want to display.

plt.figure(figsize=wide) # plot using librosa
plt.title('Waveform of the example signal')
librosa.display.waveshow(src, sr=22050);plt.ylim([-1, 1]);

8 Chapter 2. Input Representations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

This 5-second 22,050-Hz sampled mono audio has a shape of (110250,). So, what is this long 1-dimensional array?
It is a representation for (diaphragms of) speakers, whose goal is to produce the sound (the change of pressure in the air)
correctly.
2/7 Let’s zoom into the waveform

As the raw end of audio signals, waveforms were used as input of music classification models in [DS14], [LPKN17], etc.
Is waveform the best representation for neural networks? It depends, but usually it’s not.

• If you have a lot of data, it’s worth trying with the minimally assuming, waveform-based models such as Sample-
CNN ([LPKN17]). Beware though, it’s requires a large memory, lots of computation, and large-scale data.

What are the alternatives then? There is no single answer to the question. A bunch of types of spectrograms could be
the answer depending on what you’re looking for.
But - first of all, what are spectrograms?

2.3 Spectrograms: time-frequency representations

Note: Spectrogram refers to a (2D) visualization of sound.

Text(0.5, 1.0, 'A Spectrogram')

2.3. Spectrograms: time-frequency representations 9

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Why is spectrogram a good representation?
Let’s think about how we perceive sound. The amplitudes of acoustic waves – waveforms – are what our eardrums respond
to. The sound travels through our auditory system. At some point, it is then converted to a (sort of) 2-dimensional
representation in the cochlear to perform some frequency analysis. This is done by the basilar membrane physically
responding to a certain frequency component as below.
(Image from Wikipedia)

<IPython.core.display.Image object>

This means that 2-dimensioal representations are biologically plausible, which is not bad.
Additionally, spectrograms are neural network-friendly because they fit well with properties of some popular architectures.
For example, local correlation and the shift invariance of CNNs can be utilized nicely when we’re using spectrograms.
One would argue that the harmonic relationship along the frequency axis is hardly considered in CNNs. But i) we can
modify the structure to take it into account [WCNCS19], and its performance was on par with typical (non-harmonic)
CNNs [WFBS20].
For the rest of this section, we’ll focus on three types of spectrogram. They are STFT, melspectrograms, or constant-Q
transform (CQT). Let me first summarize their property from a deep learning point of view.

Note:
• STFT has some good properties but its size is usually bigger than Melspectrograms or CQT. That means more

computation and memory usage, so it is less desirable.
• Melspectrogram has been very popular for practical reasons. The performance is strong, its memory usage is

small, and the computation is simple. This is probably everyone’s go-to choice if you’re not sure.
• Constant-Q Transform (CQT) is quite similar to Melspectrogram for ML models. However, it is more compu-

tation heavy and is less available in softwares we use.

10 Chapter 2. Input Representations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

2.4 STFT

STFT (short-time Fourier transform) is the most “raw” kind of spectrograms. It has two axes - time and frequency.
• It has a linear frequency resolution. Its frequency axis spans from 0 Hz (DC component) to sample_rate / 2

Hz (aka Nyquist frequency).
• We can fully reconstruct the audio signal from a STFT.
• STFT consists of complex numbers.

n_fft = 512 # STFT parameter. Higher n_fft, higher frequency resolution you get.
hop_length = n_fft // 4 # STFT parameter. Smaller hop_length, higher time resolution.
stft_complex = librosa.stft(y=src, n_fft=n_fft, hop_length=hop_length)

print(f"{src.shape=}\n{stft_complex.dtype=}\n{stft_complex.shape=}\n{stft_complex[3,␣
↪3]=}\n")

src.shape=(110250,)
stft_complex.dtype=dtype('complex64')
stft_complex.shape=(257, 862)
stft_complex[3, 3]=(-0.9134862+0.22103079j)

The shape of (257, 862) means there are 257 frequency bands and 862 frames.
• 257 = (n_fft / 2) + 1. Originally, there are n_fft number of frequency bins. But, they are mirror image for real

signals (such as audio signals) so we can discard the half. These bins include the boundaries, hence there is one
more bin.

• 862 = ceil(signal_length / hop_length) = ceil(110250 / 128) = 862. There could be a few more frames depending
on how you handel the boundaries.

But, we rarely use stft_complex as it is.
• Modification 1: For analysis purposes, we usually use the magnitudes of STFT only. This is not only convenient

but also biologically plausible since the human auditory system is insensitive to phase information. (Nevertheless,
this doesn’t mean it is always better to discard the phase information.)

In MIR literatures, STFT usually refers to the magnitude of STFT while the original, complex-numbered STFT is referred
as “complex STFT”.

Note: STFT has a linear frequency resolution and we often use magnitude of it.

2/7 Let’s see how a magnitude-STFT looks like.

stft = np.abs(stft_complex)
print(f"{stft.dtype=}\n{stft.shape=}\n{stft[3, 3]=}\n")

plt.figure(figsize=wide)
img = plt.imshow(stft)
plt.colorbar(img)
plt.ylabel('bin index\n(lower index -> low freq)');plt.xlabel('time index')
plt.title('Manitude spectrogram (abs(STFT))');plt.grid(False);

stft.dtype=dtype('float32')
stft.shape=(257, 862)
stft[3, 3]=0.9398466

2.4. STFT 11

https://ptolemy.berkeley.edu/eecs20/week8/phase.html

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Can you see the slight activations on the lower frequency (near the upper boundary)? That’s the magnitudes of the STFT
of our example signal. But this image looks pretty sparse.
Let’s time-average the frequency distribution and plot it.

plt.figure(figsize=wide); plt.subplot(1, 2, 1)
stft_freq_distritubion = np.mean(stft, axis=1) # axis=1 is the time axis.
plt.plot(stft_freq_distritubion)
plt.xlabel('bin index\n(lower index -> low freq)')
plt.title('Frequency magnitude (linear scale)');

Seems like the magnitude is much larger in the low frequency region. This is very common due to our nonliear perception
of loudness per frequency, and this is why the spectrogram above didn’t seem very clear to us. And even worse, this kind
of an extreme distribution is not good for neural networks. You can find more discussion on this in [CFCS18].
The solution is to take log() to magnitude spectrograms.

• Modification 2 After abs(), we compress the magnitude with log(). This is also biologically plausible - the
human perception of loudness is much closer to a logarithmic scale than a linear scale (i.e., it follows Weber–
Fechner law).

Both of the modifications 1 and 2 are so common that people often omit them in papers.

12 Chapter 2. Input Representations

https://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law
https://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Note: By “STFT” in deep learning-related articles, people often mean log-magnitude STFT.

Remember that these modification have nothing to do with the total shape – they are element-wise operations.

eps = 0.001
log_stft = np.log(np.abs(stft_complex) + eps)
print(f"{log_stft.dtype=}\n{log_stft.shape=}")

plt.figure(figsize=wide)
img = plt.imshow(log_stft)
plt.colorbar(img)
plt.ylabel('bin index\n(lower index -> low freq)');plt.xlabel('time index')
plt.title('Log-manitude spectrogram log(abs(STFT))');plt.grid(False);

ipd.Audio(src, rate=sr) # load a NumPy array

log_stft.dtype=dtype('float32')
log_stft.shape=(257, 862)

<IPython.lib.display.Audio object>

This is exactly what’s happening in Decibel scaling. Decibel scaling is also logarithm mapping but with a few dif-
ferent choices of the constants (e.g., log10 vs log, etc) so that 0 dB becomes absolute silence and 130 dB becomes
a really really loud sound. Check out the implementations in librosa.amplitude_to_db() and librosa.
power_to_db() for more correct and numerically stable and decibel scaling.
Finally, it doesn’t look so right when low-frequency is at the top of the image. Let’s flip up-down to correct it.

eps = 0.001
log_stft = np.log(np.abs(stft_complex) + eps)
log_stft = np.flipud(log_stft) # <-- Here! The rest of the code is hidden.

log_stft.dtype=dtype('float32')
log_stft.shape=(257, 862)

2.4. STFT 13

https://en.wikipedia.org/wiki/Decibel
https://librosa.org/doc/main/generated/librosa.amplitude_to_db.html
https://librosa.org/doc/main/generated/librosa.power_to_db.html
https://librosa.org/doc/main/generated/librosa.power_to_db.html

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

OK! This is the famous log-magnitude STFT. Quite often, people call it simply a STFT or a log-STFT.

Note: People usually use log-magnitude STFT.

From here, I’ll use libros more actively because i) the implementation of other representations is not trivial and ii) so
that the x- and y-axes are nicely displayed in more convenient units.
Additionally, it’s always safe to make your data zero-centered. That’s also done quite nicely with the default parameters
of librosa.

plt.figure(figsize=wide)
img = librosa.display.specshow(librosa.amplitude_to_db(stft), sr=SR, x_axis='s', y_

↪axis='linear', hop_length=hop_length)
plt.colorbar(img, format="%+2.f dB")
plt.title('decibel scaled STFT, i.e., log(abs(stft))');

2.5 Even more modifications

By computing log(abs(STFT)), we get a nice image of the sound. But, it is just a beginning!
Reasons for modifying the frequency scale

• Our perception of frequency is also nonlinear (approximately.. (drum rolls!..) logarithmic).
• Similarly, we defined pitches in the octave (=logarithmic) scale

Reasons why it’s fine to remove some high frequency bands
• The highest frequency of original audio signals is usually 22kHz which is pretty far beyond our range.
• Similarly, the information in high-frequency ranges (e.g., f > 10kHz) is i) sparse, ii) not that necessary for most of

MIR tasks, and iii) barely audible for us.

14 Chapter 2. Input Representations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Reason why, it’s better to remove some high frequency bands
• Because we want to remove any redundant memory and computation especially in deep leanring.

Because of these, researchers have been using time-frequency representations that are even more modified than
log(abs(STFT)).

2.6 Melspectrograms

Melspectrograms have been the top choices for music tagging and classification. But what is a melspectrogram?
Melspectrogram is a result of converting the linear frequency scale into the mel scale. Mel scale is invented to mimic the
our perception of pitch. The popular implementation of these days assumes a linearity under 1 kHz and a logarithmic
curve above 1 kHz.

Note: Melspectrogram is based on a mel-scale, which is nonlinear and approximates human perception.

Benefits
• It’s reduces the number of frequency band greatly. For example, 1028 -> 128. What a deep learning-plausible

number it becomes!
• It’s simple and fast - the computation is a matrix multiplication of a pre-computed filterbank matrix.

2.6. Melspectrograms 15

https://en.wikipedia.org/wiki/Mel_scale

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

• It’s effective - the model works even better in many cases.

log_melgram = librosa.power_to_db(
np.abs(

librosa.feature.melspectrogram(src, sr=SR, n_fft=n_fft, hop_length=hop_length,
↪ power=2.0,

n_mels=128)
)

)
print(log_melgram.shape, stft.shape) # 257 frequency bins became 128 mel bins.

(128, 862) (257, 862)

We can directly compare STFT and melspectrogram.

plt.figure(figsize=(wide))
plt.subplot(1, 2, 1)
img = plt.imshow(np.flipud(librosa.amplitude_to_db(stft)))
plt.colorbar(img, format="%+2.f dB")
plt.title('log(abs(stft))'); plt.grid(False);
plt.yticks([0, n_fft//2], [str(SR // 2), '0']); plt.ylabel('[Hz]'); plt.xlabel('time␣

↪[index]')

plt.subplot(1, 2, 2)
img = plt.imshow(np.flipud(log_melgram))
plt.colorbar(img, format="%+2.f dB")
plt.title('log(melspectrogram)'); plt.grid(False);plt.yticks([]);
plt.yticks([0, 128], [str(SR // 2), '0']); plt.ylabel('[Hz]'); plt.xlabel('time␣

↪[index]');

A few observation:
• Melspectrogram is smaller than STFT.
• Even if it’s smaller, the low frequency region has allocated more bins than it does in STFT.
• The frequency range is the same.

2.7 Constant-Q Transform

As we’ve seen, melspectrograms are great! But it is just a simple aggregation of high-frequency bins into one. This means
the frequency resolution of melspectrogram is bound by that of STFT. And there is always a trade-off between time and
frequency resolutions in STFT.
Constant-Q Transform is more radical. Why not having accurately octave scale representation?
Its implementation is not trivial, but the idea is to use time-varying windows for different center frequency. Let’s see the
result.

16 Chapter 2. Input Representations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

log_cqt = librosa.amplitude_to_db(
np.abs(

librosa.cqt(src, sr=SR, hop_length=hop_length, n_bins=24*7, bins_per_
↪octave=24, fmin=librosa.note_to_hz('C1'))

)
)

plt.figure(figsize=(18, 8))
plt.subplot(1, 2, 1)
img = librosa.display.specshow(log_melgram, y_axis='mel', sr=SR, hop_length=hop_

↪length)
plt.colorbar(img, format="%+2.f dB")
plt.title('log(melspectrogram)')

plt.subplot(1, 2, 2)
img = librosa.display.specshow(log_cqt, y_axis='cqt_hz', sr=SR, hop_length=hop_length,

↪ bins_per_octave=24)
plt.colorbar(img, format="%+2.f dB")
plt.title('log(cqt)')

Text(0.5, 1.0, 'log(cqt)')

The difference is pretty obvious here - we get a much better pitch resolution!

2.7. Constant-Q Transform 17

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

2.8 Practical Issue: How to compute them?

There are several softwares that computes these representations. Take this information with a grain of salt because it will
be outdated after releasing this book (2021 Nov).

2.8.1 Waveforms

First of all, you get waveforms by simply loading the audio.
• You’d need an audio codec (e.g., FFMPEG) if your audio comes in formats such as mp3, m4a, aac, or ogg.

– Usually, your audio file loader returns a floating-point data array where the amplitude is in [-1.0, 1.0].
But, the original wav file usually stores the amplitudes in int16 format. (No worries though, Float32 is
precise enough to represent them.)

• You can use scipy.io.wavfile.read to load PCM audio.

2.8.2 Spectrograms

There are various softwares and approaches to compute STFT, melspectrogram, and CQT.
• On CPU

– librosa: librosa.stft internally uses stft but with a more tailored and carefully chosen API with default
values. It also includes functions to compute a melspectrogram and a CQT [MRL+15].

– scipy: scipy.signal.stft is a cpu-based implementation of STFT using FFT [VGO+20].
– Essentia provides C++-based implementation of STFT and melspectrogram as well as their python bindings

[BWGomezGutierrez+13].
• On CPU & GPU

– Torchaudio: One can compute STFT using torchaudio.functional.spectrogram. It also in-
cludes a wide variety of functions and utilities such as amplitude_to_DB and resampling [YHN+21].

– nnAudio: It has multiple versions of CQT computation functions as well as others e.g., STFT and melspec-
trogram. Its STFT computation is based on Conv1D, not FFT [CAAH20].

– Tensorflow: It has a native support of stft. However, it is slow on cpu, which might be critical if your model
is going to be deployed on cpu-only machines. It, by the way, even has a function to convert an STFT to
melspectrogram [ABC+16].

– kapre: kapre.time_frequency includes tf.keras layers such as STFT and melspectrogram as well as util-
ities as decibel conversion. Its STFT layer is a wrapper of tf.signal.stft [CJK17].

2.8.3 Consistency between softwares

Not all the implementations are equal! Especially.. nothing.
• Default behavior such as padding may be different
• There is no single canonical reference implementation of some concepts such as mel scale.
• CQT is an approximation yet. There is no method to compute CQT with perfect reconstruction.

18 Chapter 2. Input Representations

https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html
https://librosa.org/doc/latest/generated/librosa.stft.html
https://librosa.org/doc/latest/generated/librosa.feature.melspectrogram.html
https://librosa.org/doc/latest/generated/librosa.cqt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html
https://essentia.upf.edu/documentation.html
https://pytorch.org/audio/stable/functional.html#spectrogram
https://pytorch.org/audio/stable/functional.html#amplitude-to-db
https://pytorch.org/audio/stable/functional.html#resample
https://kinwaicheuk.github.io/nnAudio/_autosummary/nnAudio.Spectrogram.html
https://www.tensorflow.org/api_docs/python/tf/signal/stft
https://github.com/tensorflow/tensorflow/issues/6541
https://www.tensorflow.org/api_docs/python/tf/signal/linear_to_mel_weight_matrix
https://www.tensorflow.org/api_docs/python/tf/signal/linear_to_mel_weight_matrix
https://kapre.readthedocs.io/en/latest/time_frequency.html

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

One should make sure that all the data are processed consistently. The easiest way is to have a single method that process all
the data during training and after deployment. This may be tricky, but possible for most of the cases. See the comparisons
and suggestions linked below for more information.

• Librosa and Scipy
• Librosa and Tensorflow
• Librosa and Torchaudio

2.8. Practical Issue: How to compute them? 19

https://gist.github.com/bmcfee/746e572232be36f3bd462749fb1796da
https://colab.research.google.com/drive/1ptS1UkpHa-dW8w7WEf8xTE63mEQg8NQZ
https://github.com/pytorch/audio/issues/1058#issuecomment-778476093

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

20 Chapter 2. Input Representations

CHAPTER

THREE

DATASETS

3.1 Overview

There already exists a great comprehensive list of MIR datasets. In this book, we focus on some important datasets and
discussion of them including some secrets that worth spreading.Over time, researchers have adopted different strategies
to create and release datasets. This resulted in various pros and cons, and traps.
These are some important but rarely discussed aspects.

3.1.1 Availabilities of audio signal

• This basic and fundamental requirement is already difficult. This is because, well, music is usually copyright-
protected. The solutions are i) just-do-it, ii) distribute the features, iii) use copyright-free music, iv) distribute the
IDs.

3.1.2 Hidden traps!

..Because some of the dataset creation procedure was not perfect.
• How shall we split them

– Many datasets don’t have a official dataset split, and this caused many problems. Usually, wrong split gets us
an incorrectly optimistic result, which incentives us to overlook the problem.

• How noisy the labels are?
– No annotation is perfect, but on a varying level. Why? How?
– Regarding the inherent noisiness of the label (subjectivity, fuzzy definition, etc), what is the practi-

cal/meaningful best performance?
• How realistic the audio signals are?

– We want our research (and the resulting models) to be practical. A lot of this depends on how similar the
dataset is to the real, target data.

Now, let’s look into actual datasets.

21

https://github.com/ismir/mir-datasets/blob/master/outputs/mir-datasets.md

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

3.2 Gtzan Music Genre (2002)

Note:
• Audio is directly available
• 100 items x 10 genres x 30-second mp3 files.
• Single-label genre classification

The famous GTZAN dataset [TC01] deserves to be the MNIST for music. The first paper using this dataset [TC02]
remains a foundational work in the modern music classification. The dataset was used in more than 100 papers already in
2013 according to a survey ([Stu13]). It is popular since the concept of music genres and single-label classification is easy,
simple, and straightforward. 30-second mp3 is small and short. With a lot of features and a power classifier, researchers
these days can quickly achieve 90+% (or even 95+% (or even 100%!)) accuracy.
However, now we know that there are way too many issues with the dataset. This is summarized very well in the afore-
mentioned survey by Bob L. Sturm’s survey [Stu13]. We’ll list a few.

Warning:
• The audio quality varies by samples (though it was intended) and it is not annotated
• There are heavy artist repetition, which are very often ignored during dataset split
• The labels don’t seem to be 100% correct (which makes the 100%-accuracy models questionable)

Because of these known issues, GTZAN doesn’t seem to be as popular as it used to be in published research. Still, one
may find it a simple benchmark dataset. In that case, please refer to this repo made by Corey Kereliuk and Bob Sturm
and use a fault-filtered split.

Tip:
• Use other, bigger and better datasets
• Use a cleaned version and split

A tremendous number of following researchers owe its creator, George Tzanetakis, for the dataset release. Here’s a quote
from the website, where you can simply one-click-download the dataset.

..Unfortunately the database was collected gradually and very early on in my research so I have no titles (and
obviously no copyright permission etc)..

This is not a viable option these days anymore. Let’s see more modern approaches.

22 Chapter 3. Datasets

https://en.wikipedia.org/wiki/MNIST_database
https://scholar.google.co.kr/citations?view_op=view_citation&hl=en&user=yPgxxpwAAAAJ&citation_for_view=yPgxxpwAAAAJ:u5HHmVD_uO8C
https://arxiv.org/abs/1306.1461
https://arxiv.org/abs/1306.1461
https://arxiv.org/abs/1306.1461
https://arxiv.org/abs/1306.1461
https://github.com/coreyker/dnn-mgr/tree/master/gtzan
https://github.com/coreyker/dnn-mgr/tree/master/gtzan
http://opihi.cs.uvic.ca/sound/genres.tar.gz

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

3.3 MagnaTagATune (2009)

Note:
• Designed for tagging problem
• Audio is directly available. They’re from magnatune.com, a marketplace of indie music. John Buckman, the

founder of magnatune contributed these files.
• 5,405 tracks (25,863 x 29-second clips), 230 artists, 446 albums, 188 tags.

MagnaTagATune [LWM+09] has played a significant role since its release until even now (2021). It was used in pioneering
research such as [DS14], [CFS16], [LPKN17], [WCS21], [SB21], etc.
“Tagging” is a specific kind of classification, and MagnaTagATune is one of the earliest tagging datasets that is in this
scale and that comes with audio. The songs are all indie music, so use this dataset at your own risk - the property of the
music/audio might not be as realistic as you want.
The gamification of the annotation process is worth mentioning. In this game called “Tag a Tune”, two players were asked
to tag a clip, then shown the other player’s tagging results to finally judge if they were listening to the same clip or not.
This constraint-free annotation process has pros and cons; it is realistic, which is good; but it makes the label noisy, which
is bad as a benchmark dataset.
There are various approaches how to split and whether to include below top-50 tags during training and/or testing. This
hidden difference makes the comparison silently noisy. Finally, The authors of [WFBS20] decided to include items with
top-50 tags only, both in training and testing. They then trained various types of models and shared the result in the paper.
We recommend follow-up researchers to use the same split for a correct comparison.

Warning:
• Tags are weakly labeled and have synonyms
• DO NOT RANDOM SPLIT 25,863 clips! They’re from the same track!
• Researchers used slightly different splits.
• The score on this dataset is still improving, but only slightly. It means we might be near the glass ceiling.

This dataset turned out to be big enough to train some early deep neural network models such as 1D and 2D CNNs. Until
late 2010s, MagnaTagATune was probably the most popular dataset in music tagging.

Tip:
• Follow the split and refer to the numbers in [WFBS20].
• If you split by yourself, do it by tracks (instead of clips) |
• Know you’re dealing with an indie music|
• Know you’re dealing with a weakly labeled dataset|

3.3. MagnaTagATune (2009) 23

http://magnatune.com/

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

3.4 Million Song Dataset (2011)

Note:
• Audio is not directly available.

– As of 2021, only a crawled version that contains ~99% of the preview clips is available by word of mouth.
• Literally a million tracks: By far the biggest dataset
• The provided last.fm tags are realistic

The million song dataset (MSD, [BMEWL11]) is a monumental music dataset. It was ahead of time in every aspect –
size, quality, reliability, and various complementary features.
MSD has been the music dataset since the beginning of deep learning era. It enabled the first deep learning-based music
recommendation system [VdODS13] and the first large-scale music tagging [CFS16].
Researchers usually formulate the music tagging on MSD as a top-50 prediction task. This may be partially due to the
convention of MagnaTagATune and earlier research, but it makes sense considering the sparsity of the tags. The tags in
MSD are in an extremely long tail.

in the MSD, .. there are 522,366 tags. This is outnumbering the 505,216 unique tracks..
.. the most popular tag is ‘rock’ which is associated with 101,071 tracks. However, ‘jazz’, the 12th most
popular tag is used for only 30,152 tracks and ‘classical’, the 71st popular tag is used 11,913 times only. ..

(from [CFCS18])

Warning:
• Some splits have artist leakage
• It might be difficult to get the mp3s

The dataset split used in [CFS16] was based on simple random sampling. However, this resulted in potentially allowing
information between splits as same artists appear in different split.To avoid this issue, the authors of [WCS21] introduced
CALS split - a cleaned and artist-level stratified split. This includes [TRAIN, VALID, TEST, STUDENT, NONE] sets
where STUDENT set is a set of unlabeled items with respect to top-50 tags and can be used for semi-supervised and
unsupervised learning. (NONE is a subset of discarded items since their artists appeared in TRAIN.)
One critical downside of MSD is the availability of the audio. The creators of MSD adopted a very modern approach
on this - while only distributing audio features and metadata, they released a code snippet for fetching 30-second audio
previews from 7digital. (Recently, people have reported the audio preview API does not work anymore. This means the
audio is available only by word of mouth.)

Tip:
• 2/7 Ask around for the audio!
• Use the recent split
• No music after 2011

24 Chapter 3. Datasets

https://github.com/keunwoochoi/MSD_split_for_tagging/
https://us.7digital.com/

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

3.5 FMA (2017)

Note:
• Rigorously processed metadata and split. Maintained nicely on Github.
• More than 100k full tracks of copyright-free indie music
• Artist-chosen genres in a hierarchy defind by the website (free music archive)

Free Music Archive dataset (FMA, [DBVB16]) is a modern, large-scale dataset that contains full-tracks, instead of short
preview clips. Along with MTG-Jamendo, it enables interesting research towards fully utilizing the information of the
whole audio signal.

Warning:
• Audio quality varies, and the music is quite “indie”.
• Genre labels are i) from a pre-defined 163-genre hierarchy and ii) chosen by the artist.

From a machine learning point of view, the second item in Warning is an advantage. However, it limits the development
of realistic models.

Tip:
• Good for genre classification/hierarchical classification.
• A full-track is available, which is rare in the community

3.6 MTG-Jamendo (2019)

Note:
• 55,000 full audio tracks (320kbps MP3)
• 195 tags from genre, instrument, and mood/theme
• Pre-defined split based on the target tasks (genre, instrument, mood/theme, top-50, overall.)

MTG-Jamendo [BWT+19] is a modern dataset that shares some pros of MSD and FMA. Its audio is readily and legally
available, the audio is full-track and high-quality, contains various and realistic tags, and comes with properly defined
splits.
There are some interesting properties of this dataset, too. Pop and rock is the top genres in most of the genre datasets,
and that could be the same for your target test set. In MTG-Jamendo, the genre distribution is skewed towards some other
genres: The most popular genres are Electronic (16,480 items), soundtrack (~8k), pop, ambient, and rock. For mood
alone, MTG-Jamendo is still great but there are alternatives (more information is under Resources section).

Warning:
• Genre distribution is slightly unusual

3.5. FMA (2017) 25

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

The distribution mismatch between training, validation, and testing sets is a classic yet critical problem. This wouldn’t be
a problem if all the testing and evaluation is within the provided split of MTG-Jamendo. Otherwise, one would want to
have a different sampling strategy to alleviate the issue. (To be fair, this is not only applicable for MTG-Jamendo.)

3.7 AudioSet (2017)

• Preview of AudioSet.

Note:
• Large scale (2.1 million in total), 1 million under music
• Fairly strongly labeled in terms of temporal resolution (labeled for 10-second segment)
• High-quality annotation
• Official and reliable split is provided

AudioSet [GEF+17] is made for general audio understanding and not specifically for music. But, in their well-designed
taxonomy, there is a high-level category ‘music’ that includes ‘musical instrument’, ‘music genre’, ‘musical concepts’, ‘music
role’, and ‘music mood’. In total, there are more than 1M items, each of which corresponds to a specific 10-second of
YouTube video.
The annotation is considered to be more than quite reliable. Also, for each category, AudioSet provides the estimated
accuracy of the annotation.

Warning:
• It includes music with a low audio quality
• Only the video URLs are provided
• The exact version would vary by people

The varying audio quality might be a downside depending on the target application. The dataset includes a live session, a
noisy and amateur recording, music with a low SNR, etc.
To use AudioSet, one has to crawl the audio signal by themselves. Downloading YouTube video/audio is in a grey zone
in terms of copyright, let alone the use of them.
Another issue is that the availabilities of the items in AudioSet are time-varying and country-dependent! Once the videos
are taken down, that’s it. Depending on the setting, some videos are just not available in some countries. Given the large
size, this issue might not be critical in practice – so far.

26 Chapter 3. Datasets

https://research.google.com/audioset/eval/music.html
https://research.google.com/audioset/ontology/music_1.html
https://youtu.be/0TiEO149Ydc
https://youtu.be/-YIT4HBM__g
https://youtu.be/-YIT4HBM__g
https://youtu.be/0Ycad70UNwE

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

3.8 NSynth (2017)

Note:
• ‘305,979 musical notes, each with a unique pitch, timbre, and envelope’ as well as five different velocities
• 16 kHz, 4-second, monophonic.

NSynth [ERR+17] is ‘a dataset of musical notes’. Yes, it is a music dataset. But is it a music classification dataset? Yes,
in a sense that MNIST is an image dataset. We suggest using this dataset only as a simple proof of concept.

Warning:
• This dataset is great for a lot of purposes, not exactly for music classification

3.9 Summary

We showed that many popular datasets are different (and flawed) in many aspects. This is applied to the datasets we did
not discussed above. But that is a part of reality. In general, we strongly recommend investigating the dataset you use
closely - audio, labels, split, etc. It is always helpful to talk to the other researchers – the creators and the users of the
dataset.
There’s good news as well. The research community is learning lessons from the mistakes and adopting better data science
practices. Recently, as a result, we witness the quality of datasets increases significantly. At the end of this book, we will
revisit this in more detail and discuss what to consider when creating datasets.

3.10 Resources

• We barely cover mood-related datasets in this section. We would like to refer to this repo[GCCE+21] which
provides great information about music/mood datasets.

• mirdata [BFR+19] is handy Python package that helps researchers handle MIR datasets easily and correctly.
Many classification datasets are included e.g., the AcousticBrainz genre dataset [BPS+19].

3.8. NSynth (2017) 27

https://github.com/juansgomez87/datasets_emotion
https://mirdata.readthedocs.io/en/stable/index.html
https://github.com/MTG/acousticbrainz-genre-dataset

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

28 Chapter 3. Datasets

CHAPTER

FOUR

PROBLEM FORMULATION

In this section, we share our hands-on experiences of and details about music classification tasks. There are various types
of music classification tasks, and a task can be formulated in different ways. The ideas and considerations are reflected
when one constructs a new dataset. After then, users of the dataset follow what was assumed in the dataset.

4.1 Genre Classification

Music genre is one of the first things that come to people’s mind when they talk about music. Every music listener knows
at least some genre names. When talking about musical preferences, people assume they’re supposed to talk about their
favorite genres.
The simplest problem formulation of genre classification is to define a genre taxonomy that is flat and mutually exclusive
(single-label classification). This is how the pioneering Gtzan genre classification dataset was constructed [TC02]. The
authors set 10 high-level genres:

“blues, classical, country, disco, hip hop, jazz, metal, pop, reggae, rock”.
Are they really flat? Musicologists can argue about it for a whole night. Are they mutually exclusive? Probably.. not.
One can always find (or write) hybrid music by combining some important features of various genres. However, this
simplification works to some extent (Every problem formulation is wrong, but some are useful.) We also suspect people
naturally have the idea of mutual exclusiveness when they think of music genres. If that’s true, the simplification is not
only a bad thing. It was also adopted in Ballroom dataset [CGomezG+06], FMA-small and FMA-medium [DBVB16],
ISMIR 2004 genre [CGomezG+06], etc.
We can find a different problem formulation in more modern datasets. The mutual exclusiveness assumption was loosened
in Million Song Dataset [BMEWL11] (with tagtraum genre annotations [Sch15]). This allows a track to have more than
one genre labels (=multi-label classification), which is probably more correct. This is also the usual case where genre
classification is treated as a part of a tagging problem (since tags usually include various types of labels including genres)
such as MTG-Jamendo [BWT+19].
Finally, a hierarchical genre taxonomy is considered in datasets such as FMA-Full [DBVB16] and AcousticBrainz-Genre
[BPS+19].

29

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

4.2 Mood classification

The genre boundaries are already fuzzy, but perhaps not as much as those of mood. By definition, mood is 100% sub-
jective; and then there is the difference between perceived mood (the mood of music) and induced mood (the mood one
would feel when listening to the music) – let alone a time-varying nature of it. In practice, MIR researchers have been
brave enough to be ignorant about those details and formulate mood classification problems in various ways.
In general, the whole scene is similar to that of genre classification. Some early datasets are based on flat hierarchy
(e.g., MoodsMIREX). When being a part of tagging problem, it’s allowed to have multi-labeling (MSD, MTG-Jamendo)
[BMEWL11], [BPS+19].
But, there is something special in mood classification. Not all the researchers in mood understanding agreed to make a
compromise and formulate it as a classification problem. As a result, some continuity was allowed when annotating mood
of music.
The most common method is to annotate it in a two-dimensional plane where the axes represents arousal and valence.
DEAP and Emomusic are examples [KMS+11], [SCS+13]. Sometimes, researchers even went further. For example, the
music can be annotated in a three-dimensional space – valence, arousal, and dominance. In another direction, there is
time-varying annotation (every 1 second) in DEAM/Mediaeval [SAY16].

4.3 Instrument identification

Instrument identification is another interesting problem that is a bit different from all the others. When pop music is the
target, researchers have no control in the range of the existing instruments - when sampling some tracks, it is not possible
to limit the instruments to be in a pre-defined taxonomy. One can manually sample items so that there only exist some
selected, target instruments. But what’s the point when reality ignores the constraint?
That was, though, not a problem in the early days since researchers didn’t dare to annotate all the instruments. In fact, in
the very early days, the target of instrument identification model was not even music tracks – instrument samples (e.g.,
1-second clips that contains only a single note of one instrument) were the items to classify.
The problem became more realistic with datasets such as IRMAS [BJFH12]. It has annotations of a single ‘predominant’
instrument of an item. This means mutual exclusiveness is assumed and the problem becomes a single-label classification.
It is subjective and noisy, but again - we always approximate anyway.
More recently, instrument identification was treated as multi-label classification in dataset such as OpenMIC-2018
[HDM18]. Like other tasks, it is also a multi-label classification when being solved as a part of music tagging in MSD or
MTG-Jamendo [BMEWL11], [BPS+19].
We can (relatively) safely assume that Instrument annotation is, compared to others such as genres or mood, objective.
This may sound good, but this makes it difficult for researchers to accept the noise in the label. When it comes to mood
or genre, when the label doesn’t seem quite right, researchers may still accept that as a result of inherent subjectivity.
However, there are many, many unannotated existing instruments in OpenMIC-2018, MSD, and MTG-Jamendo – in
other words, we really know with high confidence that they are wrong! For this reason, we think that the future of
instrument identification dataset might be a synthetic(ally mixed) dataset with 100% correct instrument labels.

30 Chapter 4. Problem Formulation

https://www.upf.edu/web/mtg/irmas

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

4.4 Music tagging

We already mentioned music tagging above, but what is it exactly? The progress of the computer and internet has given
the privilege of labeling music to every single music listener – the democratization of annotation. We call this process
music tagging. Social music services such as Last.fm gathered these tags, and predicting these tags from the audio content
became a task named music (auto-)tagging.
There is no constraint on which tag to use as long as the text field UI allows. Because of this freedom, tagging datasets
are extremely messy, noisy, and in a long-tail. For example, million song dataset has 505,216 tracks with at least one
last.fm tags and the total number of unique tags is.. 522,366 [BMEWL11]. There are more tags than the number of the
tracks! Out of them, the 7th popular tag is.. “favorite”. The 18th is “Awesome” (yes, it distinguishes lower/uppercases).
33th is “seen live”. 37th “Favorite” (I told you). 41th is “Favourite”.
Surprisingly, we can still solve this to some extent! How? Well, actually, many other tags – especially the top ones – are
relevant to the music content. These are the top-15 tags after removing those mentioned fuzzy tags.

‘rock’, ‘pop’, ‘alternative’, ‘indie’, ‘electronic’, ‘female vocalists’, ‘dance’, ’00s’, ‘alternative rock’, ‘jazz’, ‘beau-
tiful’, ‘metal’, ‘chillout’, ‘male vocalists’, ‘classic rock’,

There are genre, mood, and instruments – each of which has been treated as a target category for automatic classification.
What is the exact point of solving a tagging problem if the tag taxonomy is merely a superset of other labels? Musically,
the taxonomy and the occurrence of tags reflects what listeners care about. This means the knowledge a model learns can
be more universally useful than that from other tasks. Practically, it is easier to collect music tags than collecting (expert-
annotated) genre, mood, or instrument labels. This enabled researchers to train and evaluate deep learning models, and
this is why tagging remains to be the most popular music classification problem.

4.4. Music tagging 31

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

32 Chapter 4. Problem Formulation

CHAPTER

FIVE

EVALUATION

Evaluation of models is one of the most crucial parts of music classification. No matter how many state-of-the-art models
are available, the practical performance of the application can be different depending on which model we choose. Hence,
proper evaluation metrics that are fit for purpose are essential in the model selection. In this section, we explore widely
used evaluation metrics of music classification. Along with the concepts and definitions of evaluation metrics, their
implementation using scikit-learn library is provided together.
Let’s explore different evaluation metrics with an example of a binary classification task. We want to assess a classifier
that detects vocals in music. Our dataset has ten songs with vocal (blue) and ten songs without vocal (orange). The green
circle is a decision boundary of the model. The model predicts that the items in the green circle are vocal music, and the
items at the outside circle are instrumental music.

import numpy as np
y_true = np.array([False, False, False, False, False, False, False, False, False ,

↪False, True, True, True, True, True, True, True, True, True, True])
y_pred = np.array([False, False, False, False, False, False, False, True, True, True,␣

↪False, False, True, True, True, True, True, True, True, True])

As shown in the figure below, we can separate the predictions into four categories.
• True positives (TP): Correctly predicted vocal music (upper left).
• False positives (FP): Predicted as vocal music but they are non-vocal music (upper right).
• False negatives (FN): Predicted as non-vocal music but they are vocal music (lower left).
• True negatives (TN): Correctly predicted non-vocal music (lower right).

TP = (y_true & y_pred).sum()
FP = (~y_true & y_pred).sum()
FN = (y_true & ~y_pred).sum()
TN = (~y_true & ~y_pred).sum()
print('True Positive: %d' % TP)
print('False Positive: %d' % FP)
print('False Negative: %d' % FN)
print('True Negative: %d' % TN)

True Positive: 8
False Positive: 3
False Negative: 2
True Negative: 7

33

https://scikit-learn.org/stable/index.html

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

5.1 Accuracy

Accuracy is an intuitive evaluation metric to assess classification models. It measures how many items are correctly
predicted. The formula of accuracy is:

accuracy = (TP + TN) / (TP + TN + FP + FN)
print('Accuracy: %.4f' % accuracy)

from sklearn.metrics import accuracy_score
sklearn_accuracy = accuracy_score(y_true, y_pred)
print('Accuracy (sklearn): %.4f' % sklearn_accuracy)

Accuracy: 0.7500
Accuracy (sklearn): 0.7500

5.2 Precision

Precision measures how many retrieved items are truly relevant. Among 11 retrieved items in the green circle, 8 of them
are vocal music, and 3 of them are not. The formula of precision is:

precision = TP / (TP + FP)
print('Precision: %.4f' % precision)

from sklearn.metrics import precision_score
sklearn_precision = precision_score(y_true, y_pred)
print('Precision (sklearn): %.4f' % sklearn_precision)

Precision: 0.7273
Precision (sklearn): 0.7273

5.3 Recall

Recall measures how many relevant items are correctly retrieved. Among 10 songs with vocal, 8 of them are correctly
predicted as vocal music. The formula of recall is:

recall = TP / (TP + FN)
print('Recall: %.4f' % recall)

from sklearn.metrics import recall_score
sklearn_recall = recall_score(y_true, y_pred)
print('Recall (sklearn): %.4f' % sklearn_recall)

sensitivity = TP / (TP + FN)
specificity = TN / (FP + TN)
print('Sensitivity: %.4f' % sensitivity)
print('Specificity: %.4f' % specificity)

Recall: 0.8000
Recall (sklearn): 0.8000
Sensitivity: 0.8000
Specificity: 0.7000

34 Chapter 5. Evaluation

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Tip:
• High precision is directly related to user experience. When retrieved items are truly relevant, users can trust the

system.
• However, a high precision / low recall system only retrieves a few positive items, which end up with low diversity.

A lot of relevant items (False negatives) will be discarded.

5.4 F-measure

F-measure or F-score is an evaluation metric of binary classification. The traditional F-measure (F1-score) is defined as
the harmonic mean of precision and recall. The maximum value is 1.0, and the lowest is 0 (either precision or recall is
zero).

F1 = 2 * precision * recall / (precision + recall)
print('F1-score: %.4f' % F1)

from sklearn.metrics import f1_score
sklearn_F1 = f1_score(y_true, y_pred)
print('F1-score (sklearn): %.4f' % sklearn_F1)

F1-score: 0.7619
F1-score (sklearn): 0.7619

Tip: Depending on system requirements, either precision or recall may be more critical. Fbeta-measure controls the
balance of precision and recall using a coefficient beta.

5.5 High precision vs high recall?

The model outputs the likelihood of the input to have vocal between 0 and 1. Hence, to make a final decision, we need to
set a threshold. With a high threshold, the model becomes more strict, which means the green circle becomes smaller. The
retrieved results by the model for a given query “vocal music” will be reliable. However, the model only retrieves a few
songs among the entire vocal tracks (i.e., high precision and low recall). This can be observed from the precision-recall
curve below. As the threshold gets closer to 1.0, precision goes higher while recall goes lower.
On the other hand, if the threshold gets lower, it results in high recall and low precision, which means the system returns
any item to be positive. Like this, appropriate decision making of threshold is crucial.

5.4. F-measure 35

https://en.wikipedia.org/wiki/F-score

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

5.6 Area under receiver operating characteristic curve (ROC-AUC)

As we checked from the precision-recall curve, the model’s performance varies by a decision boundary (threshold). The
receiver operating characteristic curve (ROC curve) reflects the model’s threshold-varying characteristics. The ROC curve
is created by plotting true positive rate (TPR) against false positive rate (FPR), where TPR is also known as sensitivity or
recall, and FPR is calculated as (1 - specificity).
In the figure above, a dotted black line indicates the ROC curve of a random classifier, a blue line indicates a better
classifier, and an orange line shows a perfect classifier. As a classifier gets better, the area under the curve (AUC) gets
wider. We call this area under the ROC curve as ROC-AUC score.

y_true = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
y_pred_random = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,␣

↪0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
y_pred_blue = np.array([0.1, 0.3, 0.8, 0.6, 0.1, 0.4, 0.5, 0.1, 0.2, 0.2, 0.4, 0.4, 0.

↪5, 0.6, 0.7, 0.8, 0.9, 0.6, 0.8, 0.7])
y_pred_orange = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

from sklearn.metrics import roc_auc_score
roc_auc_random = roc_auc_score(y_true, y_pred_random)
roc_auc_blue = roc_auc_score(y_true, y_pred_blue)
roc_auc_orange = roc_auc_score(y_true, y_pred_orange)
print('ROC-AUC (random): %.4f' % roc_auc_random)
print('ROC-AUC (blue): %.4f' % roc_auc_blue)
print('ROC-AUC (orange): %.4f' % roc_auc_orange)

ROC-AUC (random): 0.5000
ROC-AUC (blue): 0.8450
ROC-AUC (orange): 1.0000

5.7 Area under precision-recall curve (PR-AUC)

It is known that ROC-AUC may report overly optimistic results with imbalanced data. Therefore, the area under the
precision-recall curve (PR-AUC) is often provided together with ROC-AUC. The precision-recall curve is created by
plotting precision against recall at different thresholds. Unlike the ROC-AUC score, which has 0.5 as its lowest value,
the lowest bound of PR-AUC differs by data. When a model predicts every item to be positive regardless of threshold,
the recall will always be 1.0, and precision will be a ratio of positive items w.r.t. all items. Hence, the lowest value of
PR-AUC is the ratio of positive items.

y_true = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])
y_pred_random = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,␣

↪0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
y_pred = np.array([0.1, 0.3, 0.8, 0.6, 0.1, 0.4, 0.5, 0.1, 0.2, 0.2, 0.4, 0.4, 0.5, 0.

↪6, 0.7, 0.8, 0.9, 0.6, 0.8, 0.7])

from sklearn.metrics import roc_auc_score, average_precision_score
roc_auc = roc_auc_score(y_true, y_pred)
roc_auc_random = roc_auc_score(y_true, y_pred_random)
pr_auc = average_precision_score(y_true, y_pred)
pr_auc_random = average_precision_score(y_true, y_pred_random)
print('ROC-AUC (random): %.4f' % roc_auc_random)
print('PR-AUC (random): %.4f' % pr_auc_random)

(continues on next page)

36 Chapter 5. Evaluation

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
print('ROC-AUC: %.4f' % roc_auc)
print('PR-AUC: %.4f' % pr_auc)

ROC-AUC (random): 0.5000
PR-AUC (random): 0.1000
ROC-AUC: 0.8472
PR-AUC: 0.2917

Warning: The average precision (sklearn.metrics.average_precision_score) is one method for
calculating PR-AUC. There are other methods such as trapezoid estimates and the interpolated estimates.

Tip: When the classification task has multiple labels, we need to aggregate multiple ROC-AUC scores and PR-AUC
scores. In scikit-learn library, there is an option called average. Most automatic music tagging research uses the option
average='macro', which averages tag-wise metrics. For more details, check their documentation (roc_auc_score,
average_precision_score).

5.7. Area under precision-recall curve (PR-AUC) 37

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

38 Chapter 5. Evaluation

Part II

Supervised Learning

39

CHAPTER

SIX

INTRODUCTION

In this chapter, we discuss a learning paradigm, supervised learning, which fully relies on ground truth to solve music
classification tasks.
The state-of-the-art in music classification has been improved with various deep neural network architectures that are
based on different goals and assumptions. We discuss the most successful and commonly used architectures in music
classification.
We need some information to train a neural network model. We call this ground truth, annotations, or labels of the dataset.
To reach state-of-the-art performance, deep neural networks often need many different labeled ground truth examples.
Creating a large dataset is costly and tricky. As a solution, in this chapter, we introduce data augmentation – a technique
we use to increase the size of dataset. Data augmentation is deeply domain specific, and we discuss the methods for
musical data.
Along this chapter, we implement a practical example of a supervised music classification model using GTZAN dataset.
This will help the readers to put everything in perspective,

41

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

42 Chapter 6. Introduction

CHAPTER

SEVEN

ARCHITECTURES

7.1 Overview

This tutorial mainly covers deep learning approaches for music classification. Before we jump into the details of different
deep architectures, let’s check some essential attributes of music classification models.
As shown in the figure above, a music classification model can be broken into preprocessing, front end, and back end
modules. In the previous section, we have already covered the preprocessing steps where the model extracts different
input representations. The front end of the music classification model usually captures local acoustic characteristics such
as timbre, pitch, or existence of a particular instrument. Then the back end module summarizes a sequence of the extracted
features, which are the output of the front end module. The boundary between the front and back end may be ambiguous,
sometimes.
Another important attribute of music classification is song-level training vs instance-level training. Although our goal is
to make song-level predictions, music classification models often use only short audio segments during the training. This
is called instance-level training. Instance-level training is justified by our intuition; that humans can predict music tags
(e.g., rock music) with just a few-second snippet. As shown in the figure above, when we train a model with an instance
level, we end up having more training examples. The task may become more difficult because the model is given a less
amount of information. In practice, sometimes this ends up obtaining a more robust music tagging model, probably due
to the higher stochasticity. After training an instance-level model, if we need a song-level prediction, the instance-level
predictions can be aggregated. Max-pooling, average-pooling, or majority vote is the common operations used for the
aggregation.
We summarize important attributes of music classification models as follow:

Model Prepro-
cessing

Input
length

Front
end

Back end Training Aggrega-
tion

FCN STFT 29.1s 2D
CNN

. song-level .

VGG-ish / Short-chunk
CNN

STFT 3.96s 2D
CNN

Global max
pooling

instance-
level

Average

Harmonic CNN STFT 5s 2D
CNN

Global max
pooling

instance-
level

Average

MusiCNN STFT 3s 2D
CNN

1D CNN instance-
level

Average

Sample-level CNN . 3s 1D
CNN

1D CNN instance-
level

Average

CRNN STFT 29.1s 2D
CNN

RNN song-level .

Music tagging trans-
former

STFT 5s-30s 2D
CNN

Transformer instance-
level

Average

43

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

7.2 Fully Convolutional Networks (FCNs)

Motivated by the huge success of convolutional neural networks (CNN) in computer vision, MIR researchers adopted
the successful architectures to solve automatic music tagging problems. The fully convolutional network (FCN) is one of
the early deep learning approaches for music tagging, which comprises four convolutional layers [CFS16]. Each layer is
followed by batch normalization, rectified linear unit (ReLU) non-linearity, and a max-pooling layer. 3x3 convolutional
filters are used to capture spectro-temporal acoustic characteristics of an input melspectrogram.

7.3 VGG-ish / Short-chunk CNNs

The VGG-ish model [HCE+17] and Short-chunk CNNs [WFBS20] are very similar to FCN except for their inputs.
Instead of learning song-level representation, they utilize instance-level (chunk-level) training.
Since their input length is shorter than FCN’s, the VGG-ish model and Short-chunk CNN do not need to increase the size
of receptive fields with sparse strides. Instead, Short-chunk CNN, for example, consists of 7 convolutional layers with
dense max-pooling (2, 2), which fits a 3.69s audio chunk. When its input becomes longer, the model summarizes the
features using global max pooling.

7.4 Harmonic CNNs

The convolutional modules of Harmonic CNNs are identical to those of Short-chunk CNNs, but they use slightly differ-
ent inputs [WCNS20]. Harmonic CNNs take advantage of trainable band-pass filters and harmonically stacked time-
frequency representation inputs. In contrast with fixed mel filterbanks, trainable filters bring more flexibility to the
model. And harmonically stacked representation preserves spectro-temporal locality while keeping the harmonic struc-
tures through the channel of the input tensor in the first convolutional layer.

7.5 MusiCNN

Instead of using 3x3 filters, the authors of MusiCNN proposed to use manually designed filter shapes for music tagging
[PS19]. Let’s first assume that x- and y-axes correspond to time and frequency. Vertically long filters are designed to
capture timbral characteristics, while horizontally long filters are designed to capture temporal energy flux that is probably
related to rhythmic patterns and tempo.

7.6 Sample-level CNNs

Sample-level CNNs and its variant tackle automatic music tagging in an end-to-end manner by directly using raw audio
waveforms as their inputs [LPKN17]. In this architecture, 1x2 or 1x3 (1D) convolution filters are used. Each layer
consists of 1D convolution, batch normalization, and ReLU non-linearity. Strided convolution is used to increase the size
of the receptive field.

44 Chapter 7. Architectures

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

7.7 Convolutional Recurrent Neural Networks (CRNNs)

Unlike the previously introduced instance-level models, the convolutional recurrent neural networks (CRNNs) are de-
signed to represent music as a long sequence of multiple instances [CFSC17a]. CRNNs can be described as a combina-
tion of CNN and RNN. The CNN front end captures local acoustic characteristics (instance-level), and the RNN back
end summarizes the sequence of instance-level features.

7.8 Music tagging transformer

The motivation of the convolutional neural network with self-attention (CNNSA) [WCS19] and Music tagging transformer
[WCS21] is identical to that of the CRNN model. The front end captures local acoustic characteristics, and the back
end summarizes the sequence. In the field of natural language processing, Transformer has shown its suitability in long
sequence modeling by using self-attention layers. Both CNNSA and Music tagging transformer use the CNN front end
and the Transformer back end. The back end summarizes the instance-level features effectively.

7.9 Which model should we use?

After exploring these many different architectures, the first natural question would be about the best model to use. In
previous work [WFBS20], experimental results in three datasets (MagnaTagATune, Million Song Data, MTG-Jamendo)
are reported as follows.

Note: Summary:
• For the best performance, use the Music tagging transformer.
• VGG-ish and Short-chunk CNN are simple but powerful choices.
• When your training dataset is small, try with a reduced search space by using MusiCNN or Harmonic CNN.
• Sample-level CNN achieves strong performance with the increase of the size of the dataset. Still, spectrogram-

based models are showing state-of-the-art results.

Tip:
• PyTorch implementation of introduced models are available online [Github]
• You can try an online demo of pretrained models [Replicate.ai]

7.7. Convolutional Recurrent Neural Networks (CRNNs) 45

https://github.com/minzwon/sota-music-tagging-models.git
https://replicate.ai/minzwon/sota-music-tagging-models

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

46 Chapter 7. Architectures

CHAPTER

EIGHT

AUDIO DATA AUGMENTATIONS

In this chapter, we will discuss common transformations that we can apply to audio signals in the time domain. We will
refer to these as “audio data augmentations”.
Data augmentations are a set of methods that add modified copies to a dataset, from the existing data. This process creates
many variations of natural data, and can act as a regulariser to reduce the problem of overfitting. It can also help deep
neural networks become robust to complex variations of natural data, which improves their generalisation performance.
In the field of computer vision, the transformations that we apply to images are often very self-explanatory. Take this
image, for example. It becomes clear that we are zooming in and removing the color of the image:

Naturally, we cannot translate transformations from the vision domain directly to the audio domain. Before we explore a
battery of audio data augmentations, we now list the currently available code libraries:

47

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

8.1 Code Libraries

Name Author Frame-
work

Lan-
guage

License Link

Muda B. McFee et al.
(2015)

General
Purpose

Python ISC License source code

Audio Degrada-
tion Toolbox

M. Mauch et al.
(2013)

General
Purpose

MAT-
LAB

GNU General Public License
2.0

source code

rubberband - General
Purpose

C++ GNU General Public License
(non-commercial)

website,
pyrubberband

audiomentations I. Jordal (2021) General
Purpose

Python MIT License source code

tensorflow-io tensorflow.org Tensor-
Flow

Python Apache 2.0 License tutorial

torchaudio pytorch.org PyTorch Python BSD 2-Clause “Simplified” Li-
cense

source code

torch-
audiomentations

Asteroid
(2021)

PyTorch Python MIT License source code

torchaudio-
augmentations

J. Spijkervet
(2021)

PyTorch Python MIT License source code

8.2 Listening

One of the most essential, and yet overlooked, parts of music research is exploring and observing the data. This also
applies to data augmentation research: one has to develop a general understanding of the effect of transformations that
can be applied to audio. Even more so, when transformations are applied sequentially.
For instance, we will understand why a reverb applied before a frequency filter will sound different than when the reverb
is applied after the frequency filter. Before we develop this intuition, let’s listen to a series of audio data augmenations.

Number of datapoints in the GTZAN dataset: f442

Selected track no.: 5
Genre: 0
Sample rate: 22050
Channels: 1
Samples: 639450

<IPython.lib.display.Audio object>

8.2.1 Random Crop

Similar to how we can crop an image, so that only a subset of the image is represented, we can ‘crop’ a piece of audio by
selecting a fragment between two time points $t_0 - t_1$.
Various terms for this exist, e.g.,: slicing, trimming,

48 Chapter 8. Audio Data Augmentations

https://github.com/bmcfee/muda
https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox
https://breakfastquay.com/rubberband/
https://github.com/bmcfee/pyrubberband
https://github.com/iver56/audiomentations
https://www.tensorflow.org/io/tutorials/audio
https://github.com/pytorch/audio
https://github.com/asteroid-team/torch-audiomentations
https://github.com/Spijkervet/torchaudio-augmentations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

8.2.2 Frequency Filter

Note: In these examples and the accompanying code, we assume the shape of audio ordered in our array is follows:
(channel, time)

A frequency filter is applied to the signal. We can process the signal with either the LowPass or HighPass algorithm [47].
In a stochastic setting, we can determine which one to apply by, for example, a coin flip. Another filter parameter we can
control stochastically is the cutoff frequency: the frequency at which the filter will be applied. All frequencies above the
cut-off frequency are filtered from the signal for a low-pass filter (i.e., we let the low frequencies pass). Similarly for the
high-pass filter, all frequencies below the cut-off frequency are filtered from the signal (i.e., we let the high frequencies
pass).

Original

<IPython.lib.display.Audio object>

LowPassFilter

<IPython.lib.display.Audio object>

8.2. Listening 49

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

8.2.3 Delay

The signal is delayed by a value that can be chosen arbitrarily. The delayed signal is added to the original signal with a
volume factor, e.g.,, we can multiply the signal’s amplitude by 0.5.

Original

<IPython.lib.display.Audio object>

Delay of 200ms

<IPython.lib.display.Audio object>

Comb filter

When we apply a delayed signal to the original with a short timespan and a high volume factor, it will cause interferences.
These audible interferences are called a “comb filter”.

Original

<IPython.lib.display.Audio object>

Delay of 61ms

<IPython.lib.display.Audio object>

50 Chapter 8. Audio Data Augmentations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

8.2.4 Pitch Shift

The pitch of the signal is shifted up or down, depending on the pitch interval that is chosen beforehand. Here, we assume
a 12-tone equal temperament tuning that divides a single octave in 12 semitones.

Original

<IPython.lib.display.Audio object>

Pitch shift of 4 semitones

<IPython.lib.display.Audio object>

8.2.5 Reverb

To alter the original signal’s acoustics, we can apply a Schroeder reverberation effect. This gives the illusion that the sound
is played in a larger space, in which it takes longer for the sound to reflect.
Applying a reverberation of a “small” room on a signal that was recorded in a larger room does not have the opposite
effect: the process of reverberation is an additive process. The reverse process is called “dereverberation”.

Original

<IPython.lib.display.Audio object>

Reverb

<IPython.lib.display.Audio object>

8.2.6 Gain

Warning: In Jupyter notebook’s Audio() object, we have to set normalize=False so that we can hear an
unnormalized version of the audio. This is important to reflect the true audio transformation output.

We can apply a volume factor to the signal, so that it is perceived as louder. It is generally accepted that a loudness gain
of 10 decibels is perceived as twice as loud, and similarly 10 decibels of gain reduction is perceived half as loud.

Original

<IPython.lib.display.Audio object>

Gain

<IPython.lib.display.Audio object>

8.2. Listening 51

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

8.2.7 Noise

White Gaussian noise is added to the complete signal with a signal-to-noise ratio (SNR) that can be specified. A uniform
distribution between the minimum and maximum SNR boundaries is made so that, for example, we can draw a different
SNR value for each example in a mini-batch during training.

Original

<IPython.lib.display.Audio object>

Noise

<IPython.lib.display.Audio object>

8.2.8 Polarity Inversion

While this does not have an effect on a time-frequency representation of audio, e.g., a spectrogram, encoders that are
trained on raw waveforms can benefit from an audio data augmentation that flips the phase of an audio signal: Polarity
Inversion. Simply put, the signal is multipled by -1, which causes the phase to invert.
Interestingly, when we add the original signal to the phase-inverted signal, all phases will cancel out. This will natu-
rally result in silence. This is the core principle behind noise-cancelling headphones, which record the sound of your
surroundings and apply a polarity inversion as to reduce unwanted noise.

52 Chapter 8. Audio Data Augmentations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Original

<IPython.lib.display.Audio object>

Polarity Inversion

<IPython.lib.display.Audio object>

Original + Polarity Inversion

<IPython.lib.display.Audio object>

8.3 Sequential Audio Data Augmentations

Now that we have built up some intuition of some of the audio transformations, let us observe how they can be applied
sequentially. More importantly, to develop an understanding on how different audio transformations interact when we
apply them before, or after each other.
For this, we can use a Composemodule, which takes as input a list of audio transformations. These will be applied in the
order they appear in the supplied list. This interface is similar to torchvision.transforms and torchaudio.
transforms’ Compose modules.

Original:

<IPython.lib.display.Audio object>

Transform: Compose(
Delay()
HighLowPass()

)

8.3. Sequential Audio Data Augmentations 53

https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Compose

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

<IPython.lib.display.Audio object>

Now that we have listened to what a sequential audio transformation sounds like, let’s observe how two different transforms
interact when they are applied in a different sequential order.
Let’s take the following two transforms:

• Noise

• Reverb

A signal that does not have any reverberation added, is commonly called a dry signal. A signal that is reverberated is
called a wet signal.
When we first apply the Noise transform, the Reverb transform will apply the reverberation to the dry signal and the
added noise signal. This will result in a completely wet signal.
Conversely, when we first apply the Reverb transform, the Noise signal will be added after the reverberated signal.
The noise is thus dry, i.e., it is not reverberated.

Transform 1: Compose(
Noise()
Reverb()

)

<IPython.lib.display.Audio object>

Transform: Compose(
Reverb()
Noise()

)

<IPython.lib.display.Audio object>

8.3.1 More Sequential Audio Data Augmentations

Let’s continue to develop our intuition for sequential audio transformations a bit more in the following examples:

Transform: Compose(
RandomResizedCrop()
HighLowPass()
Delay()

)

<IPython.lib.display.Audio object>

Instead of retrieving a single augmented example, let’s return 4 different views of the original sound:

Transform: ComposeMany(
RandomResizedCrop()
HighLowPass()
Delay()

)

<IPython.lib.display.Audio object>

54 Chapter 8. Audio Data Augmentations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

8.4 Stochastic Audio Data Augmentations

We can also apply audio data augmentations stochastically, in which each data augmentation is applied with a random
probability p. This will increase the number of natural examples the model can learn - and generalize - from:

from torchaudio_augmentations import RandomApply

we want 4 augmented samples from ComposeMany
num_augmented_samples = 4

4 seconds of audio
num_samples = sr * 4

stochastic_transforms = [
RandomResizedCrop(n_samples=num_samples),
apply with p = 0.3
RandomApply(

[
PolarityInversion(),
HighLowPass(

sample_rate=sr,
lowpass_freq_low=2200,
lowpass_freq_high=4000,
highpass_freq_low=200,
highpass_freq_high=1200,

),
Delay(

sample_rate=sr,
volume_factor=0.5,
min_delay=100,
max_delay=500,
delay_interval=1,

),
],
p=0.3,

),
apply with p = 0.8
RandomApply(

[
PitchShift(sample_rate=sr, n_samples=num_samples),
Gain(),
Noise(max_snr=0.01),
Reverb(sample_rate=sr),

],
p=0.8,

),
]
transform = ComposeMany(

(continues on next page)

8.4. Stochastic Audio Data Augmentations 55

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
stochastic_transforms, num_augmented_samples=num_augmented_samples

)

print("Transform:", transform)
transformed_audio = transform(audio)

for ta in transformed_audio:
display(Audio(ta, rate=sr))

plt.show()

Transform: ComposeMany(
RandomResizedCrop()
RandomApply(

p=0.3
PolarityInversion()
HighLowPass()
Delay()

)
RandomApply(

p=0.8
<torchaudio_augmentations.augmentations.pitch_shift.PitchShift object at␣

↪0x7f874c4d07f0>
Gain()
Noise()
Reverb()

)
)

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

8.4.1 Single stochastic augmentations

we want 4 augmented samples from ComposeMany
num_augmented_samples = 4

4 seconds of audio
num_samples = sr * 4

define our stochastic augmentations
transforms = [

RandomResizedCrop(n_samples=num_samples),
RandomApply([PolarityInversion()], p=0.8),
RandomApply([HighLowPass(sample_rate=sr)], p=0.6),
RandomApply([Delay(sample_rate=sr)], p=0.6),
RandomApply([PitchShift(sample_rate=sr, n_samples=num_samples)], p=0.3),

(continues on next page)

56 Chapter 8. Audio Data Augmentations

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
RandomApply([Gain()], p=0.6),
RandomApply([Noise(max_snr=0.01)], p=0.3),
RandomApply([Reverb(sample_rate=sr)], p=0.5),

]

transform = ComposeMany(transforms, num_augmented_samples=num_augmented_samples)

print("Transform:", transform)
transformed_audio = transform(audio)

for ta in transformed_audio:
plot_spectrogram(ta, sr, title=e="")
display(Audio(ta, rate=sr))

plt.show()

Transform: ComposeMany(
RandomResizedCrop()
RandomApply(

p=0.8
PolarityInversion()

)
RandomApply(

p=0.6
HighLowPass()

)
RandomApply(

p=0.6
Delay()

)
RandomApply(

p=0.3
<torchaudio_augmentations.augmentations.pitch_shift.PitchShift object at␣

↪0x7f874b7973a0>
)

RandomApply(
p=0.6
Gain()

)
RandomApply(

p=0.3
Noise()

)
RandomApply(

p=0.5
Reverb()

)
)

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

8.4. Stochastic Audio Data Augmentations 57

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

<IPython.lib.display.Audio object>

8.5 Conclusion

Hopefully, this chapter on audio data augmentations has given you an intuition of what transformations we can apply to
audio signals. We will be using these audio data augmentations in the other code tutorials, to see how they can be applied
effectively to improve training of deep neural networks in the task of music classification.

58 Chapter 8. Audio Data Augmentations

CHAPTER

NINE

PYTORCH TUTORIAL

9.1 Data collection

In this PyTorch tutorial, we use GTZAN dataset which consists of 10 exclusive genre classes. Please run the following
script in your local path.

!wget http://opihi.cs.uvic.ca/sound/genres.tar.gz
!tar -zxvf genres.tar.gz
!wget https://raw.githubusercontent.com/coreyker/dnn-mgr/master/gtzan/train_filtered.

↪txt
!wget https://raw.githubusercontent.com/coreyker/dnn-mgr/master/gtzan/valid_filtered.

↪txt
!wget https://raw.githubusercontent.com/coreyker/dnn-mgr/master/gtzan/test_filtered.

↪txt

9.2 Data loader

import os
import random
import torch
import numpy as np
import soundfile as sf
from torch.utils import data
from torchaudio_augmentations import (

RandomResizedCrop,
RandomApply,
PolarityInversion,
Noise,
Gain,
HighLowPass,
Delay,
PitchShift,
Reverb,
Compose,

)

GTZAN_GENRES = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal',
↪'pop', 'reggae', 'rock']

(continues on next page)

59

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
class GTZANDataset(data.Dataset):

def __init__(self, data_path, split, num_samples, num_chunks, is_augmentation):
self.data_path = data_path if data_path else ''
self.split = split
self.num_samples = num_samples
self.num_chunks = num_chunks
self.is_augmentation = is_augmentation
self.genres = GTZAN_GENRES
self._get_song_list()
if is_augmentation:

self._get_augmentations()

def _get_song_list(self):
list_filename = os.path.join(self.data_path, '%s_filtered.txt' % self.split)
with open(list_filename) as f:

lines = f.readlines()
self.song_list = [line.strip() for line in lines]

def _get_augmentations(self):
transforms = [

RandomResizedCrop(n_samples=self.num_samples),
RandomApply([PolarityInversion()], p=0.8),
RandomApply([Noise(min_snr=0.3, max_snr=0.5)], p=0.3),
RandomApply([Gain()], p=0.2),
RandomApply([HighLowPass(sample_rate=22050)], p=0.8),
RandomApply([Delay(sample_rate=22050)], p=0.5),
RandomApply([PitchShift(n_samples=self.num_samples, sample_rate=22050)],␣

↪p=0.4),
RandomApply([Reverb(sample_rate=22050)], p=0.3),

]
self.augmentation = Compose(transforms=transforms)

def _adjust_audio_length(self, wav):
if self.split == 'train':

random_index = random.randint(0, len(wav) - self.num_samples - 1)
wav = wav[random_index : random_index + self.num_samples]

else:
hop = (len(wav) - self.num_samples) // self.num_chunks
wav = np.array([wav[i * hop : i * hop + self.num_samples] for i in␣

↪range(self.num_chunks)])
return wav

def __getitem__(self, index):
line = self.song_list[index]

get genre
genre_name = line.split('/')[0]
genre_index = self.genres.index(genre_name)

get audio
audio_filename = os.path.join(self.data_path, 'genres', line)
wav, fs = sf.read(audio_filename)

adjust audio length
wav = self._adjust_audio_length(wav).astype('float32')

data augmentation
(continues on next page)

60 Chapter 9. PyTorch tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
if self.is_augmentation:

wav = self.augmentation(torch.from_numpy(wav).unsqueeze(0)).squeeze(0).
↪numpy()

return wav, genre_index

def __len__(self):
return len(self.song_list)

def get_dataloader(data_path=None,
split='train',
num_samples=22050 * 29,
num_chunks=1,
batch_size=16,
num_workers=0,
is_augmentation=False):

is_shuffle = True if (split == 'train') else False
batch_size = batch_size if (split == 'train') else (batch_size // num_chunks)
data_loader = data.DataLoader(dataset=GTZANDataset(data_path,

split,
num_samples,
num_chunks,
is_augmentation),

batch_size=batch_size,
shuffle=is_shuffle,
drop_last=False,
num_workers=num_workers)

return data_loader

Let’s check returned data shapes.

train_loader = get_dataloader(split='train', is_augmentation=True)
iter_train_loader = iter(train_loader)
train_wav, train_genre = next(iter_train_loader)

valid_loader = get_dataloader(split='valid')
test_loader = get_dataloader(split='test')
iter_test_loader = iter(test_loader)
test_wav, test_genre = next(iter_test_loader)
print('training data shape: %s' % str(train_wav.shape))
print('validation/test data shape: %s' % str(test_wav.shape))
print(train_genre)

training data shape: torch.Size([16, 639450])
validation/test data shape: torch.Size([16, 1, 639450])
tensor([9, 3, 4, 2, 2, 5, 2, 5, 7, 1, 1, 7, 8, 7, 4, 0])

Note:
• A data loader returns a tensor of audio and their genre indice at each iteration.
• Random chunks of audio are cropped from the entire sequence during the training. But in validation / test phase,

an entire sequence is split into multiple chunks and the chunks are stacked. The stacked chunks are later input to
a trained model and the output predictions are aggregated to make song-level predictions.

9.2. Data loader 61

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

9.3 Model

We are going to build a simple 2D CNN model with Mel spectrogram inputs. First, we design a convolution module that
consists of 3x3 convolution, batch normalization, ReLU non-linearity, and 2x2 max pooling. This module is going to be
used for each layer of the 2D CNN.

from torch import nn

class Conv_2d(nn.Module):
def __init__(self, input_channels, output_channels, shape=3, pooling=2, dropout=0.

↪1):
super(Conv_2d, self).__init__()
self.conv = nn.Conv2d(input_channels, output_channels, shape, padding=shape//

↪2)
self.bn = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(pooling)
self.dropout = nn.Dropout(dropout)

def forward(self, wav):
out = self.conv(wav)
out = self.bn(out)
out = self.relu(out)
out = self.maxpool(out)
out = self.dropout(out)
return out

Stack the convolution layers. In a PyTorch module, layers are declared in __init__ and they are built up in forward
function.

import torchaudio

class CNN(nn.Module):
def __init__(self, num_channels=16,

sample_rate=22050,
n_fft=1024,
f_min=0.0,
f_max=11025.0,
num_mels=128,
num_classes=10):

super(CNN, self).__init__()

mel spectrogram
self.melspec = torchaudio.transforms.MelSpectrogram(sample_rate=sample_rate,

n_fft=n_fft,
f_min=f_min,
f_max=f_max,
n_mels=num_mels)

self.amplitude_to_db = torchaudio.transforms.AmplitudeToDB()
self.input_bn = nn.BatchNorm2d(1)

convolutional layers
self.layer1 = Conv_2d(1, num_channels, pooling=(2, 3))
self.layer2 = Conv_2d(num_channels, num_channels, pooling=(3, 4))
self.layer3 = Conv_2d(num_channels, num_channels * 2, pooling=(2, 5))

(continues on next page)

62 Chapter 9. PyTorch tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
self.layer4 = Conv_2d(num_channels * 2, num_channels * 2, pooling=(3, 3))
self.layer5 = Conv_2d(num_channels * 2, num_channels * 4, pooling=(3, 4))

dense layers
self.dense1 = nn.Linear(num_channels * 4, num_channels * 4)
self.dense_bn = nn.BatchNorm1d(num_channels * 4)
self.dense2 = nn.Linear(num_channels * 4, num_classes)
self.dropout = nn.Dropout(0.5)
self.relu = nn.ReLU()

def forward(self, wav):
input Preprocessing
out = self.melspec(wav)
out = self.amplitude_to_db(out)

input batch normalization
out = out.unsqueeze(1)
out = self.input_bn(out)

convolutional layers
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)

reshape. (batch_size, num_channels, 1, 1) -> (batch_size, num_channels)
out = out.reshape(len(out), -1)

dense layers
out = self.dense1(out)
out = self.dense_bn(out)
out = self.relu(out)
out = self.dropout(out)
out = self.dense2(out)

return out

Note: In this example, we performed preprocessing on-the-fly using torchaudio. This process can be done offline outside
of the network using other libraries such as librosa and essentia.

Tip:
• There is no activation function at the last layer since nn.CrossEntropyLoss already includes softmax in it.
• If you want to perform multi-label binary classification, include out = nn.Sigmoid()(out) at the last layer

and use nn.BCELoss().

9.3. Model 63

https://librosa.org/doc/latest/index.html
https://essentia.upf.edu/

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

9.4 Training

Iterate training. One epoch is defined as visiting all training items once. This definition can be modified indef __len__
in data loader.

from sklearn.metrics import accuracy_score, confusion_matrix

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
cnn = CNN().to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
valid_losses = []
num_epochs = 30

for epoch in range(num_epochs):
losses = []

Train
cnn.train()
for (wav, genre_index) in train_loader:

wav = wav.to(device)
genre_index = genre_index.to(device)

Forward
out = cnn(wav)
loss = loss_function(out, genre_index)

Backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())

print('Epoch: [%d/%d], Train loss: %.4f' % (epoch+1, num_epochs, np.mean(losses)))

Validation
cnn.eval()
y_true = []
y_pred = []
losses = []
for wav, genre_index in valid_loader:

wav = wav.to(device)
genre_index = genre_index.to(device)

reshape and aggregate chunk-level predictions
b, c, t = wav.size()
logits = cnn(wav.view(-1, t))
logits = logits.view(b, c, -1).mean(dim=1)
loss = loss_function(logits, genre_index)
losses.append(loss.item())
_, pred = torch.max(logits.data, 1)

append labels and predictions
y_true.extend(genre_index.tolist())
y_pred.extend(pred.tolist())

accuracy = accuracy_score(y_true, y_pred)
valid_loss = np.mean(losses)

(continues on next page)

64 Chapter 9. PyTorch tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
print('Epoch: [%d/%d], Valid loss: %.4f, Valid accuracy: %.4f' % (epoch+1, num_

↪epochs, valid_loss, accuracy))

Save model
valid_losses.append(valid_loss.item())
if np.argmin(valid_losses) == epoch:

print('Saving the best model at %d epochs!' % epoch)
torch.save(cnn.state_dict(), 'best_model.ckpt')

Epoch: [1/30], Train loss: 2.4078
Epoch: [1/30], Valid loss: 2.3558, Valid accuracy: 0.1117
Saving the best model at 0 epochs!
Epoch: [2/30], Train loss: 2.3422
Epoch: [2/30], Valid loss: 2.2748, Valid accuracy: 0.1218
Saving the best model at 1 epochs!
Epoch: [3/30], Train loss: 2.2830
Epoch: [3/30], Valid loss: 2.2013, Valid accuracy: 0.1929
Saving the best model at 2 epochs!
Epoch: [4/30], Train loss: 2.2026
Epoch: [4/30], Valid loss: 2.0716, Valid accuracy: 0.2487
Saving the best model at 3 epochs!
Epoch: [5/30], Train loss: 2.1279
Epoch: [5/30], Valid loss: 1.9948, Valid accuracy: 0.2640
Saving the best model at 4 epochs!
Epoch: [6/30], Train loss: 2.1007
Epoch: [6/30], Valid loss: 1.9407, Valid accuracy: 0.3249
Saving the best model at 5 epochs!
Epoch: [7/30], Train loss: 2.0670
Epoch: [7/30], Valid loss: 1.9217, Valid accuracy: 0.3096
Saving the best model at 6 epochs!
Epoch: [8/30], Train loss: 2.0387
Epoch: [8/30], Valid loss: 1.9618, Valid accuracy: 0.2893
Epoch: [9/30], Train loss: 2.0034
Epoch: [9/30], Valid loss: 1.7882, Valid accuracy: 0.3604
Saving the best model at 8 epochs!
Epoch: [10/30], Train loss: 1.9669
Epoch: [10/30], Valid loss: 1.7608, Valid accuracy: 0.3807
Saving the best model at 9 epochs!
Epoch: [11/30], Train loss: 1.9212
Epoch: [11/30], Valid loss: 1.7428, Valid accuracy: 0.3604
Saving the best model at 10 epochs!
Epoch: [12/30], Train loss: 1.9497
Epoch: [12/30], Valid loss: 1.7381, Valid accuracy: 0.3401
Saving the best model at 11 epochs!
Epoch: [13/30], Train loss: 1.8578
Epoch: [13/30], Valid loss: 1.7946, Valid accuracy: 0.3350
Epoch: [14/30], Train loss: 1.8934
Epoch: [14/30], Valid loss: 1.6822, Valid accuracy: 0.3959
Saving the best model at 13 epochs!
Epoch: [15/30], Train loss: 1.8459
Epoch: [15/30], Valid loss: 1.6475, Valid accuracy: 0.4416
Saving the best model at 14 epochs!
Epoch: [16/30], Train loss: 1.8433
Epoch: [16/30], Valid loss: 1.6429, Valid accuracy: 0.3503
Saving the best model at 15 epochs!
Epoch: [17/30], Train loss: 1.8358

(continues on next page)

9.4. Training 65

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
Epoch: [17/30], Valid loss: 2.0232, Valid accuracy: 0.3046
Epoch: [18/30], Train loss: 1.8106
Epoch: [18/30], Valid loss: 1.6712, Valid accuracy: 0.3655
Epoch: [19/30], Train loss: 1.7393
Epoch: [19/30], Valid loss: 2.2497, Valid accuracy: 0.2741
Epoch: [20/30], Train loss: 1.7158
Epoch: [20/30], Valid loss: 1.5637, Valid accuracy: 0.4162
Saving the best model at 19 epochs!
Epoch: [21/30], Train loss: 1.7603
Epoch: [21/30], Valid loss: 1.4845, Valid accuracy: 0.5178
Saving the best model at 20 epochs!
Epoch: [22/30], Train loss: 1.7305
Epoch: [22/30], Valid loss: 1.6282, Valid accuracy: 0.3503
Epoch: [23/30], Train loss: 1.7213
Epoch: [23/30], Valid loss: 1.4270, Valid accuracy: 0.5381
Saving the best model at 22 epochs!
Epoch: [24/30], Train loss: 1.7064
Epoch: [24/30], Valid loss: 1.6344, Valid accuracy: 0.3655
Epoch: [25/30], Train loss: 1.6306
Epoch: [25/30], Valid loss: 1.3873, Valid accuracy: 0.5330
Saving the best model at 24 epochs!
Epoch: [26/30], Train loss: 1.7458
Epoch: [26/30], Valid loss: 1.4194, Valid accuracy: 0.5076
Epoch: [27/30], Train loss: 1.6578
Epoch: [27/30], Valid loss: 1.7264, Valid accuracy: 0.3604
Epoch: [28/30], Train loss: 1.6247
Epoch: [28/30], Valid loss: 1.4872, Valid accuracy: 0.5076
Epoch: [29/30], Train loss: 1.6642
Epoch: [29/30], Valid loss: 1.3975, Valid accuracy: 0.4772
Epoch: [30/30], Train loss: 1.6681
Epoch: [30/30], Valid loss: 1.6023, Valid accuracy: 0.4213

9.5 Evaluation

Collect the trained model’s predictions for the test set. Chunk-level predictions are aggregated to make song-level pre-
dictions.

Load the best model
S = torch.load('best_model.ckpt')
cnn.load_state_dict(S)
print('loaded!')

Run evaluation
cnn.eval()
y_true = []
y_pred = []

with torch.no_grad():
for wav, genre_index in test_loader:

wav = wav.to(device)
genre_index = genre_index.to(device)

reshape and aggregate chunk-level predictions
b, c, t = wav.size()

(continues on next page)

66 Chapter 9. PyTorch tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
logits = cnn(wav.view(-1, t))
logits = logits.view(b, c, -1).mean(dim=1)
_, pred = torch.max(logits.data, 1)

append labels and predictions
y_true.extend(genre_index.tolist())
y_pred.extend(pred.tolist())

loaded!

Finally, we can assess the performance and visualize a confusion matrix for better understanding.

import seaborn as sns
from sklearn.metrics import confusion_matrix

accuracy = accuracy_score(y_true, y_pred)
cm = confusion_matrix(y_true, y_pred)
sns.heatmap(cm, annot=True, xticklabels=GTZAN_GENRES, yticklabels=GTZAN_GENRES, cmap=

↪'YlGnBu')
print('Accuracy: %.4f' % accuracy)

Accuracy: 0.5414

Tip: In this tutorial, we did not use any high-level library for more understandable implementation. We highly recom-
mend checking the following libraries for simplified implementation:

• PyTorch Lightning
• Ignite

9.5. Evaluation 67

https://www.pytorchlightning.ai/
https://pytorch.org/ignite/

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

• Hydra

68 Chapter 9. PyTorch tutorial

https://hydra.cc/docs/intro/

Part III

Semi-supervised Learning

69

CHAPTER

TEN

BEYOND SUPERVISION

In previous sections, we learned how to facilitate music classification in a data-driven fashion when we have labeled music
audio. The main motivation of building music classification models is to save human efforts of manually labeling musical
attributes. However, modern deep learning models are data-hungry. As a result, ironically, we end up demanding a large
amount of human effort again during dataset creation process. In the next two chapters, we explore training methods
beyond supervised learning so that we can alleviate this irony.
In a real-world scenario, we may have a large-scale music library, but only a few of them might have manual labels. Also,
sometimes, there is a discrepancy between the taxonomies of the existing training data and the target task. What can we
do? As you’ll learn from this chapter, one can adopt transfer learning which takes advantage of pretrained models. Semi-
or self-supervised approaches can be another solution since they enable us to utilize abundant unlabeled data.

71

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

72 Chapter 10. Beyond Supervision

CHAPTER

ELEVEN

TRANSFER LEARNING

The core idea of transfer learning is to i) learn knowledge from solving a problem (source task) and ii) apply the knowl-
edge to solve other, relevant problems (target task) [TS10]. For example, if the model is able to perform instrument
identification (source task), the learned knowledge would be useful to solve music genre classification (target task) since
as the underlying concepts in music genres are related with instrumentation. The assumption is that although the source
and target tasks are not identical, if the dataset for source task is much larger than target task, transferring could lead to
a better performance.
In practice, i) we usually fit our model to solve a source task and ii) further optimize the pretrained model to solve the
target task. In the second process, all or a part of learned parameters are updated. For example, the authors of [CFSC17b]
pretrained a music tagging model on the Million Song Dataset. Then the model was transferred to solve downstream tasks
such as genre classification, emotion recognition, audio event classification, etc .
Music information can be classified into three categories based on the nature of the metadata elaboration: editorial,
cultural, and acoustic [Pac05]. The aforementioned transfer learning experiment takes advantage of music tags in the
Million Song Dataset which are mostly related to acoustic information (e.g., genre, instrument). However, those music
tags still relies on human effort of labeling. Instead of targeting the acoustic information, we can also design the source
task to predict editorial or cultural metadata.

11.1 Pretext using editorial information

Editorial metadata is, by definition, obtained by the editor. Written information of the song such as artist names, album
names, song titles, or released dates can be included. As we can distinguish artists by their acoustic characteristics, a
previous work proposed to use artist classification as its pretext task for music representation learning and transferred the
learned representation to solve downstream music genre classification tasks [PLP+17].
However, there are millions of artists which makes the pretext task to be unrealistic when with large-scale music libraries.
To alleviate this issue, following researchers proposed to use clusters of artists as the prediction target of the source task
[KWSL18].

11.2 Pretext using cultural information

Cultural information is generated by the way music is perceived and consumed in the society. One well-known approach
is to use collaborative filtering. Collaborative filtering models the interests of users from user-item interaction data. As
shown in the figure below, a user-item interaction matrix can be decomposed into two matrices with a lower dimensionality
using matrix factorization. They represent the embeddings of items and users, respectively.
A previous work trained a pretext music representation model by targeting this item (song) embeddings [VdODS13]. The
learned representation can include rich acoustic information if the original user-item interaction dataset is large enough.
This pretext (source task) is especially beneficial in industry where such a type of data is accessible.

73

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

74 Chapter 11. Transfer Learning

CHAPTER

TWELVE

SEMI-SUPERVISED LEARNING

In many realistic scenarios, we have limited labeled data and abundant unlabeled data. For example, in the Million Song
Dataset (MSD), only 24% of them are labeled with at least one of the top-50 music tags. As a consequence, most the
existing MSD tagging research discarded the 76% of the audio included in MSD.
Semi-supervised learning is a broad concept of a hybrid approach of supervised learning and semi-supervised learning.
In detail, many variants have been proposed.

• In self-training, a teacher model is first trained with labeled data. Then the trained teacher model predicts the labels
of unlabeled data. A student model is optimized to predict both the labels of labeled data and the pseudo-labels
(the prediction by teacher) of unlabeled data [YJegouC+19].

• Consistency training constrains models to generate noise invariant predictions [SSP+03]. Unsupervised loss of
consistency training is formalized as follow:

• Entropy regularization minimizes the entropy of the model’s predictions. A straightforward implementation is to
directly minimize the entropy of the predictions for unlabeled data [GB+05]. But this can be also achieved in
an implicit manner by training with one-hot encoded pseudo-labels [L+13]. In this case, the model first makes a
prediction using unlabeled data. The prediction is then modified to be an one-hot vector.

• Some previous works incorporate multiple semi-supervised approaches together [BCG+19], [XLHL20].
• Other semi-supervised methods includes graph-based approaches [ZGL03] and generative modeling [KMRW14].

In this section, we explore a specific semi-supervised approach: Noisy student training [XLHL20]. Noisy student training
is a self-training process that constrains the student model to be noise-invariant.

Warning: In some papers, SSL stands for semi-supervised learning, but others use the acronym to represent self-
supervised learning. To avoid confusion, we do not use abbreviations of semi- and self-supervised learning in this
book.

12.1 Noisy student training

Noisy student training is a kind of teacher-student learning (self-training) [XLHL20]. In the typical teacher-student
learning, a teacher model is first trained with labeled data in a supervised scheme. Then, a student model is trained to
resemble the teacher model by learning to predict the pseudo-labels, the prediction of the teacher model. What makes
noisy student training special is to add noise to the input.

Tip: The pseudo-labels can be continuous (soft) vectors or one-hot encoded (hard) vectors. The original paper reported
that both soft and hard labels worked, but soft labels worked slightly better for out-of-domain unlabeled data.

75

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Now, a student model can be optimized using both labels (pseudocode line 10-11, follow orange lines) and pseudo-
labels (pseudocode line 12-15, follow blue lines). In this process, strong data augmentation is applied for unlabeled data
(pseudocode line 13) and this makes the student model perform beyond the teacher model. The current state-of-the-art
music tagging models (short-chunk ResNet and Music tagging transformer) can be further improved by using the noisy
student training.

Tip: A trained student model can be another teacher model to iterate the noisy student training process. However,
different from the results in image classification, no significant performance gain was observed in music tagging with the
MSD.

12.2 Knowledge expansion and distillation

In noisy student training, the size of the student model is not necessarily smaller than the size of the teacher model. As
a student model is exposed with larger-scale data with more difficult environments (noise), it can learn more information
than the teacher model. One can interpret this method as knowledge expansion [XLHL20].
On the other hand, we can also reduce the size of the student model for the sake of model compression. This process is
called knowledge distillation and it is suitable for applications with less computing power [KR16].
As shown in the table, both Short-chunk ResNet and Music tagging transformer can be improved with data augmentation
(DA). Then the models are further improved with noisy student training in both knowledge expansion (KE) and knowledge
distillation (KD) manners [WCS21].

Tip:
• Tensorflow implementation of noisy student training [Github]
• PyTorch implementation of noisy student training for music tagging [Github]

76 Chapter 12. Semi-Supervised Learning

https://github.com/google-research/noisystudent
https://github.com/minzwon/semi-supervised-music-tagging-transformer.git

Part IV

Self-supervised Learning

77

CHAPTER

THIRTEEN

INTRODUCTION

Supervised learning of deep neural networks has seen many breakthroughs in music information retrieval. Across tasks
from music classification to source separation and music recommendation, large neural networks that use a supervised
optimization scheme have reached state-of-the-art results by using large, human-annotated datasets.
These large parameterised networks are data-hungry; they require many independent and identically distributed (i.i.d.)
data points to generalize well in the task they are trained on. Especially in music, it can be hard to manually annotate,
and the annotations often suffer from a single sources of truth. There is no single oracle: depending on the context, music
theoretical background and cultural background, a song’s analysis can yield different results. This was the motivation of
the previous chapter, semi-supervised learning.
In this chapter, we introduce another straining strategy that attempts to learn from unlabeled i.i.d. data points: self-
supervised learning. We first consider the term pre-training, how it is linked to self-supervised learning and its inherent
caveats. Then, we introduce the concept of self-supervised learning and review some key papers in this line of work at
this moment of writing (November 2021).

13.1 Pre-training

The weights of neural networks have to be initialized before commencing the training on a target task. This initialization
currently does not hold any apriori knowledge on the task at hand. Gaining the weights that belong to a global minimum
in our task is not an easy feat currently, especially for smaller, annotated datasets.
One solution is to pre-train our network on a large annotated dataset to help it steer the optimization scheme in the right
direction. This is called pre-training and gaining popularity more and more.
However, classical pre-training have many caveats. Music datasets can be biased towards certain concepts, which will be
reflected in the trained model – and to its application to the target task. The source task and the target task won’t be the
same, and the negative effective of this difference is hard to predict.
Another challenge is that there are some musical concepts that rarely appear in labeled datasets. This means we would
need a huge dataset to have enough representations of those rarity.

79

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

13.2 Self-supervised learning

In self-supervised learning, we obtain a supervisory signal from the data by leveraging its underlying structure. Generally,
this can be done on the data itself, or in the space of the data representations. For example, we can predict part of the
data from other parts of the data. Or, we can predict the future from events that occurred in the past. In short - we let the
model predict the occluded from the visible while we control what to occlude. This has been a very popular approach in
language modeling in the past 10 years.
Within the last two years, many different self-supervised methods have been proposed, in particular for vision tasks, and
resulted in great improvements over supervised methods when labeled datapoints are scarce. Recently, they even started
to perform better than equivalent networks trained in a supervised manner.

Note: Learning scheme
It is worth visiting the general learning scheme of this line of work:

1. First, we pre-train a neural network using a self-supervised objective (the pretext task).
2. In order to test the effectiveness of the learned representations, the pre-trained networks’ weights are “frozen”, and;
3. A linear evaluation on (part of) the supervised dataset is performed to compare against existing benchmarks.

The linear evaluation scheme involves training a supervised linear classifier (a fully-connected layer followed by a softmax)
using the representations extracted from the self-supervised network, and (a subset of) the labels associated with the data.

13.3 Should I use self-supervised learning?

Self-supervised learning can be beneficial in the following situations:
• The amount of labeled data available is scarce
• You do not want to sacrifice the size and the expressivity of your model.
• You need general-purpose representations that are not less tightly coupled with a single use case.

You should take these considerations into account:
• A pre-trained model will have weights that reflect (and augment!) the biases embedded in a dataset.
• The pretext task used as the self-supervised learning objective is important to analyze and reflect on, as it can yield

many assumptions for the downstream task.

80 Chapter 13. Introduction

CHAPTER

FOURTEEN

METHODS FOR SELF-SUPERVISED LEARNING

14.1 Contrastive Learning

Contrastive learning is a method that describes learning representations by modeling similarity from natural variations of
data. We also prepare dissimilar pairs and let the model learn the contrast betwen and similar and dissimilar pairs.
It is often presented in the following stages:

1. Encode different “views” from natural variations of a single example.
2. Train a model with metric learning using the representations from the encoder(s).
3. Use the representation of the encoder by applying another classifier for the downstream task. For evaluation, linear

regression is used usually so that we can focus on the performance of the pre-trained encoder rather than the that
of the added classifier.

14.2 Contrastive Predictive Coding

Contrastive predictive coding (CPC) was introduced by Aäron van den Oord et al. (2018) [OLV18] as a universal frame-
work of representation learning. The data can be an image, in which neighbouring patches usually share spatial information
locally. In the case of speech signals, it could be the phonemes that should be similar with the neighbors. Conversely, on
a more global level, we expect a different pattern. For example, the chorus of a song is expected to repeat in another part
of our audio signal.
In CPC, these related observations are mapped similarly as a representation in a latent space. Their hypothesis is that
predictions of related observations are often conditionally dependent on similar, high-level pieces of latent information.
To test their hypothesis, they propose the following:

1. First, complex natural data, such as images and audio, are compressed into a latent embedding space. This makes
it easier to model the predictions of related observations.

2. A more expressive (read: larger, more powerful) autoregressive model uses the representations in this latent space
to make predictions for future observations. These observations are mapped to the corresponding representation.

3. The InfoNCE loss uses a cross-entropy loss to quantify how well the model can classify these future representations
from a set of unrelated, “negative” examples [CITATION]. This loss is inspired by Noise Contrastive Estimation
[CITATION].

81

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Mini-batch composition
In CPC, a mini-batch is made of N examples that are chosen randomly from the full training dataset. Within this
batch, a single positive example (also known as the anchor sample) and $N-1$ negative examples are used to compute the
cross-entropy loss for classifying the correct positive example. In this way, the internal structure of the data is leveraged
to obtain a loss signal that we can backpropagate.

14.3 Momentum Contrast (MoCO)

Momentum Contrast was proposed in [HFW+20]. It was one of the first papers to close the gap between unsupervised
and supervised learning approaches on some vision tasks. In MoCO, a dictionary of examples in the data are maintained
as a queue. Each example in the mini-batch is encoded, and put in front of the queue, while the last item in the dictionary
is subsequently dequeued. The pretext task used in MoCO is to define a contrastive loss on the query and the keys of
the dictionary: a query matches the key when the query is an embedding of a different view of the same datapoint. For
example: if the query is an embedding of the bassoon solo in Stravinsky’s “Rite of Spring”, it should match with the key
that corresponds to the “Rite of Spring”. The encoded query should be similar to its corresponding key, and dissimilar to
other keys in the dictionary.
Training a Momentrum Contrast encoder is done with positive and negative pairs of examples in a mini-batch. The
positive example pairs are made of queries that correspond to keys of the current mini-batch. The negative pairs are
queries of the current mini-batch and keys from past mini-batches.

82 Chapter 14. Methods for Self-Supervised Learning

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

The keys are encoded by a “slowly progressing” encoder, because the dictionary’s keys are drawn over multiple mini-
batches. This encoder is implemented as a momentum-based moving average. We therefore have two encoders: an
encoder for the queries and a momentum-encoder for the keys. The main difference between these two encoders is in the
way they are updated. The query encoder is updated by backpropagation while the momentum encoder is updated by a
linear interpolation of the query and the momentum encoder.

Tip
An advantage of Momentum Contrast is that the batch size is not related to the number of negative examples candidates
in the dictionary lookup. Even for smaller batch sizes, the performance of Momentum Contrast is consistent. This can be
especially useful for (raw) audio, for which it is often harder to compute with larger mini-batch sizes due to GPU memory
constraints.

14.3. Momentum Contrast (MoCO) 83

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

14.4 SimCLR

SimCLR was introduced in [CKNH20] as a simple contrastive learning approach to learn strong visual representations.
It leverages strong image data augmentations, large batch sizes, a single large encoder and a simple contrastive loss to
pre-train an encoder that learns effective representations. These representations are used to train very effective linear
classifiers in various downstream image classification tasks.
For each image example in the mini-batch, two augmented (but correlated!) views are taken. This is done by a series of
data augmentations that are applied randomly to each example. This will naturally yield $2N$ datapoints per mini-batch.
Each of these augmented views are then embedded using a standard ResNet encoder network. While these representations
are used during linear evaluation, during the pre-training stage these representations are projected to a different latent space
by a small linear layer on which the contrastive loss is computed.
During pre-training, the network only learns from the contrastive loss: the labels are only used during the linear evaluation
phase (see the previous section for more details).

84 Chapter 14. Methods for Self-Supervised Learning

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

14.5 Contrastive Losses

Many contrastive learning methods use a variant of a contrastive loss function. The contrastive loss function was first intro-
duced in Noise Contrastive Estimation [GHyvarinen10] and subsequently the InfoNCE loss from Contrastive Predictive
Coding [OLV18].
This loss can be minimized using a variety of methods, which mostly differ in the way they keep track of the keys of data
examples. In SimCLR [CKNH20], a single batch consists both of “positive” and “negative” pairs, which act as “keys” to
the original examples. These are updated end-to-end by back-propagation. To increase the complexity of the contrastive
learning task, it requires a large batch size to contain more negative examples. In Momentum Contrast, the negative
examples’ keys are maintained in a queue. Note that only the queries and the positive keys in a single batch are encoded.

14.6 PASE

PASE was proposed in [PRS+19]. It demonstrated that useful representations for speech recognition can be learned by
defining multiple pretext tasks that jointly optimize an encoder neural network. The encoder distributes the representations
of the input data to multiple, small feed-forward neural networks (called workers) that jointly solve different pretext tasks.
Each worker is composed of a single hidden layer, and either solves a regression or binary classification task. These
smaller feed-forward layers are chosen because the emphasis on learning the more expressive representations is put on
the larger encoder, i.e., the encoder should learn more high-level features that can be used by the worker networks to help
solve their tasks. After pre-training the network in a self-supervised manner, the learned representations are evaluated in
the task of speaker recognition, emotion recognition and phoneme recognition.

14.5. Contrastive Losses 85

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

The improved version of PASE, which was called PASE+, uses a set of audio data augmentations to improve the robustness
of the learned representations for the downstream task.

14.7 More papers on self-supervised learning

The following is a short list of important papers in self-supervised learning, of which a few are discussed more in-depth
in this tutorial:

86 Chapter 14. Methods for Self-Supervised Learning

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Paper Year Tasks
Representation Learning with Contrastive Predictive Coding 2018 Speech, images, text, reinforce-

ment learning
Noise-contrastive estimation: A new estimation principle for unnormal-
ized statistical models

2014 Theoretical

Unsupervised Visual Representation Learning by Context Prediction 2015 Images
Momentum Contrast for Unsupervised Visual Representation Learning 2019 Images
wav2vec: Unsupervised Pre-training for Speech Recognition 2019 Speech recognition
Learning Problem-agnostic Speech Representations from Multiple Self-
supervised Tasks

2019 Speech recognition

Bootstrap your own latent: A new approach to self-supervised Learning 2020 Images
A Simple Framework for Contrastive Learning of Visual Representations 2020 Images
Contrastive learning of general-purpose audio representations 2020 Sound classification
Contrastive Learning of Musical Representations 2021 Music classification
Vector Quantized Contrastive Predictive Coding for Template-based
Music Generation

2021 Music generation

14.7. More papers on self-supervised learning 87

https://arxiv.org/abs/1807.03748
https://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf
https://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf
https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/1904.03416
https://arxiv.org/abs/1904.03416
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2010.10915
https://arxiv.org/abs/2103.09410
https://arxiv.org/abs/2004.10120
https://arxiv.org/abs/2004.10120

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

88 Chapter 14. Methods for Self-Supervised Learning

CHAPTER

FIFTEEN

PYTORCH TUTORIAL

15.1 CLMR

In the following examples, we will be taking a look at how Contrastive Learning of Musical Representations (Spijkervet
& Burgoyne, 2021) uses self-supervised learning to learn powerful representations for the downstream task of music
classification.
In the above figure, we transform a single audio example into two, distinct augmented views by processing it through a
set of stochastic audio augmentations.

from argparse import Namespace

import torch
from tqdm import tqdm

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"We are using the following the device to train: {device}")

initialize an empty argparse Namespace in which we can store argumens for training
args = Namespace()

every piece of audio has a length of 59049 samples
args.audio_length = 59049

the sample rate of our audio
args.sample_rate = 22050

We are using the following the device to train: cpu

import os
import random

import numpy as np
import soundfile as sf
import torch
from torch.utils import data
from torchaudio_augmentations import (

Compose,
Delay,
Gain,
HighLowPass,
Noise,

(continues on next page)

89

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
PitchShift,
PolarityInversion,
RandomApply,
RandomResizedCrop,
Reverb,

)

GTZAN_GENRES = [
"blues",
"classical",
"country",
"disco",
"hiphop",
"jazz",
"metal",
"pop",
"reggae",
"rock",

]

class GTZANDataset(data.Dataset):
def __init__(self, data_path, split, num_samples, num_chunks, is_augmentation):

self.data_path = data_path if data_path else ""
self.split = split
self.num_samples = num_samples
self.num_chunks = num_chunks
self.is_augmentation = is_augmentation
self.genres = GTZAN_GENRES
self._get_song_list()
if is_augmentation:

self._get_augmentations()

def _get_song_list(self):
list_filename = os.path.join(self.data_path, "%s_filtered.txt" % self.split)
with open(list_filename) as f:

lines = f.readlines()
self.song_list = [line.strip() for line in lines]

def _get_augmentations(self):
transforms = [

RandomResizedCrop(n_samples=self.num_samples),
RandomApply([PolarityInversion()], p=0.8),
RandomApply([Noise(min_snr=0.3, max_snr=0.5)], p=0.3),
RandomApply([Gain()], p=0.2),
RandomApply([HighLowPass(sample_rate=22050)], p=0.8),
RandomApply([Delay(sample_rate=22050)], p=0.5),
RandomApply(

[PitchShift(n_samples=self.num_samples, sample_rate=22050)], p=0.4
),
RandomApply([Reverb(sample_rate=22050)], p=0.3),

]
self.augmentation = Compose(transforms=transforms)

def _adjust_audio_length(self, wav):
if self.split == "train":

random_index = random.randint(0, len(wav) - self.num_samples - 1)
(continues on next page)

90 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
wav = wav[random_index : random_index + self.num_samples]

else:
hop = (len(wav) - self.num_samples) // self.num_chunks
wav = np.array(

[
wav[i * hop : i * hop + self.num_samples]
for i in range(self.num_chunks)

]
)

return wav

def get_augmentation(self, wav):
return self.augmentation(torch.from_numpy(wav).unsqueeze(0)).squeeze(0).

↪numpy()

def __getitem__(self, index):
line = self.song_list[index]

get genre
genre_name = line.split("/")[0]
genre_index = self.genres.index(genre_name)

get audio
audio_filename = os.path.join(self.data_path, "genres", line)
wav, fs = sf.read(audio_filename)

adjust audio length
wav = self._adjust_audio_length(wav).astype("float32")

data augmentation
if self.is_augmentation:

wav_i = self.get_augmentation(wav)
wav_j = self.get_augmentation(wav)

else:
wav_i = wav
wav_j = wav

return (wav_i, wav_j), genre_index

def __len__(self):
return len(self.song_list)

def get_dataloader(
data_path=None,
split="train",
num_samples=22050 * 29,
num_chunks=1,
batch_size=16,
num_workers=0,
is_augmentation=False,

):
is_shuffle = True if (split == "train") else False
batch_size = batch_size if (split == "train") else (batch_size // num_chunks)
data_loader = data.DataLoader(

dataset=GTZANDataset(
data_path, split, num_samples, num_chunks, is_augmentation

(continues on next page)

15.1. CLMR 91

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
),
batch_size=batch_size,
shuffle=is_shuffle,
drop_last=False,
num_workers=num_workers,

)
return data_loader

args.batch_size = 48

train_loader = get_dataloader(
data_path="../../codes/split",
split="train",
is_augmentation=True,
num_samples=59049,
batch_size=args.batch_size,

)
iter_train_loader = iter(train_loader)
(train_wav_i, _), train_genre = next(iter_train_loader)

valid_loader = get_dataloader(
data_path="../../codes/split",
split="valid",
num_samples=args.audio_length,
batch_size=args.batch_size,

)
test_loader = get_dataloader(

data_path="../../codes/split",
split="test",
num_samples=args.audio_length,
batch_size=args.batch_size,

)
iter_test_loader = iter(test_loader)
(test_wav_i, _), test_genre = next(iter_test_loader)
print("training data shape: %s" % str(train_wav_i.shape))
print("validation/test data shape: %s" % str(test_wav_i.shape))
print(train_genre)

training data shape: torch.Size([48, 59049])
validation/test data shape: torch.Size([48, 1, 59049])
tensor([5, 1, 4, 9, 8, 5, 6, 1, 4, 9, 1, 7, 9, 4, 7, 5, 4, 7, 6, 0, 6, 1, 0, 9,

6, 2, 0, 1, 2, 3, 5, 4, 1, 1, 2, 7, 3, 8, 8, 8, 4, 8, 7, 1, 5, 1, 6, 5])

15.1.1 Audio Data Augmentations

Now, let’s apply a series of transformations, each applied with an independent probability:
• Crop
• Filter
• Reverb
• Polarity
• Noise

92 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

• Pitch
• Gain
• Delay

import torchaudio
from torchaudio_augmentations import (

RandomApply,
ComposeMany,
RandomResizedCrop,
PolarityInversion,
Noise,
Gain,
HighLowPass,
Delay,
PitchShift,
Reverb,

)

args.transforms_polarity = 0.8
args.transforms_filters = 0.6
args.transforms_noise = 0.1
args.transforms_gain = 0.3
args.transforms_delay = 0.4
args.transforms_pitch = 0.4
args.transforms_reverb = 0.4

train_transform = [
RandomResizedCrop(n_samples=args.audio_length),
RandomApply([PolarityInversion()], p=args.transforms_polarity),
RandomApply([Noise()], p=args.transforms_noise),
RandomApply([Gain()], p=args.transforms_gain),
RandomApply([HighLowPass(sample_rate=args.sample_rate)], p=args.transforms_

↪filters),
RandomApply([Delay(sample_rate=args.sample_rate)], p=args.transforms_delay),
RandomApply([PitchShift(n_samples=args.audio_length, sample_rate=args.sample_

↪rate)], p=args.transforms_pitch),
RandomApply([Reverb(sample_rate=args.sample_rate)], p=args.transforms_reverb),

]
train_loader.augmentation = Compose(train_transform)

Remember, always take a moment to listen to the data that you will give to your model! Let’s listen to three examples
from our dataset, on which a series of stochastic audio data augmentations are applied:

from IPython.display import Audio

for idx in range(3):
print(f"Iteration: {idx}")
(x_i, x_j), y = train_loader.dataset[0]

print("Positive pair: (x_i, x_j):")
display(Audio(x_i, rate=args.sample_rate))
display(Audio(x_j, rate=args.sample_rate))

15.1. CLMR 93

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Iteration: 0
Positive pair: (x_i, x_j):

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

Iteration: 1
Positive pair: (x_i, x_j):

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

Iteration: 2
Positive pair: (x_i, x_j):

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

15.2 SampleCNN Encoder

First, let us begin with initializing our feature extractor. In CLMR, we chose the SampleCNN encoder to learn high-level
features from raw pieces of audio. In the above figure, this encoder is denoted as g_{enc}. The last fully connected
layer will be removed, so that we obtain an expressive final vector on which we can compute our contrastive loss.

import torch.nn as nn

class SampleCNN(nn.Module):
def __init__(self, strides, supervised, out_dim):

super(SampleCNN, self).__init__()

self.strides = strides
self.supervised = supervised
self.sequential = [

nn.Sequential(
nn.Conv1d(1, 128, kernel_size=3, stride=3, padding=0),
nn.BatchNorm1d(128),
nn.ReLU(),

)
]

self.hidden = [
[128, 128],
[128, 128],
[128, 256],
[256, 256],
[256, 256],
[256, 256],

(continues on next page)

94 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
[256, 256],
[256, 256],
[256, 512],

]

assert len(self.hidden) == len(
self.strides

), "Number of hidden layers and strides are not equal"
for stride, (h_in, h_out) in zip(self.strides, self.hidden):

self.sequential.append(
nn.Sequential(

nn.Conv1d(h_in, h_out, kernel_size=stride, stride=1, padding=1),
nn.BatchNorm1d(h_out),
nn.ReLU(),
nn.MaxPool1d(stride, stride=stride),

)
)

1 x 512
self.sequential.append(

nn.Sequential(
nn.Conv1d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm1d(512),
nn.ReLU(),

)
)

self.sequential = nn.Sequential(*self.sequential)

if self.supervised:
self.dropout = nn.Dropout(0.5)

self.fc = nn.Linear(512, out_dim)

def initialize(self, m):
if isinstance(m, (nn.Conv1d)):

nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu")

def forward(self, x):
x = x.unsqueeze(dim=1) # here, we add a dimension for our convolution.
out = self.sequential(x)
if self.supervised:

out = self.dropout(out)

out = out.reshape(x.shape[0], out.size(1) * out.size(2))
logit = self.fc(out)
return logit

Let’s have a look at a printed version of SampleCNN:

in the GTZAN dataset, we have 10 genre labels
args.n_classes = 10

encoder = SampleCNN(
strides=[3, 3, 3, 3, 3, 3, 3, 3, 3],
supervised=False,
out_dim=args.n_classes,

).to(device)
(continues on next page)

15.2. SampleCNN Encoder 95

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
print(encoder)

SampleCNN(
(sequential): Sequential(
(0): Sequential(

(0): Conv1d(1, 128, kernel_size=(3,), stride=(3,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()

)
(1): Sequential(

(0): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(2): Sequential(

(0): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(3): Sequential(

(0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(4): Sequential(

(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(5): Sequential(

(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(6): Sequential(

(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(7): Sequential(

(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)

(continues on next page)

96 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(8): Sequential(

(0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(9): Sequential(

(0): Conv1d(256, 512, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)

)
(10): Sequential(

(0): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,))
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_

↪stats=True)
(2): ReLU()

)
)
(fc): Linear(in_features=512, out_features=10, bias=True)

)

15.3 SimCLR

Since we removed the last fully connected layer, we are left with a 512-dimensional feature vector. We would like to use
this vector in our contrastive learning task. Therefore, we wrap our encoder in the objective as introduced by SimCLR:
we project the final hidden layer of the encoder to a different latent space using a small MLP projector network. In the
forward pass, we extract both the final hidden representation of our SampleCNN encoder (h_i and h_j), and the
projected vectors (z_i and z_j).

class SimCLR(nn.Module):
def __init__(self, encoder, projection_dim, n_features):

super(SimCLR, self).__init__()

self.encoder = encoder
self.n_features = n_features

Replace the fc layer with an Identity function
self.encoder.fc = Identity()

We use a MLP with one hidden layer to obtain z_i = g(h_i) = W(2)σ(W(1)h_i)␣
↪where σ is a ReLU non-linearity.

self.projector = nn.Sequential(
nn.Linear(self.n_features, self.n_features, bias=False),
nn.ReLU(),
nn.Linear(self.n_features, projection_dim, bias=False),

)

def forward(self, x_i, x_j):
(continues on next page)

15.3. SimCLR 97

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
h_i = self.encoder(x_i)
h_j = self.encoder(x_j)

z_i = self.projector(h_i)
z_j = self.projector(h_j)
return h_i, h_j, z_i, z_j

class Identity(nn.Module):
def __init__(self):

super(Identity, self).__init__()

def forward(self, x):
return x

15.4 Loss

Here, we apply an InfoNCE loss, as proposed by van den Oord et al. (2018) for contrastive learning. InfoNCE loss
compares the similarity of our representations z_i and z_j, to the similarity of z_i to any other representation in
our batch, and applies a softmax over the obtained similarity values. We can write this loss more formally as follows:
$$\ell_{i, j}=-\log \frac{\exp \left(\operatorname{sim}\left(z_{i}, z_{j}\right) / \tau\right)}{\sum_{k=1}^{2 N}
\mathbb{1}{[k \neq i]} \exp \left(\operatorname{sim}\left(z{i}, z_{k}\right) / \tau\right)} $$
The similarity metric is the cosine similarity between our representations:
$$\operatorname{sim}\left(z_{i}, z_{j}\right)=\frac{z_{i}^{\top} \cdot z_{j}}{\left|z_{i}\right|
\cdot\left|z_{j}\right|}$$

z = torch.cat((z_i, z_j), dim=0)`

sim = self.similarity_f(z.unsqueeze(1), z.unsqueeze(0)) / self.temperature

sim_i_j = torch.diag(sim, self.batch_size * self.world_size)
sim_j_i = torch.diag(sim, -self.batch_size * self.world_size)

positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)

negative_samples = sim[self.mask].reshape(N, -1)

import torch
import torch.nn as nn

class NT_Xent(nn.Module):
def __init__(self, batch_size, temperature, world_size):

super(NT_Xent, self).__init__()
self.batch_size = batch_size
self.temperature = temperature
self.world_size = world_size

self.mask = self.mask_correlated_samples(batch_size, world_size)
self.criterion = nn.CrossEntropyLoss(reduction="sum")

(continues on next page)

98 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
self.similarity_f = nn.CosineSimilarity(dim=2)

def mask_correlated_samples(self, batch_size, world_size):
N = 2 * batch_size * world_size
mask = torch.ones((N, N), dtype=bool)
mask = mask.fill_diagonal_(0)
for i in range(batch_size * world_size):

mask[i, batch_size * world_size + i] = 0
mask[batch_size * world_size + i, i] = 0

return mask

def forward(self, z_i, z_j):
"""
We do not sample negative examples explicitly.
Instead, given a positive pair, similar to (Chen et al., 2017), we treat the␣

↪other 2(N − 1) augmented examples within a minibatch as negative examples.
"""
N = 2 * self.batch_size * self.world_size

z = torch.cat((z_i, z_j), dim=0)

sim = self.similarity_f(z.unsqueeze(1), z.unsqueeze(0)) / self.temperature

sim_i_j = torch.diag(sim, self.batch_size * self.world_size)
sim_j_i = torch.diag(sim, -self.batch_size * self.world_size)

We have 2N samples, but with Distributed training every GPU gets N examples␣
↪too, resulting in: 2xNxN

positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
negative_samples = sim[self.mask].reshape(N, -1)

labels = torch.zeros(N).to(positive_samples.device).long()
logits = torch.cat((positive_samples, negative_samples), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss

15.5 Pre-training CLMR

Note: The following code will pre-train our SampleCNN encoder using our contrastive loss. This needs to run on a
machine with a GPU to accelerate training, otherwise it will take a very long time.

args.temperature = 0.5 # the temperature scaling parameter in our NT-Xent los

encoder = SampleCNN(
strides=[3, 3, 3, 3, 3, 3, 3, 3, 3],
supervised=False,
out_dim=0,

).to(device)

(continues on next page)

15.5. Pre-training CLMR 99

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
get dimensions of last fully-connected layer
n_features = encoder.fc.in_features
print(f"Dimension of our h_i, h_j vectors: {n_features}")

model = SimCLR(encoder, projection_dim=64, n_features=n_features).to(device)

temperature = 0.5
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
criterion = NT_Xent(args.batch_size, args.temperature, world_size=1)

epochs = 100
losses = []

for e in range(epochs):

for (x_i, x_j), y in train_loader:
optimizer.zero_grad()

x_i = x_i.to(device)
x_j = x_j.to(device)

here, we extract the latent representations, and the projected vectors,
from the positive pairs:
h_i, h_j, z_i, z_j = model(x_i, x_j)

here, we calculate the NT-Xent loss on the projected vectors:
loss = criterion(z_i, z_j)

backpropagation:
loss.backward()
optimizer.step()

print(f"Loss: {loss}")
losses.append(loss.detach().item())

break # we are only running a single pass for demonstration purposes.

print(f"Mean loss: {np.array(losses).mean()}")
break # we are only running a single epoch for demonstration purposes.

Dimension of our h_i, h_j vectors: 512
Loss: 2.5802388191223145
Mean loss: 2.5802388191223145

15.6 Linear Evaluation

Now, we would like to evaluate the versatility of our learned representations. We will train a linear classifier on the
representations extracted from our pre-trained SampleCNN encoder.

Warning: Note that we will not be using data augmentations during linear evaluation.

100 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

args.batch_size = 16

train_loader = get_dataloader(
data_path="../../codes/split",
split="train",
is_augmentation=False,
num_samples=args.audio_length,
batch_size=args.batch_size,

)
valid_loader = get_dataloader(

data_path="../../codes/split",
split="valid",
num_samples=args.audio_length,
batch_size=args.batch_size,

)
test_loader = get_dataloader(

data_path="../../codes/split",
split="test",
num_samples=args.audio_length,
batch_size=args.batch_size,

)

iter_train_loader = iter(train_loader)
iter_test_loader = iter(test_loader)

for idx in range(3):
(train_wav, _), train_genre = train_loader.dataset[idx]
display(Audio(train_wav, rate=args.sample_rate))

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

<IPython.lib.display.Audio object>

Our linear classifier has a single hidden layer and a softmax output (which is already included in the torch.nn.
CrossEntropy loss function, hence we omit it here).

class LinearModel(nn.Module):
def __init__(self, hidden_dim, output_dim):

super().__init__()
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.model = nn.Linear(self.hidden_dim, self.output_dim)

def forward(self, x):
return self.model(x)

def train_linear_model(encoder, linear_model, epochs, learning_rate):

we now use a regular CrossEntropy loss to compare our predicted genre labels␣
↪with the ground truth labels.

criterion = nn.CrossEntropyLoss()

(continues on next page)

15.6. Linear Evaluation 101

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
the Adam optimizer is used here as our optimization algorithm
optimizer = torch.optim.Adam(

linear_model.parameters(),
lr=learning_rate,

)

losses = []
for e in range(epochs):

epoch_losses = []
for (x, _), y in tqdm(train_loader):

optimizer.zero_grad()

we will not be backpropagating the gradients of the SampleCNN encoder:
with torch.no_grad():

h = encoder(x)

p = linear_model(h)

loss = criterion(p, y)

loss.backward()
optimizer.step()

print(f"Loss: {loss}")
epoch_losses.append(loss.detach().item())

mean_loss = np.array(epoch_losses).mean()
losses.append(mean_loss)
print(f"Epoch: {e}\tMean loss: {mean_loss}")

return losses

args.linear_learning_rate = 1e-4
args.linear_epochs = 15
print(f"We will train for {args.linear_epochs} epochs during linear evaluation")

First, we freeze SampleCNN encoder weights
encoder.eval()
for param in encoder.parameters():

param.requires_grad = False

print(
f"Dimension of the last layer of our SampleCNN feature extractor network: {n_

↪features}"
)

initialize our linear model, with dimensions:
n_features x n_classes

linear_model = LinearModel(n_features, args.n_classes)
print(linear_model)

losses = train_linear_model(
encoder,

(continues on next page)

102 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
linear_model,
epochs=args.linear_epochs,
learning_rate=args.linear_learning_rate,

)

In the evaluate function, we perform a full pass of the test dataset and extract the predictions from our linear classifier,
given the representations of our pre-trained encoder.

Run evaluation

def evaluate(encoder, linear_model=None, test_loader=None):
encoder.eval()
if linear_model is not None:

linear_model.eval()

y_true = []
y_pred = []

with torch.no_grad():
for (wav, _), genre_index in tqdm(test_loader):

wav = wav.to(device)
genre_index = genre_index.to(device)

reshape and aggregate chunk-level predictions
b, c, t = wav.size()

with torch.no_grad():
if linear_model is None:

logits = encoder(wav.squeeze(1))
else:

h = encoder(wav.squeeze(1))
logits = linear_model(h)

logits = logits.view(b, c, -1).mean(dim=1)
_, pred = torch.max(logits.data, 1)

append labels and predictions
y_true.extend(genre_index.tolist())
y_pred.extend(pred.tolist())

return y_true, y_pred

import seaborn as sns
from sklearn.metrics import accuracy_score, confusion_matrix

y_true, y_pred = evaluate(encoder, linear_model, test_loader)

accuracy = accuracy_score(y_true, y_pred)
cm = confusion_matrix(y_true, y_pred)
sns.heatmap(

cm, annot=True, xticklabels=GTZAN_GENRES, yticklabels=GTZAN_GENRES, cmap="YlGnBu"
)
print("Accuracy: %.4f" % accuracy)

15.6. Linear Evaluation 103

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

100
↪%|███|␣
↪19/19 [00:26<00:00, 1.39s/it]

Accuracy: 0.1069

We can also load the weights of a fully pre-trained CLMR model to our SampleCNN encoder. The pre-trained repre-
sentations will hopefully be more expressive for the linear classifier to solve the problem of music classification.

Note: Pre-training the encoder takes a while to complete, so let’s load the pre-trained weights into our encoder now to
speed this up:

from collections import OrderedDict

pre_trained_weights = torch.load("./clmr_pretrained.ckpt", map_location=device)

this dictionary contains a few parameters we do not need in this tutorial, so we␣
↪discard them here:

pre_trained_weights = OrderedDict(
{

k.replace("encoder.", ""): v
for k, v in pre_trained_weights.items()
if "encoder" in k

}
)

let's load the weights into our encoder:
encoder = SampleCNN(

(continues on next page)

104 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

(continued from previous page)
strides=[3, 3, 3, 3, 3, 3, 3, 3, 3],
supervised=False,
out_dim=0,

).to(device)
encoder.fc = Identity()
encoder.load_state_dict(pre_trained_weights)
encoder.eval()

we re-initialize our linear model here to discard the previously learned parameters.
linear_model = LinearModel(n_features, args.n_classes)
losses_with_clmr = train_linear_model(

encoder,
linear_model,
epochs=args.linear_epochs,
learning_rate=args.linear_learning_rate,

)

15.6.1 Get ROC-AUC and PR-AUC scores on test set

Let’s now compute the accuracy of a linear classifier, trained on the representations from a pre-trained CLMR model.

y_true_pretrained, y_pred_pretrained = evaluate(encoder, linear_model, test_loader)

pretrained_accuracy = accuracy_score(y_true_pretrained, y_pred_pretrained)
cm = confusion_matrix(y_true_pretrained, y_pred_pretrained)
sns.heatmap(

cm, annot=True, xticklabels=GTZAN_GENRES, yticklabels=GTZAN_GENRES, cmap="YlGnBu"
)
print("Accuracy: %.4f" % pretrained_accuracy)

100
↪%|███|␣
↪19/19 [00:25<00:00, 1.33s/it]

Accuracy: 0.5517

15.6. Linear Evaluation 105

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

import matplotlib.pyplot as plt

plt.plot(losses, label="Losses")
plt.plot(losses_with_clmr, label="With pre-trained CLMR network")
plt.legend()
plt.show()

106 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

15.7 How does a supervised SampleCNN model compare?

let's load the weights into our encoder:
supervised_samplecnn = SampleCNN(

strides=[3, 3, 3, 3, 3, 3, 3, 3, 3],
supervised=True,
out_dim=args.n_classes,

).to(device)

optimizer = torch.optim.Adam(supervised_samplecnn.parameters(), lr=3e-4)
criterion = nn.CrossEntropyLoss()

epochs = 15
losses = []
for e in range(epochs):

epoch_losses = []
for (x, _), y in tqdm(train_loader):

optimizer.zero_grad()
logits = supervised_samplecnn(x)

here, we calculate the NT-Xent loss on the projected vectors:
loss = criterion(logits, y)

backpropagation:
loss.backward()
optimizer.step()

print(f"Loss: {loss}")
epoch_losses.append(loss.detach().item())

mean_loss = np.array(epoch_losses).mean()
losses.append(mean_loss)
print(f"Epoch: {e}\tMean loss: {mean_loss}")

plt.plot(losses, label="Supervised losses")
plt.plot(losses_with_clmr, label="With pre-trained CLMR network")
plt.legend()
plt.show()

15.7. How does a supervised SampleCNN model compare? 107

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

y_true_supervised, y_pred_supervised = evaluate(
supervised_samplecnn, linear_model=None, test_loader=test_loader

)

supervised_accuracy = accuracy_score(y_true_supervised, y_pred_supervised)
cm = confusion_matrix(y_true_supervised, y_pred_supervised)
sns.heatmap(

cm, annot=True, xticklabels=GTZAN_GENRES, yticklabels=GTZAN_GENRES, cmap="YlGnBu"
)
print("Accuracy: %.4f" % supervised_accuracy)

100
↪%|███|␣
↪19/19 [00:26<00:00, 1.41s/it]

Accuracy: 0.4966

108 Chapter 15. PyTorch Tutorial

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

15.8 Conclusion

In conclusion, we observed how a self-supervised model, that pre-trains its network by way of leveraging the underlying
structure of the data, can learn strong representations for the downstream task of music classification.
We have:

1. Pre-trained a SampleCNN encoder with CLMR.
2. Evaluated the representations with a linear classifier.
3. Loaded pre-trained weights from CLMR trained on the MagnaTagATune dataset.
4. Trained a linear classifier on these representations.

Our final accuracy when training the linear classifier for 15 epochs is ~55.2% on the downstream task of music classifi-
cation on the GTZAN dataset.
It is important compare against an equivalent network that is trained in a supervised manner. Therefore, we also trained
a supervised SampleCNN model from scratch, which reached an accuracy of ~49.6%.

Model Accuracy
Supervised SampleCNN 49.6%
Self-supervised CLMR + SampleCNN 55.2%

Note: Note that in these experiments, the supervised model may have well overfitted on the GTZAN training data. This
tutorial is by no means an exhaustive search for an optimal set of model and training parameters.

15.8. Conclusion 109

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

In conclusion, it is exciting to see that a linear classifier reaches a comparable performance, compared to a fully optimized
encoder, using representations that were learned in a task-agnostic manner by way of self-supervised learning.

110 Chapter 15. PyTorch Tutorial

Part V

Towards Real-world Applications

111

CHAPTER

SIXTEEN

MLOPS

Academia and industry have different goals and focuses for good reasons. But it’s useful to learn what is happening on
the other side.

This famous image from Machine Learning: The High Interest Credit Card of Technical Debt, [SHG+14] shows various
kinds of modules that are needed, on top of ML code, to build an ML system. There are so many of them that people
even coined a new word, “MLOps”. Among these, we will discuss the creation and management of datasets, evaluation
of an ML model, and deployment in this chapter.

16.1 Dataset Creation

16.1.1 1. Item Sampling

To create a dataset, one first needs to collect the items. If the source of an item is limited in some sense, we might want
to simply maximize the number of items. Otherwise, we need to sample the items from a bigger set, which might be the
whole population (e.g., the whole catalog of streaming service).
In general, the goal of this sampling is to statistically represent the target set. But how? Here are some tips.

• Use metadata (year, artist, language, genre) to ensure diversity
• Make sure the items at extreme ends are included (e.g., the oldest and the newest songs)

113

https://research.google/pubs/pub43146/

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

OpenMIC-2018 [HDM18] set a high bar on this. The source of the dataset is FMA [DBVB16] which has full tracks, and
the goal was to sample 10-second segments so that each instrument class is represented well enough. The authors first
trained an instrument recognition model using an existing dataset. The model was used to approximate class occurrence.
Based on this, the authors sampled the (assumed to be) positive 10-second segments of an instrument – from least to most
likely instrument class. Finally, then applied a rule so that no two clips share a source track.

16.1.2 2. Annotation

Once collecting the items, you’ll go through an annotation process.
• Defining a taxonomy can be an overwhelmingly difficult task! Ask experts, see if there’s existing taxonomy you can

use (e.g., WordNet).
• Educate the annotators so that everyone has the same understanding of the task and the labels.
• Be skeptical about the quality - Have multiple annotators and use the agreement to validate the labels.
• After labeling, if you’re lack items with some labels, manually add the items. I.e., do some preemptive active

learning

16.1.3 3. Postprocessing

All done? Yes – almost. But there are a few more things to do.
• Mistakes in the split leads to mistakes in training and evaluation!

– Make sure the (label and/or any other) distributions of training/validation/testing sets are similar.
– Allocate enough items to validation and testing sets.

∗ For example, when the dataset is not that large – Which is better? 90:5:5 vs 70:20:10. Of course, it all
depends. But I’d prefer the latter since i) a 22% decrease of the training set is probably not critical while
a 400% increase in validation set means our model selection will be significantly more reliable.

16.2 Dataset Management

In the ideal world, you have nothing to do once a dataset is created. In the world we’re living in, it might be just the
beginning!

• Version your dataset. It can be like versioning software (1.0, 1.0.1, 1.1.0, ..) which has nice rules about, for
example, semantic versioning. Or maybe simply the dates and some explanation.

– Save the version of the dataset with your models.
• You may add new data samples. Why? 2/7 ♀ Anyway, it happens.

– Be aware of the distribution of the new subset and the result
– Be consistent on the data pipeline (software and parameters used during audio processing)

• Keep your data samples up-to-date. Add recent samples!
• Keep your labels up-to-date.

– E.g., genre labels (new genres may emerge), labels from language models

114 Chapter 16. MLOps

https://wordnet.princeton.edu
https://semver.org/

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

16.3 Evaluation: It is more than a single number

16.3.1 Choice of metric(s)

• In papers, conciseness is a virtue!
– We have to compare models (to show my model beats yours!). We prefer a single number such as AUC-

ROC, PR-AUC, or average F-1 score, one that summarizes the performance of tags / with various metrics
(e.g., precision and recall).

• In industry, it might be a bit different.
– You would want to evaluate the model in more detail. For example, the performance of each tag would matter.
– Depending on use cases, people may focus on either precision or recall.

16.3.2 Optimize for your target metric

• High precision? or High recall?
– Know your application!

• Thresholding or not?
– Even with softmax, if the target is high precision, simply thresholding with value works.
– Confidence estimation can be done in various way.

16.4 Deployment

16.4.1 Notes

• Ensure the reproducibility of:
– Software/your code!
– Model
– Data processing pipeline

∗ Decoding mp3, or if it’s mp3 vs wav input, resampling algorithm, how to downmix, ..
• Is your model actually useful for the whole catalog you have? E.g.,:

– If album cover images are used in the model, are they going to be available for all the music tracks?
– If you used lyrics, would it work for all the languages you need to support?

16.3. Evaluation: It is more than a single number 115

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

16.4.2 Food for thought: Aggregating segment level predictions

We often avoid this issue when using public datasets (e.g., MSD) as they come with 30-second preview only. If you
have access to full tracks, congratulations! It’s an opportunity to improve the performance! This is where some ideas of
multiple instance learning can help you.
Assuming the model is working properly, simply averaging the predictions/probabilities/logits would result in a better
performance. This is because when misclassifications are rare, they are ignored as we choose the majority.
One would want to go further and let a model handle the aggregation. For example, a Transformer can be used on top
of segment level predictions. This could solve some corner cases where averaging fails. Imagine an instrumental detector
that is deployed for track-level classification but trained at a segment-level. Averaging (or majority voting) would result
in incorrect classification if more than 50% of segments have no vocal; even if the track is not instrumental.

116 Chapter 16. MLOps

CHAPTER

SEVENTEEN

UNDER-EXPLORED PROBLEMS IN ACADEMIA

Your choices as a researcher are affected by the circumstance such as

\ Has more freedom in Has Bias towards
Academia Choosing the topics Publishable topics
Industry Using resources (time, budget, work force) Profitable topics

As a result, we’ll see each entity uses [A] to specialize in [B]. And that’s great! But, for the same reason, some topics are
getting little attention in academia.

17.1 What makes a topic difficult to work on in academia?

• When it feels like it’s solved → You can’t write a paper about it anymore!
• When it’s hard to create a dataset → In this data-driven era, it’s a deal-breaker.
• When the problem is too new / there’s no dataset for it → No way for sure.
• When it’s difficult to evaluate → Don’t feed Reviewer 2 a reason for rejection!

17.2 Let’s talk about research topics

Disclaimer - This section is meant to be subjective. Also, as the content is based on the diagnosis of the current research
field, it will expire as time goes by.

17.2.1 Speech/music classification

Although
• It seems easy
• Many methods have achieved 100% accuracy in Gtzan speech/music dataset [Tza99],

It is an interesting problem because
• The model is needed anyway and there’s no reliable public model since Gtzan speech/music dataset [Tza99] is

pretty small
• The problem can be defined further such as:

– Clip-level decision → short segment-level decision (say, 1 second)

117

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

– More than binary decision - {100% Music – many levels in between – 100% speech} + {something neither
music or speech} (e.g., [MelendezCatalanMGomez19], [HWW+21])

17.2.2 Language classification

Although
• We were not doing it (nearly at all) because there was no public dataset

It is an interesting problem because
• It’s one of the main components in music recommendation systems.
• It is popular in Industry - According to publication records, ByteDance [CW21] / Spotify [Rox19] / YouTube

[CSR11] have done it.
• There is a public dataset now [SPD+20]

17.2.3 Mood recognition

Although
• It has lost popularity for these reasons:

– Tagging tasks sort of overshadowed it
– Hard to get large-scale data // while we have to write deep learning papers!
– Hard to evaluate (fundamentally, completely subjective)
– Maybe a lot about lyrics, which are also hard to get.

It is an interesting problem because
• Users still want to find some songs by mood.

– Mood-based playlists/radio stations are popular!
– Check out this repo[GCCE+21] for a comprehensive list of mood-related datasets

17.2.4 Year/decade/era

Although
• No one does it explicitly
• Metadata is supposed to cover this pretty well
• MSD includes it and it works pretty okay [BMEWL11]

It is an interesting problem because
• And yes, there is demand! Metadata is NOT always there or correct
• Relevant to user’s musical preference

118 Chapter 17. Under-Explored Problems in Academia

https://github.com/juansgomez87/datasets_emotion

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

17.2.5 Audio codec quality (mp3, wav, etc)

Although
• Music services are supposed to always have high-quality audio

It is an interesting problem because
• There are many fake CD-quality/fake HD audio files
• Indie music/Directly publishing + sample-based music producing = Increase of audio quality issue

17.2.6 Hierarchical Classification

Although
• There are little datasets that have hierarchical taxonomies

It is an interesting problem because
• We can do a better job by learning the knowledge in the hierarchy
• The users of your model may want it! Even if they did not explicitly want a label hierarchy, it might make more

sense to have one based on the labels in demand.

17.2. Let’s talk about research topics 119

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

120 Chapter 17. Under-Explored Problems in Academia

Part VI

Conclusion

121

CHAPTER

EIGHTEEN

CONCLUSION

Congratulations! You finished the book, executed every code we typed, and read every line we wrote!
In the first chapter, The Basics, we defined music classification and introduced its applications. We then looked into input
representations with a special focus on biological plausibility. We also looked into music classification datasets with a
special focus on the secrets of how to use some popular datasets correctly. In the evaluation section, we showed the
concepts of important metrics such as precision and recall as well as code demo to compute them. After finishing this
chapter, we hope you’re ready to start working on your music classification model.
In the second chapter, Supervised Learning, we reviewed popular architectures - their definitions, pros, and cons. We also
demonstrated data augmentation methods for music audio - the code, spectrograms, and audio signals you can play. At
the end of the chapter, we showed a full example of data preparation, model training, and evaluation on Pytorch. After
this chapter, you can implement a majority of music classification models that were introduced during the deep learning
era.
In the third chapter, Semi-Supervised Learning, we covered transfer learning and semi-supervised learning – approaches
that became popular, recently, due to annotation cost. Both are strategies one can consider when there is only a small
number of labeled items. These approaches can be useful in many real-world situations where you only have, for example,
less than a thousand labeled items.
In the fourth chapter, Self-Supervised Learning, an even more radical approach. The goal of self-supervised learning is to
learn useful representations without any labels. To achieve the goal, researchers assume some structural/internal patterns
purely within input and design loss functions to predict the patterns. We covered a wide range of self-supervised learning
methods introduced in music, speech, and computer vision. The lesson of this chapter liberates you from the worry of
getting annotations.
In the fifth chapter, Towards Real-world Applications, we introduce you to what people care about in industry. After
finishing this chapter, you can understand the procedures and tasks researchers and engineers in industry spend time on.
We’re delighted that you have studied music classification with us. Did you achieve your goal while reading it? Are your
questions solved now? We hope we also achieved our goals - lowering the barrier of music classification to the newcomers,
providing methods to cope with data issues, and narrowing the gap between academia and industry. Please feel free to
reach out to us if you have any questions or feedback.
Best wishes,
Minz, Janne, and Keunwoo.

123

https://github.com/music-classification/tutorial/issues

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

124 Chapter 18. Conclusion

Part VII

Resources

125

CHAPTER

NINETEEN

REFERENCES

127

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

128 Chapter 19. References

BIBLIOGRAPHY

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and others. Tensorflow: a system for large-scale machine
learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283.
2016.

[BCG+19] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin Raffel. Mix-
match: a holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249, 2019.

[BMEWL11] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. The million song dataset.
In ISMIR 2011: Proceedings of the 12th International Society for Music Information Retrieval Conference,
October 24-28, 2011, Miami, Florida, 591–596. University of Miami, 2011.

[BFR+19] Rachel M Bittner, Magdalena Fuentes, David Rubinstein, Andreas Jansson, Keunwoo Choi, and Thor Kell.
Mirdata: software for reproducible usage of datasets. In Proceedings of the 20th Conference of the Inter-
national Society for Music Information Retrieval, Delft, The Netherlands. International Society for Music
Information Retrieval (ISMIR), 2019.

[BPS+19] Dmitry Bogdanov, Alastair Porter, Hendrik Schreiber, Julián Urbano, and Sergio Oramas. The acous-
ticbrainz genre dataset: multi-source, multi-level, multi-label, and large-scale. In Proceedings of the 20th
Conference of the International Society for Music Information Retrieval (ISMIR 2019): 2019 Nov 4-8; Delft,
The Netherlands.[Canada]: ISMIR; 2019. International Society for Music Information Retrieval (ISMIR),
2019.

[BWGomezGutierrez+13] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp Gulati, Herrera Boyer,
Oscar Mayor, Gerard Roma Trepat, Justin Salamon, José Ricardo Zapata González, Xavier Serra, and others.
Essentia: an audio analysis library for music information retrieval. In Britto A, Gouyon F, Dixon S, editors.
14th Conference of the International Society for Music Information Retrieval (ISMIR); 2013 Nov 4-8; Cu-
ritiba, Brazil.[place unknown]: ISMIR; 2013. p. 493-8. International Society for Music Information Retrieval
(ISMIR), 2013.

[BWT+19] Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The mtg-jamendo dataset
for automatic music tagging. In Machine Learning for Music Discovery Workshop, International Confer-
ence on Machine Learning (ICML 2019). Long Beach, CA, United States, 2019. URL: http://hdl.handle.net/
10230/42015.

[BJFH12] Juan J Bosch, Jordi Janer, Ferdinand Fuhrmann, and Perfecto Herrera. A comparison of sound segregation
techniques for predominant instrument recognition in musical audio signals. In ISMIR, 559–564. Citeseer,
2012.

[CGomezG+06] Pedro Cano, Emilia Gómez, Fabien Gouyon, Perfecto Herrera, Markus Koppenberger, Beesuan Ong,
Xavier Serra, Sebastian Streich, and Nicolas Wack. Ismir 2004 audio description contest. Music Technology
Group of the Universitat Pompeu Fabra, Tech. Rep, 2006.

129

http://hdl.handle.net/10230/42015
http://hdl.handle.net/10230/42015

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

[Cel10] Oscar Celma. Music recommendation. In Music recommendation and discovery, pages 43–85. Springer,
2010.

[CSR11] Vijay Chandrasekhar, Mehmet Emre Sargin, and David A Ross. Automatic language identification in music
videos with low level audio and visual features. In 2011 IEEE international conference on acoustics, speech
and signal processing (ICASSP), 5724–5727. IEEE, 2011.

[CKNH20] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. In International conference on machine learning, 1597–1607.
PMLR, 2020.

[CAAH20] Kin Wai Cheuk, Hans Anderson, Kat Agres, and Dorien Herremans. Nnaudio: an on-the-fly gpu audio to
spectrogram conversion toolbox using 1d convolutional neural networks. IEEE Access, 8:161981–162003,
2020.

[CFCS17] Keunwoo Choi, György Fazekas, Kyunghyun Cho, and Mark Sandler. A tutorial on deep learning for music
information retrieval. arXiv preprint arXiv:1709.04396, 2017.

[CFS16] Keunwoo Choi, György Fazekas, and Mark Sandler. Automatic tagging using deep convolutional neural
networks. In The 17th International Society of Music Information Retrieval Conference, New York, USA.
International Society of Music Information Retrieval, 2016.

[CFSC17a] Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho. Convolutional recurrent neural net-
works for music classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2392–2396. IEEE, 2017.

[CFSC17b] Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho. Transfer learning for music classi-
fication and regression tasks. In Proceedings of the 18th Conference of the International Society for Music
Information Retrieval, Suzhou, China. International Society for Music Information Retrieval (ISMIR), 2017.

[CFCS18] Keunwoo Choi, György Fazekas, Kyunghyun Cho, and Mark Sandler. The effects of noisy labels on
deep convolutional neural networks for music tagging. IEEE Transactions on Emerging Topics in Com-
putational Intelligence, 2(2):139–149, 2018. URL: https://ieeexplore.ieee.org/abstract/document/8323324,
doi:10.1109/TETCI.2017.2771298.

[CJK17] Keunwoo Choi, Deokjin Joo, and Juho Kim. Kapre: on-gpu audio preprocessing layers for a quick imple-
mentation of deep neural network models with keras. Machine Learning for Music Discovery Workshop at
34th International Conference on Machine Learning, 2017.

[CW21] Keunwoo Choi and Yuxuan Wang. Listen, read, and identify: multimodal singing language identification
of music. In Proceedings of the 22th Conference of the International Society for Music Information Retrieval
(ISMIR 2019). International Society for Music Information Retrieval (ISMIR), 2021.

[Com20] Executable Books Community. Jupyter book. February 2020. URL: https://doi.org/10.5281/zenodo.
4539666, doi:10.5281/zenodo.4539666.

[DBVB16] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. Fma: a dataset for music
analysis. In The 17th International Society of Music Information Retrieval Conference, New York, USA. In-
ternational Society of Music Information Retrieval, 2016.

[DS14] Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music audio. In Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on, 6964–6968. IEEE, 2014. URL: https:
//ieeexplore.ieee.org/document/6854950.

[ERR+17] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi, Douglas Eck, and
Karen Simonyan. Neural audio synthesis of musical notes with wavenet autoencoders. In International Con-
ference on Machine Learning, 1068–1077. PMLR, 2017.

[FLTZ10] Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. A survey of audio-based music classification
and annotation. IEEE transactions on multimedia, 13(2):303–319, 2010.

130 Bibliography

https://ieeexplore.ieee.org/abstract/document/8323324
https://doi.org/10.1109/TETCI.2017.2771298
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://ieeexplore.ieee.org/document/6854950
https://ieeexplore.ieee.org/document/6854950

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

[GEF+17] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore,
Manoj Plakal, and Marvin Ritter. Audio set: an ontology and human-labeled dataset for audio events. In
Proc. IEEE ICASSP 2017. New Orleans, LA, 2017.

[GB+05] Yves Grandvalet, Yoshua Bengio, and others. Semi-supervised learning by entropy minimization. CAP,
367:281–296, 2005.

[GHyvarinen10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: a new estimation principle for
unnormalized statistical models. In Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, 297–304. JMLR Workshop and Conference Proceedings, 2010.

[GCCE+21] Juan Sebastián Gómez-Cañón, Estefanía Cano, Tuomas Eerola, Perfecto Herrera, Xiao Hu, Yi-Hsuan Yang,
and Gómez Emilia. Music Emotion Recognition: towards new robust standards in personalized and context-
sensitive applications. IEEE Signal Processing Magazine, 2021. doi:10.1109/MSP.2021.3106232.

[HMvdW+20] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, and others. Array programming with
numpy. Nature, 585(7825):357–362, 2020.

[HFW+20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 9729–9738. 2020.

[HBPD03] Perfecto Herrera-Boyer, Geoffroy Peeters, and Shlomo Dubnov. Automatic classification of musical instru-
ment sounds. Journal of New Music Research, 32(1):3–21, 2003.

[HCE+17] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing Moore,
Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, and others. Cnn architectures for large-scale
audio classification. In 2017 ieee international conference on acoustics, speech and signal processing (icassp),
131–135. IEEE, 2017.

[HDM18] Eric Humphrey, Simon Durand, and Brian McFee. Openmic-2018: an open data-set for multiple instrument
recognition. In The 19th International Society of Music Information Retrieval Conference, Paris, France. In-
ternational Society of Music Information Retrieval, 2018.

[HWW+21] Yun-Ning Hung, Karn N. Watcharasupat, Chih-Wei Wu, Iroro Orife, Kelian Li, Pavan Seshadri, and Jun-
young Lee. Avaspeech-smad: a strongly labelled speech and music activity detection dataset with label co-
occurrence. 2021. arXiv:2111.01320.

[Hun07] John D Hunter. Matplotlib: a 2d graphics environment. Computing in science & engineering, 9(03):90–95,
2007.

[KWSL18] Jaehun Kim, Minz Won, Xavier Serra, and Cynthia CS Liem. Transfer learning of artist group factors to
musical genre classification. In Companion Proceedings of the The Web Conference 2018, 1929–1934. 2018.

[KR16] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint arXiv:1606.07947,
2016.

[KSM+10] Youngmoo E Kim, Erik M Schmidt, Raymond Migneco, Brandon G Morton, Patrick Richardson, Jeffrey
Scott, Jacquelin A Speck, and Douglas Turnbull. Music emotion recognition: a state of the art review. In
Proc. ismir, volume 86, 937–952. 2010.

[KMRW14] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learn-
ing with deep generative models. In Advances in neural information processing systems, 3581–3589. 2014.

[KMS+11] Sander Koelstra, Christian Muhl, Mohammad Soleymani, Jong-Seok Lee, Ashkan Yazdani, Touradj
Ebrahimi, Thierry Pun, Anton Nijholt, and Ioannis Patras. Deap: a database for emotion analysis; using
physiological signals. IEEE transactions on affective computing, 3(1):18–31, 2011.

[Lam08] Paul Lamere. Social tagging and music information retrieval. Journal of new music research, 37(2):101–114,
2008.

Bibliography 131

https://doi.org/10.1109/MSP.2021.3106232
https://arxiv.org/abs/2111.01320

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

[LWM+09] Edith Law, Kris West, Michael I Mandel, Mert Bay, and J Stephen Downie. Evaluation of algorithms using
games: the case of music tagging. InThe 10th International Society ofMusic Information Retrieval Conference,
387–392. International Society of Music Information Retrieval, 2009.

[L+13] Dong-Hyun Lee and others. Pseudo-label: the simple and efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in representation learning, ICML, volume 3, 896. 2013.

[LPKN17] Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, and Juhan Nam. Sample-level deep convolutional neural
networks for music auto-tagging using raw waveforms. In Sound and Music Computing Conference (SMC).
2017. URL: https://arxiv.org/abs/1703.01789.

[MMM+21] Brian McFee, Alexandros Metsai, Matt McVicar, Stefan Balke, Carl Thomé, Colin Raffel, Frank Zalkow,
Ayoub Malek, Dana, Kyungyun Lee, Oriol Nieto, Dan Ellis, Jack Mason, Eric Battenberg, Scott Seyfarth,
Ryuichi Yamamoto, viktorandreevichmorozov, Keunwoo Choi, Josh Moore, Rachel Bittner, Shunsuke Hi-
daka, Ziyao Wei, nullmightybofo, Darío Hereñú, Fabian-Robert Stöter, Pius Friesch, Adam Weiss, Matt
Vollrath, Taewoon Kim, and Thassilo. Librosa/librosa: 0.8.1rc2. May 2021. URL: https://doi.org/10.5281/
zenodo.4792298, doi:10.5281/zenodo.4792298.

[MRL+15] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
Librosa: audio and music signal analysis in python. In Proceedings of the 14th python in science conference,
volume 8, 18–25. Citeseer, 2015.

[MelendezCatalanMGomez19] Blai Meléndez-Catalán, Emilio Molina, and Emilia Gómez. Open broadcast media au-
dio from tv: a dataset of tv broadcast audio with relative music loudness annotations. Transactions of the
International Society for Music Information Retrieval, 2019.

[NCL+18] Juhan Nam, Keunwoo Choi, Jongpil Lee, Szu-Yu Chou, and Yi-Hsuan Yang. Deep learning for audio-based
music classification and tagging: teaching computers to distinguish rock from bach. IEEE signal processing
magazine, 36(1):41–51, 2018.

[OLV18] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[Pac05] Francois Pachet. Knowledge management and musical metadata. Idea Group, 2005.
[PLP+17] Jiyoung Park, Jongpil Lee, Jangyeon Park, Jung-Woo Ha, and Juhan Nam. Representation learning of music

using artist labels. arXiv preprint arXiv:1710.06648, 2017.
[PRS+19] Santiago Pascual, Mirco Ravanelli, Joan Serra, Antonio Bonafonte, and Yoshua Bengio. Learning problem-

agnostic speech representations from multiple self-supervised tasks. arXiv preprint arXiv:1904.03416, 2019.
[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, and others. Pytorch: an imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32:8026–8037, 2019.

[PS19] Jordi Pons and Xavier Serra. Musicnn: pre-trained convolutional neural networks for music audio tagging.
arXiv preprint arXiv:1909.06654, 2019.

[Rox19] Linus Roxbergh. Language classification of music using metadata. 2019.
[SPD+20] Igor André Pegoraro Santana, Fabio Pinhelli, Juliano Donini, Leonardo Catharin, Rafael Biazus Mangolin,

Valéria Delisandra Feltrim, Marcos Aurélio Domingues, and others. Music4all: a new music database and its
applications. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 399–404.
IEEE, 2020.

[SLBock20] Alexander Schindler, Thomas Lidy, and Sebastian Böck. Deep learning for mir tutorial. arXiv preprint
arXiv:2001.05266, 2020.

[Sch15] Hendrik Schreiber. Improving genre annotations for the million song dataset. In ISMIR, 241–247. 2015.

132 Bibliography

https://arxiv.org/abs/1703.01789
https://doi.org/10.5281/zenodo.4792298
https://doi.org/10.5281/zenodo.4792298
https://doi.org/10.5281/zenodo.4792298

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

[SHG+14] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
and Michael Young. Machine learning: the high interest credit card of technical debt. In SE4ML: Software
Engineering for Machine Learning (NIPS 2014 Workshop). 2014.

[SSP+03] Patrice Y Simard, David Steinkraus, John C Platt, and others. Best practices for convolutional neural networks
applied to visual document analysis. In Icdar, volume 3. 2003.

[SAY16] M Soleymani, A Aljanaki, and YH Yang. Deam: mediaeval database for emotional analysis in music. 2016.
[SCS+13] Mohammad Soleymani, Micheal N Caro, Erik M Schmidt, Cheng-Ya Sha, and Yi-Hsuan Yang. 1000 songs

for emotional analysis of music. In Proceedings of the 2nd ACM international workshop on Crowdsourcing
for multimedia, 1–6. 2013.

[SB21] Janne Spijkervet and John Ashley Burgoyne. Contrastive learning of musical representations. In Proceedings
of the 22th Conference of the International Society forMusic Information Retrieval (ISMIR 2019). International
Society for Music Information Retrieval (ISMIR), 2021. URL: https://arxiv.org/abs/2103.09410.

[Stu13] Bob L Sturm. The gtzan dataset: its contents, its faults, their effects on evaluation, and its future use. arXiv
preprint arXiv:1306.1461, 2013.

[TS10] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning applications
and trends: algorithms, methods, and techniques, pages 242–264. IGI global, 2010.

[Tza99] George Tzanetakis. Gtzan musicspeech. availabe online at http://marsyas. info/download/data sets, 1999.
[TC01] George Tzanetakis and P Cook. Gtzan genre collection. web resource, 2001. URL: http://marsyas.info/

downloads/datasets.html.
[TC02] George Tzanetakis and Perry Cook. Musical genre classification of audio signals. Speech and Audio Process-

ing, IEEE transactions on, 10(5):293–302, 2002.
[VdODS13] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music recommen-

dation. In Advances in Neural Information Processing Systems, 2643–2651. 2013. URL: https://biblio.ugent.
be/publication/4324554.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.

[WBKW96] Erling Wold, Thom Blum, Douglas Keislar, and James Wheaten. Content-based classification, search, and
retrieval of audio. IEEE multimedia, 3(3):27–36, 1996.

[WCS21] Minz Won, Keunwoo Choi, and Xavier Serra. Semi-supervised music tagging transformer. In Proceedings of
the 22th Conference of the International Society for Music Information Retrieval (ISMIR 2019). International
Society for Music Information Retrieval (ISMIR), 2021.

[WCNS20] Minz Won, Sanghyuk Chun, Oriol Nieto, and Xavier Serrc. Data-driven harmonic filters for audio repre-
sentation learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 536–540. IEEE, 2020.

[WCNCS19] Minz Won, Sanghyuk Chun, Oriol Nieto Caballero, and Xavier Serra. Automatic music tagging with har-
monic cnn. 20th International Society for Music Information Retrieval, Late-Breaking/Demo Session, 2019.

[WCS19] Minz Won, Sanghyuk Chun, and Xavier Serra. Toward interpretable music tagging with self-attention. arXiv
preprint arXiv:1906.04972, 2019.

Bibliography 133

https://arxiv.org/abs/2103.09410
http://marsyas.info/downloads/datasets.html
http://marsyas.info/downloads/datasets.html
https://biblio.ugent.be/publication/4324554
https://biblio.ugent.be/publication/4324554
https://doi.org/10.1038/s41592-019-0686-2

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

[WFBS20] Minz Won, Andres Ferraro, Dmitry Bogdanov, and Xavier Serra. Evaluation of cnn-based automatic music
tagging models. In Sound and Music Computing 2020 (SMC 2020). 2020. URL: https://arxiv.org/abs/2006.
00751.

[XLHL20] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student improves
imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 10687–10698. 2020.

[YJegouC+19] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semi-
supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

[YHN+21] Yao-Yuan Yang, Moto Hira, Zhaoheng Ni, Anjali Chourdia, Artyom Astafurov, Caroline Chen, Ching-Feng
Yeh, Christian Puhrsch, David Pollack, Dmitriy Genzel, Donny Greenberg, Edward Z. Yang, Jason Lian, Jay
Mahadeokar, Jeff Hwang, Ji Chen, Peter Goldsborough, Prabhat Roy, Sean Narenthiran, Shinji Watanabe,
Soumith Chintala, Vincent Quenneville-Bélair, and Yangyang Shi. Torchaudio: building blocks for audio
and speech processing. 2021. arXiv:2110.15018.

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In Proceedings of the 20th International conference on Machine learning (ICML-03),
912–919. 2003.

134 Bibliography

https://arxiv.org/abs/2006.00751
https://arxiv.org/abs/2006.00751
https://arxiv.org/abs/2110.15018

	I The Basics
	What is Music Classification?
	Single-label classification
	Multi-label classification
	Music classification tasks
	Applications

	Input Representations
	Biological Plausibility
	Waveforms
	Spectrograms: time-frequency representations
	STFT
	Even more modifications
	Melspectrograms
	Constant-Q Transform
	Practical Issue: How to compute them?
	Waveforms
	Spectrograms
	Consistency between softwares

	Datasets
	Overview
	Availabilities of audio signal
	Hidden traps!

	Gtzan Music Genre (2002)
	MagnaTagATune (2009)
	Million Song Dataset (2011)
	FMA (2017)
	MTG-Jamendo (2019)
	AudioSet (2017)
	NSynth (2017)
	Summary
	Resources

	Problem Formulation
	Genre Classification
	Mood classification
	Instrument identification
	Music tagging

	Evaluation
	Accuracy
	Precision
	Recall
	F-measure
	High precision vs high recall?
	Area under receiver operating characteristic curve (ROC-AUC)
	Area under precision-recall curve (PR-AUC)

	II Supervised Learning
	Introduction
	Architectures
	Overview
	Fully Convolutional Networks (FCNs)
	VGG-ish / Short-chunk CNNs
	Harmonic CNNs
	MusiCNN
	Sample-level CNNs
	Convolutional Recurrent Neural Networks (CRNNs)
	Music tagging transformer
	Which model should we use?

	Audio Data Augmentations
	Code Libraries
	Listening
	Random Crop
	Frequency Filter
	Delay
	Comb filter

	Pitch Shift
	Reverb
	Gain
	Noise
	Polarity Inversion

	Sequential Audio Data Augmentations
	More Sequential Audio Data Augmentations

	Stochastic Audio Data Augmentations
	Single stochastic augmentations

	Conclusion

	PyTorch tutorial
	Data collection
	Data loader
	Model
	Training
	Evaluation

	III Semi-supervised Learning
	Beyond Supervision
	Transfer Learning
	Pretext using editorial information
	Pretext using cultural information

	Semi-Supervised Learning
	Noisy student training
	Knowledge expansion and distillation

	IV Self-supervised Learning
	Introduction
	Pre-training
	Self-supervised learning
	Should I use self-supervised learning?

	Methods for Self-Supervised Learning
	Contrastive Learning
	Contrastive Predictive Coding
	Momentum Contrast (MoCO)
	SimCLR
	Contrastive Losses
	PASE
	More papers on self-supervised learning

	PyTorch Tutorial
	CLMR
	Audio Data Augmentations

	SampleCNN Encoder
	SimCLR
	Loss
	Pre-training CLMR
	Linear Evaluation
	Get ROC-AUC and PR-AUC scores on test set

	How does a supervised SampleCNN model compare?
	Conclusion

	V Towards Real-world Applications
	MLOps
	Dataset Creation
	1. Item Sampling
	2. Annotation
	3. Postprocessing

	Dataset Management
	Evaluation: It is more than a single number
	Choice of metric(s)
	Optimize for your target metric

	Deployment
	Notes
	Food for thought: Aggregating segment level predictions

	Under-Explored Problems in Academia
	What makes a topic difficult to work on in academia?
	Let’s talk about research topics
	Speech/music classification
	Language classification
	Mood recognition
	Year/decade/era
	Audio codec quality (mp3, wav, etc)
	Hierarchical Classification

	VI Conclusion
	Conclusion

	VII Resources
	References
	Bibliography

