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Music Classification: Beyond Supervised Learning, Towards Real-world Applications

This is a web book written for a tutorial session of the 22nd International Society for Music Information Retrieval Con-
ference, Nov 8-12, 2021 in an online format. The ISMIR conference is the world’s leading research forum on processing,
searching, organising and accessing music-related data.

The scope

The history of music classification dates back to at least 1996 [WBKW96]. The motivation of music classification remains
the same since then.

The rapid increase in speed and capacity of computers and networks has allowed the inclusion of audio as a
data type in many modern computer applications.

It was further clarified in [TCO02].

..gaining importance as a way to structure and organize the increasingly large numbers of music files available
digitally...

In this book, we focus on the more modern history of music classification since the popularization of deep learning in
mid 2010s. Please refer to [FLTZ10] for the earlier progress in 2000s, which was mainly the design of audio features and
adoption of classifiers as well as the birth of many music classification problems. [NCL+18] includes detailed discussion
of the transition to deep learning approaches. There also exist other existing tutorials, [SLBock20] and [CFCS17], that
include more general MIR topics with a special focus on deep learning.

Motivation

Lower the barrier: As deep learning emerges, music classification research has entered a new phase, and many data-
driven approaches have been proposed to solve the problem. However, researchers sometimes use jargon in various
ways. Also, some implementation details and evaluation methods are ambiguously described in the papers, blocking
access to the information without personal contact. These are tremendous obstacles when new researchers want to dive
into this fascinating research area. Through this book, we would like to lower the barrier for newcomers and reduce
miscommunication between researchers by sharing the secrets.

Cope with data issue: Another issue that we are facing under the deep learning era is the exhaustion of labeled data.
Labeling musical attributes requires strong domain knowledge and a significant amount of time for listening; hence expen-
sive. Because of this, deep learning researchers started actively utilizing large-scale unlabeled data. This book introduces
the recent advances in semi- and self-supervised learning that enables music classification models to step further beyond
supervised learning.

Narrow the gap: Music classification has been applied to solve real-world problems successfully. However, some im-
portant procedures and considerations for real-world applications are rarely discussed as research topics. In this book,
based on the various industry experiences of the authors, we try our best to raise awareness of these questions and provide
answers and perspectives. We hope this helps academia and industries harmonize better together.

About the authors

Minz Won is a Ph.D candidate at the Music Technology Group (MTG) of Universitat Pompeu Fabra in Barcelona,
Spain. His research focus is music representation learning. Along with his academic career, he has put his knowledge
into practice with industry internships at Kakao Corp., Naver Corp., Pandora, Adobe, and he recently joined ByteDance
as a research scientist. He contributed to the winning entry in the WWW 2018 Challenge: Learning to Recognize Musical
Genre.
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Janne Spijkervet graduated from the University of Amsterdam in 2021 with her Master’s thesis titled “Contrastive
Learning of Musical Representations”. The paper with the same title was published in 2020 on self-supervised learning
on raw audio in music tagging. She has started at ByteDance as a research scientist (2020 - present), developing generative
models for music creation. She is also a songwriter and music producer, and explores the design and use of machine
learning technology in her music.

Keunwoo Choi is a senior research scientist at ByteDance, developing machine learning products for music recom-
mendation and discovery. He received a Ph.D degree from Queen Mary University of London (c4dm) in 2018. As a
researcher, he also has been working at Spotify (2018 - 2020) and several other music companies as well as open-source
projects such as Kapre, l1ibrosa, and torchaudio. He also writes some music.

Software

We use Jupyter Book[Com?20], Librosa 0.8.1[MRL+15] [MMM+21], Pytorch[PGM+19], Torchaudio[ YHN+21], Mat-
plotlib[Hun07], and Numpy[HMvdW+20].

Citing this book

@book{musicclassification:book,

Author = {Won, Minz and Spijkervet, Janne and Choi, Keunwoo},

Month = Nov.,

Publisher = {https://music-classification.github.io/tutorial},

Title = {Music Classification: Beyond Supervised Learning, Towards Real-world.
~Applications},

Year = 2021,

Url = {https://music-classification.github.io/tutorial},
doi = {10.5281/zenodo.5703780}

}

Note

* You can download a pdf of this book from zenodo. If the pdf is not up-to-date, you can build it by yourself on
your local machine.
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CHAPTER
ONE

WHAT IS MUSIC CLASSIFICATION?

Music classification is a music information retrieval (MIR) task whose objective is the computational understanding of
music semantics. For a given song, the classifier predicts relevant musical attributes. Based on the task definition, there
are a nearly infinite number of classification tasks — from genres, moods, and instruments to broader concepts including
music similarity and musical preferences. The retrieved information can be further utilized in many applications including
music recommendation, curation, playlist generation, and semantic search.

1.1 Single-label classification

Let’s say there are two record stores in your town. ‘ABC Records’ curates all the records in alphabetic order, while ‘MIR
Records[’ categorizes their stocks based on musical genres. When you already know what you want to buy, ‘ABC Records’
is a good place to go as you can search by the alphabetic index. However, when you want to browse and discover new
music, ‘MIR Records’ will be preferable as you can visit the section with your favorite genre. Like this, well-designed
categorization (i.e., music classification) helps customers browse music more efficiently. This record store scenario can
be interpreted as a single-label classification task. One item can be in a single section; hence categories (genres in this
example) are exclusive.

Warning: Genres are not always exclusive to each other. One song can belong to multiple genres.

1.2 Multi-label classification

Different from the example above, one item may belong to multiple categories. For example, one song can be Disco and
K-Pop simultaneously, and these categories are not exclusive to each other. Also, listeners would like to browse music by
instruments, languages, moods, or context, not only musical genres. We can handle these multiple musical attributes with
multi-label classification. The multi-label classification is often referred to as “music tagging” since it puts various music
tags for a given song.

Multi-label classification is handled as a binary classification for each musical attribute. For each label, the system de-
termines whether a given song is positive to the label or not. In contrast with single-label classification, labels are not
exclusive, and multiple tags can exist together.
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1.3 Music classification tasks

There can be an almost infinite number of music classification tasks based on product requirements. Among them, the
most explored music classification tasks in MIR research are listed as follow:

¢ Genre classification [TC02]

¢ Mood classification [KSM+10]

e Instrument identification [HBPDO3]
¢ Music tagging [Lam08]

We discuss music classification tasks in more detail later in this chapter.

Note: Music tagging subsumes all other classification tasks as any class (label) can be musical tags.

1.4 Applications

The explosion of digital music has dramatically changed our music consumption behavior. Massive music libraries are
available through streaming platforms, and it is impossible to browse the entire collections item-by-item. As a result, we
need robust knowledge management systems more than ever. Music classification is a technique that supports knowl-
edge management. Music classification models enhance users’ music experience through many applications, including
recommendation, curation, playlist generation, semantic search, and analysis of listening behavior.

¢ Recommendation: Once we have labeled or predicted musical attributes, a system can recommend music to users
based on frequently consumed musical attributes of the users. Unlike collaborative filtering, a prevalent recom-
mender system using user-item interactions, this content-based recommendation does not suffer from cold-start
problems and popularity bias [Cel10].

¢ Curation: As we checked from the previous record store example, well-designed music curation helps users browse
enormous music libraries efficiently. Hence, music streaming services curate music by genres, subgenres, or moods.
Human agents can manually do this process, but music classification models can replace human efforts.

* Playlist generation: The usage of music classification models in playlist generation is similar to the use in music
recommendation. But playlist generation needs to consider the order of the songs and more user context.

* Listening behavior analysis: Most modern streaming services provide annual reports of personal listening trends.
This report helps users to understand their taste better and is basically fun!

6 Chapter 1. What is Music Classification?
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CHAPTER
TWO

INPUT REPRESENTATIONS

In this notebook, we’ll study various audio input representations that are used for music classification. Choosing the right
input representation is crucial to successful training of neural networks. This may sound against the spirit of deep learning
— assume minimally and let the model learn.

This is because the optimal choice of audio input representations is more difficult than in other domains as you’ll see here.
In other words, this is an important design choices that music/audio researchers should make as opposed to people in
natural language processing or computer vision.

Note: In this section, you will be introduced to various input representations as well as their relationship with our
perception of sound. The connection is rarely mentioned, but it provides rigorous explainations about why we choose
some design choices.

2.1 Biological Plausibility

Neural networks are inspired by biological neural networks. However, that doesn’t mean we have to follow every detail
of them. It is a classic debate topic where airplanes are often mentioned as a counterexample.

How about audio representations? Does biological plausibility matter when designing it?

The answer would depend on the problem we solve as well as the empirical evidence. For music classifcation, the answer
seems to be “Yes”. The way we perceive sounds decides what we care about and how we label music. Our understanding of
music, then, defines music classification tasks. For example, no one cares about pattern recognition of inaudible frequency
ranges.

In this section, I will help the readers to connect many choices we make regarding input representations to related concepts
in psychoacoustics, a study of our perception of sound.

Alright, let’s get started! Let me prepare some modules and variables first.

import numpy as np

import matplotlib.pyplot as plt
import librosa

import librosa.display

import IPython.display as ipd

plt.rcParams.update ({'font.size': 16, 'axes.grid': True})

SR = 22050 # sample rate of audio
wide = (18, 3) # figure size

(continues on next page)
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(continued from previous page)

big = (18, 8) # figure size

print (f"{librosa.__version__=/}")

librosa.__version__='0.8.1"

src, sr = librosa.load('are-you-here-with-me (mono) .mp3', sr=SR, mono=True, duration=5.
«40)

print (f'{src.shape=}, {sr=}")

/Users/admin/miniconda3/lib/python3.8/site-packages/librosa/core/audio.py:165:_
~UserWarning: PySoundFile failed. Trying audioread instead.
warnings.warn ("PySoundFile failed. Trying audioread instead.")

src.shape=(110250,), sr=22050

2.2 Waveforms

The first representation we’ll discuss is waveforms.

Note: Waveforms are records of amplitudes of audio signals.

plt.figure(figsize=wide) # plot using matplotlib
plt.title('Waveform of the example signal')
plt.plot(src);plt.ylim([-1, 11]);

Waveform of the example signal

1.0

0.5

0.0

-1.0 T " T " . ;
0 20000 40000 60000 80000 100000

ipd.Audio(src, rate=sr) # load a NumPy array

<IPython.lib.display.Audio object>

Effective visualization of audio representations is trickier than you think. FYI, you can ask 1ibrosa to take care of it
as below. We'll use both matplotlib directly and 1ibrosa depending on what I want to display.

plt.figure(figsize=wide) # plot using librosa
plt.title('Waveform of the example signal')
librosa.display.waveshow (src, sr=22050);plt.ylim([-1, 11);

8 Chapter 2. Input Representations
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Waveform of the example signal

1.0
0.5
0.0
-0.5
-1.0 T T T . T T : : :
0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8
Time

This 5-second 22,050-Hz sampled mono audio has a shape of (110250, ). So, what is this long 1-dimensional array?
It is a representation for (diaphragms of) speakers, whose goal is to produce the sound (the change of pressure in the air)
correctly.

Let’s zoom into the waveform

Duration: 800 samples (0.0181 second)
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Duration: 200 samples {0.0045 second)

Duration: 100 samples (0.0023 second)

As the raw end of audio signals, waveforms were used as input of music classification models in [DS14], [LPKN17], etc.
Is waveform the best representation for neural networks? It depends, but usually it’s not.

« If you have a lot of data, it’s worth trying with the minimally assuming, waveform-based models such as Sample-
CNN ([LPKN17]). Beware though, it’s requires a large memory, lots of computation, and large-scale data.

What are the alternatives then? There is no single answer to the question. A bunch of types of spectrograms could be
the answer depending on what you're looking for.

But - first of all, what are spectrograms?

2.3 Spectrograms: time-frequency representations

Note: Spectrogram refers to a (2D) visualization of sound.

Text (0.5, 1.0, 'A Spectrogram')

2.3. Spectrograms: time-frequency representations 9
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A Spectrogram
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>
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time

Why is spectrogram a good representation?

Let’s think about how we perceive sound. The amplitudes of acoustic waves — waveforms — are what our eardrums respond
to. The sound travels through our auditory system. At some point, it is then converted to a (sort of) 2-dimensional
representation in the cochlear to perform some frequency analysis. This is done by the basilar membrane physically
responding to a certain frequency component as below.

(Image from Wikipedia)

<IPython.core.display.Image object>

This means that 2-dimensioal representations are biologically plausible, which is not bad.

Additionally, spectrograms are neural network-friendly because they fit well with properties of some popular architectures.
For example, local correlation and the shift invariance of CNNs can be utilized nicely when we’re using spectrograms.
One would argue that the harmonic relationship along the frequency axis is hardly considered in CNNs. But i) we can
modify the structure to take it into account [WCNCS19], and its performance was on par with typical (non-harmonic)
CNNs [WFBS20].

For the rest of this section, we’ll focus on three types of spectrogram. They are STFT, melspectrograms, or constant-Q
transform (CQT). Let me first summarize their property from a deep learning point of view.

Note:

¢ STFT has some good properties but its size is usually bigger than Melspectrograms or CQT. That means more
computation and memory usage, so it is less desirable.

¢ Melspectrogram has been very popular for practical reasons. The performance is strong, its memory usage is
small, and the computation is simple. This is probably everyone’s go-to choice if you’re not sure.

¢ Constant-Q Transform (CQT) is quite similar to Melspectrogram for ML models. However, it is more compu-
tation heavy and is less available in softwares we use.

10 Chapter 2. Input Representations
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24 STFT

STFT (short-time Fourier transform) is the most “raw” kind of spectrograms. It has two axes - time and frequency.

« It has a linear frequency resolution. Its frequency axis spans from 0 Hz (DC component) to sample_rate / 2
Hz (aka Nyquist frequency).

* We can fully reconstruct the audio signal from a STFT.

* STFT consists of complex numbers.

n_fft = 512 # STFT parameter. Higher n_fft, higher frequency resolution you get.
hop_length = n_f£fft // 4 # STFT parameter. Smaller hop_length, higher time resolution.
stft_complex = librosa.stft (y=src, n_fft=n_£fft, hop_length=hop_length)

print (f"{src.shape=/\n{stft_complex.dtype=/\n{stft_complex.shape=/\n{stft_complex[3, .
=31=/\n")

src.shape=(110250,)
stft_complex.dtype=dtype ('complex64")
stft_complex.shape= (257, 862)
stft_complex[3, 3]=(-0.9134862+0.2210307973)

The shape of (257, 862) means there are 257 frequency bands and 862 frames.

e 257 = (n_fft/ 2) + 1. Originally, there are n_f £t number of frequency bins. But, they are mirror image for real
signals (such as audio signals) so we can discard the half. These bins include the boundaries, hence there is one
more bin.

¢ 862 = ceil(signal_length / hop_length) = ceil(110250 / 128) = 862. There could be a few more frames depending
on how you handel the boundaries.

But, we rarely use st ft_complex as it is.

* Modification 1: For analysis purposes, we usually use the magnitudes of STFT only. This is not only convenient
but also biologically plausible since the human auditory system is insensitive to phase information. (Nevertheless,
this doesn’t mean it is always better to discard the phase information.)

In MIR literatures, STFT usually refers to the magnitude of STFT while the original, complex-numbered STFT is referred
as “complex STFT”.

Note: STFT has a linear frequency resolution and we often use magnitude of it.

Let’s see how a magnitude-STFT looks like.

stft = np.abs(stft_complex)
print (f"{stft.dtype=/\n{stft.shape=/\n{stft[3, 3]1=/\n")

plt.figure (figsize=wide)

img = plt.imshow (stft)

plt.colorbar (img)

plt.ylabel ('bin index\n(lower index —-> low freq)');plt.xlabel ('time index')
plt.title('Manitude spectrogram (abs (STFT))"');plt.grid(False);

stft.dtype=dtype ('float32")
stft.shape=(257, 862)
stft[3, 3]1=0.9398466

24. STFT 11
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Manitude spectrogram (abs(STFT))
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Can you see the slight activations on the lower frequency (near the upper boundary)? That’s the magnitudes of the STFT
of our example signal. But this image looks pretty sparse.

Let’s time-average the frequency distribution and plot it.

plt.figure(figsize=wide); plt.subplot (1, 2, 1)

stft_freqg distritubion = np.mean(stft, axis=1) # axis=1] 1s the time axis.
plt.plot (stft_freq distritubion)

plt.xlabel ('bin index\n(lower index -> low freq)"')

plt.title('Frequency magnitude (linear scale)');

Frequency magnitude (linear scale)

D i _— e e

0 50 100 150 200 250
bin index
(lower index -> low freq)

Seems like the magnitude is much larger in the low frequency region. This is very common due to our nonliear perception
of loudness per frequency, and this is why the spectrogram above didn’t seem very clear to us. And even worse, this kind
of an extreme distribution is not good for neural networks. You can find more discussion on this in [CFCS18].

The solution is to take 1og () to magnitude spectrograms.

* Modification 2 After abs (), we compress the magnitude with 1og (). This is also biologically plausible - the
human perception of loudness is much closer to a logarithmic scale than a linear scale (i.e., it follows Weber—
Fechner law).

Both of the modifications 1 and 2 are so common that people often omit them in papers.
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Note: By “STFT” in deep learning-related articles, people often mean log-magnitude STFT.

Remember that these modification have nothing to do with the total shape — they are element-wise operations.

eps = 0.001
log_stft = np.log(np.abs(stft_complex) + eps)
print (f"{log_stft.dtype=/\n{log_stft.shape=}")

plt.figure (figsize=wide)

img = plt.imshow (log_stft)

plt.colorbar (img)

plt.ylabel ('bin index\n(lower index —-> low freq)');plt.xlabel ('time index')
plt.title('Log-manitude spectrogram log(abs (STFT))"');plt.grid(False);

ipd.Audio(src, rate=sr) # load a NumPy array

log_stft.dtype=dtype('float32")
log_stft.shape=(257, 862)

<IPython.lib.display.Audio object>

g 0
‘; 2.5
x 2
L A 100 0.0
: i
P 25
ag '
c 200 -5.0
z
= 100 200 300 400 500 600 700 800

time index

This is exactly what’s happening in Decibel scaling. Decibel scaling is also logarithm mapping but with a few dif-
ferent choices of the constants (e.g., logl0 vs log, etc) so that 0 dB becomes absolute silence and 130 dB becomes
a really really loud sound. Check out the implementations in 1ibrosa.amplitude_to_db () and librosa.
power_to_db () for more correct and numerically stable and decibel scaling.

Finally, it doesn’t look so right when low-frequency is at the top of the image. Let’s flip up-down to correct it.

eps = 0.001
log_stft = np.log(np.abs(stft_complex) + eps)
log_stft = np.flipud(log_stft) # <-—- Here! The rest of the code is hidden.

log_stft.dtype=dtype ('float32")
log_stft.shape=(257, 862)
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OK! This is the famous log-magnitude STFT. Quite often, people call it simply a STFT or a log-STFT.

Note: People usually use log-magnitude STFT.

From here, I'll use 1 ibros more actively because i) the implementation of other representations is not trivial and ii) so
that the x- and y-axes are nicely displayed in more convenient units.

Additionally, it’s always safe to make your data zero-centered. That’s also done quite nicely with the default parameters
of l1ibrosa.

plt.figure (figsize=wide)

img = librosa.display.specshow(librosa.amplitude_to_db(stft), sr=SR, x_axis='s', y_
waxis='linear', hop_length=hop_length)

plt.colorbar (img, format="%$+2.f dB")

plt.title('decibel scaled STFT, i.e., log(abs(stft))');

decibel scaled STFT, i.e., log(abs(stft))

10000
+20 dB
7500
N +0 dB
I 5000
2500 -20 dB
0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8

2.5 Even more modifications

By computing log(abs(STFT)), we get a nice image of the sound. But, it is just a beginning!

Reasons for modifying the frequency scale
* QOur perception of frequency is also nonlinear (approximately.. (drum rolls!..) logarithmic).
 Similarly, we defined pitches in the octave (=logarithmic) scale

Reasons why it’s fine to remove some high frequency bands
¢ The highest frequency of original audio signals is usually 22kHz which is pretty far beyond our range.

e Similarly, the information in high-frequency ranges (e.g., f > 10kHz) is i) sparse, ii) not that necessary for most of
MIR tasks, and iii) barely audible for us.
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Reason why, it’s better to remove some high frequency bands
* Because we want to remove any redundant memory and computation especially in deep leanring.

Because of these, researchers have been using time-frequency representations that are even more modified than
log(abs(STFT)).

2.6 Melspectrograms

Melspectrograms have been the top choices for music tagging and classification. But what is a melspectrogram?

Melspectrogram is a result of converting the linear frequency scale into the mel scale. Mel scale is invented to mimic the
our perception of pitch. The popular implementation of these days assumes a linearity under 1 kHz and a logarithmic
curve above 1 kHz.

48 mel bins, f min=128, f max=11025

—o— linear region (f < 1 kHz)
10000 - logarithmic region (f > 1kHz)

8000 |

6000 -

4000 1

frequency [Hz]

2000 1

n-v""""'w | |

0 10 20 30 40
mel bin index

Note: Melspectrogram is based on a mel-scale, which is nonlinear and approximates human perception.

Benefits

* It’'s reduces the number of frequency band greatly. For example, 1028 -> 128. What a deep learning-plausible
number it becomes!

¢ It’s simple and fast - the computation is a matrix multiplication of a pre-computed filterbank matrix.
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¢ It’s effective - the model works even better in many cases.

log_melgram = librosa.power_to_db(
np.abs (
librosa.feature.melspectrogram(src, sr=SR, n_fft=n_fft, hop_length=hop_length,
<~ power=2.0,
n_mels=128)

)
print (log_melgram.shape, stft.shape) # 257 frequency bins became 128 mel bins.

(128, 862) (257, 862)

We can directly compare STFT and melspectrogram.

plt.figure(figsize=(wide))

plt.subplot (1, 2, 1)

img = plt.imshow(np.flipud(librosa.amplitude_to_db(stft)))

plt.colorbar (img, format="%+2.f dB")

plt.title('log(abs(stft))'"'); plt.grid(False);

plt.yticks ([0, n_£fft//2], [str(SR // 2), '0']1); plt.ylabel('[Hz]"'); plt.xlabel ('time_
o [index] ")

plt.subplot (1, 2, 2)

img = plt.imshow(np.flipud(log_melgram))

plt.colorbar (img, format="%+2.f dB")

plt.title('log(melspectrogram) '); plt.grid(False);plt.yticks([]);

plt.yticks ([0, 128], [str(SR // 2), '0']l); plt.ylabel('[Hz]'); plt.xlabel('time._
o [index] ") ;

+20dB
log(abs(stft))
11025 +20 dB
log(melspectrogram) +0 dB

11025

E +0dB E 20dB
0

o = e e -20 dB 400 600 40 dB

0 400 600 40 dB time [index]

time [index]

A few observation:
* Melspectrogram is smaller than STFT.
¢ Even if it’s smaller, the low frequency region has allocated more bins than it does in STFT.

* The frequency range is the same.

2.7 Constant-Q Transform

As we've seen, melspectrograms are great! But it is just a simple aggregation of high-frequency bins into one. This means
the frequency resolution of melspectrogram is bound by that of STFT. And there is always a trade-off between time and
frequency resolutions in STFT.

Constant-Q Transform is more radical. Why not having accurately octave scale representation?

Its implementation is not trivial, but the idea is to use time-varying windows for different center frequency. Let’s see the
result.
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log_cgt = librosa.amplitude_to_db(
np.abs (
librosa.cqgt (src, sr=SR, hop_length=hop_length, n_bins=24*7, bins_per_
—~octave=24, fmin=librosa.note_to_hz ('C1"))

)

plt.figure(figsize=(18, 8))

plt.subplot (1, 2, 1)

img = librosa.display.specshow(log_melgram, y_axis='mel', sr=SR, hop_length=hop_
~length)

plt.colorbar (img, format="%+2.f dBR")

plt.title('log(melspectrogram) ')

plt.subplot (1, 2, 2)

img = librosa.display.specshow(log_cgt, y_axis='cqgt_hz', sr=SR, hop_length=hop_length,
< bins_per_octave=24)

plt.colorbar (img, format="%+2.f dB")

plt.title("log(cgt) ")

Text (0.5, 1.0, 'log(cagt)"')

log(melspectrogram log(cqt
el ) +20d8 4096 - .g(uq )
8192
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The difference is pretty obvious here - we get a much better pitch resolution!
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2.8 Practical Issue: How to compute them?

There are several softwares that computes these representations. Take this information with a grain of salt because it will
be outdated after releasing this book (2021 Nov).

2.8.1 Waveforms

First of all, you get waveforms by simply loading the audio.
* You'd need an audio codec (e.g., FFMPEGQG) if your audio comes in formats such as mp3, m4a, aac, or ogg.

— Usually, your audio file loader returns a floating-point data array where the amplitude isin [-1.0, 1.0].
But, the original wav file usually stores the amplitudes in int 16 format. (No worries though, Float32 is
precise enough to represent them.)

* Youcanuse scipy.io.wavfile.read toload PCM audio.

2.8.2 Spectrograms

There are various softwares and approaches to compute STFT, melspectrogram, and CQT.
e On CPU

— librosa: librosa.stft internally uses st £t but with a more tailored and carefully chosen API with default
values. It also includes functions to compute a melspectrogram and a CQT [MRL+15].

— scipy: scipy.signal.stft is a cpu-based implementation of STFT using FFT [VGO+20].

— Essentia provides C++-based implementation of STFT and melspectrogram as well as their python bindings
[BWGomezGutierrez+13].

* On CPU & GPU

— Torchaudio: One can compute STFT using torchaudio. functional.spectrogram. It also in-
cludes a wide variety of functions and utilities such as ampl itude_to_DBand resampling [YHN+21].

— nnAudio: It has multiple versions of CQT computation functions as well as others e.g., STFT and melspec-
trogram. Its STFT computation is based on Conv1D, not FFT [CAAH?20].

— Tensorflow: It has a native support of stft. However, it is slow on cpu, which might be critical if your model
is going to be deployed on cpu-only machines. It, by the way, even has a function to convert an STFT to
melspectrogram [ABC+16].

— kapre: kapre.time_frequency includes t £ . keras layers such as STFT and melspectrogram as well as util-
ities as decibel conversion. Its STFT layer is a wrapper of t £.signal.stft [CIKI7].

2.8.3 Consistency between softwares

Not all the implementations are equal! Especially.. nothing.
* Default behavior such as padding may be different
* There is no single canonical reference implementation of some concepts such as mel scale.

e CQT is an approximation yet. There is no method to compute CQT with perfect reconstruction.

18 Chapter 2. Input Representations


https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html
https://librosa.org/doc/latest/generated/librosa.stft.html
https://librosa.org/doc/latest/generated/librosa.feature.melspectrogram.html
https://librosa.org/doc/latest/generated/librosa.cqt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html
https://essentia.upf.edu/documentation.html
https://pytorch.org/audio/stable/functional.html#spectrogram
https://pytorch.org/audio/stable/functional.html#amplitude-to-db
https://pytorch.org/audio/stable/functional.html#resample
https://kinwaicheuk.github.io/nnAudio/_autosummary/nnAudio.Spectrogram.html
https://www.tensorflow.org/api_docs/python/tf/signal/stft
https://github.com/tensorflow/tensorflow/issues/6541
https://www.tensorflow.org/api_docs/python/tf/signal/linear_to_mel_weight_matrix
https://www.tensorflow.org/api_docs/python/tf/signal/linear_to_mel_weight_matrix
https://kapre.readthedocs.io/en/latest/time_frequency.html

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

One should make sure that all the data are processed consistently. The easiest way is to have a single method that process all
the data during training and after deployment. This may be tricky, but possible for most of the cases. See the comparisons
and suggestions linked below for more information.

* Librosa and Scipy
¢ Librosa and Tensorflow

¢ Librosa and Torchaudio
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CHAPTER
THREE

DATASETS

3.1 Overview

There already exists a great comprehensive list of MIR datasets. In this book, we focus on some important datasets and
discussion of them including some secrets that worth spreading.Over time, researchers have adopted different strategies
to create and release datasets. This resulted in various pros and cons, and traps.

These are some important but rarely discussed aspects.

3.1.1 Availabilities of audio signal

 This basic and fundamental requirement is already difficult. This is because, well, music is u