
[SEPTEMBER

2021]
ADVANCING OPEN SCHOLARSHIP

D5.2 – REPORT ON THE RECOMMENDER SYSTEM
Version 1.0 – Final

PUBLIC

H2020-INFRAEOSC-2019

Grant Agreement 863420

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 863420

Disclaimer- “The content of this publication is the sole responsibility of the TRIPLE consortium and can in no way be
taken to reflect the views of the European Commission. The European Commission is not responsible for any use that
may be made of the information it contains.”

This deliverable is licensed under a Creative Commons Attribution 4.0 International License

DRAFT

DOI: 10.5281/zenodo.5702427

D 5.2 Recommender System Page 1

D 5.2 Recommender System

Project Acronym: TRIPLE

Project Name:
Transforming Research through Innovative
Practices for Linked Interdisciplinary
Exploration

Grant Agreement No: 863420

Start Date: 1/10/2019

End Date: 31/03/2023

Contributing WP WP5, WP4, WP3

WP Leader: Luca de Santis

Deliverable identifier D 5.2

Contractual Delivery Date: 09/2021 Actual Delivery Date: 09/2021

Nature: Report Version: 1.0 Final

Dissemination level PU

Revision History
Version Created/Modifier Comments

0.0 Luca de Santis Template

0.1 Simone Kopeinik
Deliverable Structure and
Content Overview

0.2 Robert Thomann Technical Description

0.3
Dieter Theiler, Robert
Thomann Technical Details

0.4 Dominik Kowald, Emanuel
Lacic

Details on Recommender
Integration

DRAFT

Page 2 D 5.2 Recommender System

0.5 Simone Kopeinik Revise Technical Description

0.6 Simone Kopeinik Overview, Sections 1 and 2

0.7 Simone Kopeinik Sections 5 and 6

0.8 Luca de Santis, Dieter Theiler Review of the Document

1 Simone Kopeinik Feedback incorporated

DRAFT

D 5.2 Recommender System Page 3

Table of Contents
1 DESCRIPTION OF THE SERVICE 7

2 THE SERVICE IN TRIPLE 8

3 SOFTWARE ARCHITECTURE 10

3.1 RECOMMENDER SYSTEM 10
 RECOMMENDATION SERVICE 11
 RECOMMENDER ENGINE 11

Implemented Recommender Algorithms 11
 RECOMMENDER CUSTOMIZER 12
 DATA INTEGRATION SERVICE 13
 DATA MODIFICATION LAYER 15
 APACHE SOLR 16

3.2 DEPLOYMENT 16
 DOCKER CONTAINER 16

4 INTEGRATION STRATEGIES OF THE SERVICE IN GOTRIPLE 18

4.1 DEPLOYMENT SETTING 18
4.2 SYSTEM ARCHITECTURE 18
4.3 RECOMMENDER REST API 19

 TRIPLE DATA INGESTION SERVICE 21
 TRIPLE RECOMMENDATION SERVICE 24
 API DATA SCHEMA 27

4.4 RECOMMENDATION SERVICE 31
4.5 RECOMMENDATION PROFILES 32

 PERSONALIZED RESEARCH ITEMS 32
 SIMILAR RESEARCH ITEMS 33

4.6 DATA INGESTION SERVICE 34
 INTEGRATION OF STATIC DATA 34
 INTEGRATION OF DYNAMIC DATA 35

4.7 APACHE SOLR 36
 THE ITEMS CORE 36
 THE INTERACTIONS CORE 40
 THE FEEDBACKS CORE 42

5 DESCRIPTION OF THE WORK DONE IN TASK 5.2 44

5.1 INFRASTRUCTURE DEVELOPMENT 44
5.2 RECOMMENDATIONS IN GOTRIPLE 45

6 NEXT STEPS AND EVOLUTIONS 46

6.1 FURTHER DEVELOPMENT OF RECOMMENDATIONS 46
6.2 FAIRNESS 47

DRAFT

Page 4 D 5.2 Recommender System

7 REFERENCES 48

8 APPENDIX I: RECOMMENDATION PROFILE CONFIGURATION 50

8.1 THE INTERACTIONCFPROFILE 50
8.2 THE ITEMCBPROFILE 50
8.3 PARAMETER GROUPS 51

 PERSONALIZED RESEARCH PROJECTS 55
 SIMILAR RESEARCH PROJECTS 56

RESEARCH PEERS 57

9 APPENDIX II: INSTALLATION AND CONFIGURATION 58

9.1 INSTALLATION GUIDE 58
Prerequisites 58
Folder structure 58
Deployment procedure 58
Recommender configuration files 59
Database access configuration 59
Recommendation profiles 59
9.2 DATABASE CONFIGURATION 59

Table of Figures
Figure 1: Integration of Recommender System in GoTriple ... 8
Figure 2: Screenshot of GoTriple showing content-based document Recommendations. The tab is marked in red 9
Figure 3: ScaR components .. 10
Figure 4: Sequence diagram for recommendation. ... 11
Figure 5: A typical recommender profile. ... 13
Figure 6: Ingestion of items. ... 14
Figure 7: Ingestion of a user interaction. ... 15
Figure 8: Scar modules deployed as docker containers. .. 17
Figure 11: System Architecture .. 18
Figure 12: Available REST-Services. .. 20
Figure 13: triple_document_cf.yaml .. 33
Figure 14: triple_document_item_cb.yaml .. 34
Figure 15: Ingestion of research data objects in GoTriple. .. 35
Figure 16: Ingestion of user interaction data in GoTriple. ... 36
Figure 17: Items Core Schema .. 37
Figure 18: Interactions Core Schema ... 41
Figure 19: Feedbacks Core Schema .. 43
Figure 20: triple_project_cf.yaml ... 56
Figure 21: triple_project_item_cb.yaml ... 57
Figure 9: Folder structure. .. 58
Figure 10: Solr Admin GUI .. 60

DRAFT

D 5.2 Recommender System Page 5

Acronyms
EOSC European Open Science Cloud

RI Research Infrastructure

RS Recommender System

ScaR Scalable Recommendation-as-a-service

MP Most Popular

CF Collaborative Filtering

CBF Content-based Filtering

CCF Hybrid Recommendations

REST Representational state transfer

GUI Graphical User Interface

DRAFT

Page 6 D 5.2 Recommender System

Publishable Summary

This deliverable describes the Recommender System in GoTriple. It gives an overview of the
background and of the work done so far in Task 5.2.

The document is structured as follows: after a brief introduction into the topic that is given in
Section 1, a summary of how the Recommender System service is applied in GoTriple and what
benefits it provides to the user can be found in Section 2. Section 3 gives an overview of ScaR –
Scalable Recommendation-as-a-service and its software architecture. ScaR is a novel
recommender framework following the Software-as-a-Service paradigm. It forms the foundation
of the GoTriple recommendation system. How ScaR is used and integrated in GoTriple is presented
in Section 4. This includes a fairly detailed description of REST-API services as well as
recommendation algorithms and configurations (i.e., profiles) that have been implemented so far.

Section 5 outlines the current state of the work done in TRIPLE. As this is only the first stage of the
Recommender System development in GoTriple, we give an overview of planned future work and
focus directions in Section 6.

DRAFT

D 5.2 Recommender System Page 7

1 DESCRIPTION OF THE SERVICE
With GoTriple we build a platform that harvests different sources of scientific data collections and
provides researchers with a unique access point for this information. Task 5.2 is adding to the
platform’s user friendliness, focusing on the exploration and integration of tailored information
through ranking algorithms implemented in form of a Recommender System.

Recommender Systems (RSs) are software components that predict and suggest items of interest
to users or user groups. Dedicated software services, which are typically embedded in websites,
exploit user data to ease the information overload or act as sales assistants, supporting decision-
making processes and gain customer loyalty [1]. RS have become quite popular being commonly
integrated in all kind of information providing websites. Most prominent examples of
Recommender System applications include companies, such as Amazon [2] or Netflix [3].

While initial recommendation approaches mainly exploited user preferences based on explicit
ratings, later approaches explored a greater variation of user interactions to train recommendation
models within observed environments [4]. To date, recommendation algorithms mostly use data
about users, items and user-item interactions, where users’ historical data traces form the main
information source of the recommendation logic [5]. This means that algorithms continuously
predict users’ preferences and needs based on choices they made in the past. To deal with large
data volumes and the constant embedding of user interactions, sophisticated models, methods
and technical frameworks are required to cope with respective data while collecting, analysing,
providing and predicting information in real-time [6].

Based on the ScaR – Scalable Recommendation-as-a-service framework our aim is to offer an
intelligent and GoTriple tailored bundle of hybrid recommendation services, extending on
collaborative and content-based recommendation approaches. To this end, we collect, model and
exploit a rich amount of user and content data to suggest valuable diverse and interesting research
documents, research projects and research peers.

While the full integration with GoTriple is still work in progress, we follow a continuous
implementation approach updating the interfaces, algorithms and database structures on
availability of new data sources and user study insights.

To incorporate the user needs, the task will benefit from the results of T3.3, where workshops are
conducted in order to understand what GoTriple users consider most beneficial in
recommendation services.

In accordance with the GoTriple development, we will implement an A/B testing approach. With
this, the recommendation services can be evaluated and tailored to the specific needs of
researchers who are visiting the GoTriple platform. This will form the final adaptation and selection
of recommendation algorithms.

DRAFT

Page 8 D 5.2 Recommender System

2 THE SERVICE IN TRIPLE
While GoTriple provides researcher with an amazing opportunity to explore and connect within
different research fields, the overload of information may lead to the need of additional guidance
and personalization. GoTriple’s Recommender System (RS) is a service that supports researchers
in finding their items of interest and with this enhances their discovery experience.

The final version of the GoTriple Recommender System will offer recommendation strategies that
suggest research documents, research peers, and research projects to the user. A simplified
depiction of the platform integration is illustrated in Figure 1.

FIGURE 1: INTEGRATION OF RECOMMENDER SYSTEM IN GOTRIPLE

The RS is based on static data available in the system (i.e., meta-data of documents, research
projects and research peers) and in addition, is continuously informed with emerging user profile
and user interaction data. GoTriple user data is collected in the platform and sent to the RS on
occurrence, in an event-based manner. This data is integrated and taken into account by the
recommendation services in near-real time. Triggered by the navigation of the user in the platform,
GoTriple calls respective recommendation service endpoints to retrieve a list of suggested items
that are then displayed in the GoTriple GUI.

Figure 2 presents a screenshot of document recommendations in GoTriple. In line with the
GoTriple GUI design, the RS provides two options of research document recommendations: (i)
Content-based document recommendations based on document properties and (ii) personalized
document recommendations based on the user’s past interactions with GoTriple. The illustration
shows option (i) which is embedded in the main document view. The recommendations are
requested and presented to users when the “Related Publication” tab is selected. Option (ii),
recommendations tailored to the user preferences, can be found in the personal page of the user
but in later stages might also be available in a sidebar.

DRAFT

D 5.2 Recommender System Page 9

FIGURE 2: SCREENSHOT OF GOTRIPLE SHOWING CONTENT-BASED DOCUMENT RECOMMENDATIONS. THE TAB IS

MARKED IN RED

In line with the progress in platform development (e.g., availability of meta-data) at the time only
document recommendations are fully implemented and available within the GoTriple platform.

However, the software infrastructure for the recommendation of research project and research
peers is already in place and ready to be adapted.

The next two Sections provide a detailed technical description of the Recommender System, its
underlying software framework ScaR (Section 3) and its application in Triple (Section 4).

 DRAFT

Page 10 D 5.2 Recommender System

3 SOFTWARE ARCHITECTURE
The system architecture used in the GoTriple Recommender System (RS) is based on the scalable
recommendation framework ScaR. This section gives a technical overview of ScaR’s software
design, its deployment and configuration options.

3.1 Recommender System
In a nutshell, ScaR is composed of six modules. It implements the Microservice1 architectural
design pattern that structures the application as a set of loosely connected but collaborating
modules. Communication is implemented with REST-based webservices. This supports a high level
of maintenance and testability [7]. ScaR’s general composition is depicted in Figure 3.

FIGURE 3: SCAR COMPONENTS

The following briefly elaborates on the function of the modules and their interconnections to each
other: the Recommendation Service and the Data Integration Service provide interfaces to
external systems. The Recommendation Service implements an interface for requesting
recommendations. These recommendations are computed in the Recommender Engine which
forms the central part of the framework. Using the Recommender Customizer module, it is
possible to adapt the recommender to the domain data through the use of customization profiles.

The Data Integration service provides the API for pushing item meta-data and user interaction data
to the RS. The Data Modification Layer handles all communication (i.e., storing and querying data)
with the underlying data backend Apache Solr 8 that serves as the main backend data storage.

The services are implemented in the Java programming language and use either the open-source
framework Spring2 or Dropwizard3. For deployment they are packaged as Docker images, which
enables operating system level virtualization.

The following Subsections describe the modules in greater detail.

1 https://en.wikipedia.org/wiki/Microservices
2 https://spring.io/
3 https://www.dropwizard.io/en/latest/

DRAFT

D 5.2 Recommender System Page 11

 Recommendation Service
The Recommendation Service provides RESTful services for requesting recommendations.
Together with the Data Integration Service, it functions as the main entry- and communication -
point between the platform and the RS. When the Recommendation Service is queried for
recommendations, the query is parsed and then sent to the Recommender Engine. Finally, the
Recommender Engine's response is delivered to the caller. Figure 4 shows this process of
generating a recommendation.

FIGURE 4: SEQUENCE DIAGRAM FOR RECOMMENDATION.

 Recommender Engine
The Recommender Engine is the centrepiece module of ScaR since its purpose is to calculate
recommendations. Herein Apache Solr’s built-in data structures are being leveraged to enable
efficient similarity calculation. The Recommender Engine supports standard approaches like
collaborative and content-based filtering as well as hybrids between them. In addition, other
algorithms can be added as needed, depending on the particular use case. The Recommender
Engine generates recommendations requested by the Recommendation Service as shown in
Figure 4. For this, it retrieves the recommendation profile from the Recommender Customizer,
generates the required search queries, queries the Data Modification Layer, and finally composes
the recommendation result.

IMPLEMENTED RECOMMENDER ALGORITHMS
The RS supports the following recommendation algorithms:

DRAFT

Page 12 D 5.2 Recommender System

● Most Popular (MP): This is an un-personalized algorithm. MP recommends to each user the
same set of items, which are weighted and ranked by their popularity (e.g., the item which
was accessed the most).

● Collaborative Filtering (CF): This is a personalized algorithm that analyses the interaction
data on items to find similar users, and then recommends items of these similar users [9].
In particular, CF finds the nearest neighbours based on some similarity metric, and then
recommends items that the neighbours have liked but the target user still has not
consumed.

● Content-based Filtering (CBF): This also is a personalized algorithm that calculates item-
similarities based on content features (e.g., title, full text, keywords, ...) and then
recommends these similar items [10]. Content-based recommendation systems analyses
item meta-data to identify other items that could be of interest for a specific user. This can
be done based on user profile data or on the meta-data of the items that the user has liked
or purchased in the past. Our implementation of the content-based recommender utilizes
similarity queries directly supported by the database backend and allows to tune
parameters for respective built-in similarity measures, if needed.

● Hybrid Recommendations (CCF): All three mentioned recommender algorithms have
unique strengths and weaknesses, e.g., CF suffers from sparse data and cold start
problems, while content-based approaches strongly depend on the quality of meta-data to
be utilized. Hybrid recommenders combine different algorithms to tackle this issue in order
to produce more robust recommendations. Considering that we want to favour items
recommended by more than one method, we chose to implement a hybrid approach called
Cross-Source Hybrid defined in [11], where the combined weighting of the recommended
item i, is given by the sum of all single weightings from within each recommender method,
multiplied by the weights of the recommender methods themselves. This combination can
be further extended by theory-informed models of the problem space.

 Recommender Customizer
The Recommender Customizer module holds customization profiles for each recommendation
algorithm, which allow to adapt the recommender to the domain data. Here, it is specified what is
recommended, which features are considered, the adjustment of individual input parameters
(e.g., the number of recommended items) and how recommendation algorithms shall be applied
in principle. For example, we could define the similarity measure (e.g., Jaccard or Cosine) in case
of CF or the weightings of used recommender methods in case of hybrid approaches. The
Recommender Engine automatically takes into account respective recommender profiles to
directly affect the calculation of recommendations. Figure 5 shows a typical recommendation
profile and depicts the common hierarchical structure defined with the help of the YAML4 data
serialization language [13]. Currently, ScaR supports 14 different types of recommendation
profiles.

4 https://en.wikipedia.org/wiki/YAML

DRAFT

D 5.2 Recommender System Page 13

FIGURE 5: A TYPICAL RECOMMENDER PROFILE.

 Data Integration Service
The Data Integration Service provides RESTful APIs for uploading data and user interactions to the
backend database. Together with the Recommendation Service, it functions as the main entry- and
communication-point between the GoTriple platform and the RS.

Two types of data objects are ingested by the Data Integration Service: items, and user
interactions.

Items are all entities who are recommended to users. Typically, items are posted to the Data
Ingestion’s REST interface, processed, and sent to the Data Modification Layer for storage in the
database as depicted in Figure 6.

DRAFT

Page 14 D 5.2 Recommender System

FIGURE 6: INGESTION OF ITEMS.

Figure 7 shows the ingestion process for user interactions. User interactions are posted to the Data
Integration Service’s REST interface. When interaction data is pushed to the Data Integration
Service, then the service validates the interaction data. If the interaction is valid the service
executes the required database updates: this includes at least the storing of the interaction itself
but, depending on the type of interaction, other database entries (e.g., items) must be updated as
well. The resulting database update requests are then sent to the Data Modification Layer and
stored in the database.

DRAFT

D 5.2 Recommender System Page 15

FIGURE 7: INGESTION OF A USER INTERACTION.

 Data Modification Layer
The Data Modification Layer (DML) serves as data transfer intermediary between the individual
ScaR modules and performs CRUD (create, retrieve, update and delete) operations in interaction
with the Apache Solr database. It is responsible for encapsulating the underlying data storage and
can be adapted accordingly. This data backend solution not only guarantees scalability and near
real-time recommendations but also the support of multiple data sources. The DML makes
extensive use of these search capabilities to increase the system performance.

DRAFT

Page 16 D 5.2 Recommender System

 Apache Solr
ScaR uses Apache Solr 5 as an underlying database. In principle, ScaR could be extended to work
with different document-based database engines such as Elasticsearch6. Currently, Solr has been
selected as the database because it offers two major advantages for recommendation use cases.
The first is its query speed [11], which is most important for near real-time applications such as RS
as they demand a fast execution of the search operations. The second is its ability to work
seamlessly with different types of entities. Solr schemas, which define how a core/collection (i.e.,
document index) stores data, are very flexible, and easy to extend via configuration files. Besides,
Solr can have multiple cores, which allows for storing data with different structures and provides
both full-text and similarity search. Thanks to its cloud and cluster capabilities, Solr is well suited
to handle big datasets and to apply distributed search and indexing which is highly relevant
especially for long-term deployments.

In ScaR, different cores store information about items and interactions along with metadata about
the generated recommendations. A typical configuration in ScaR uses three Solr cores. These are
named “items”, “interactions” and “feedbacks”. The items core contains the items to recommend,
the interactions core contains the recorded user interactions, and the feedbacks core contains the
calculated recommendations as well as information regarding the evaluation of the system.

For deployment, the official Docker image is used, in a form that is adapted to the specifics of a
project.

3.2 Deployment
ScaR is provided via Docker Images and runs in Docker Containers with the help of Docker
Compose.

 Docker Container
Docker7 is a free software for isolating applications by using Operation System-level virtualization.
Applications deployed with Docker are executed in entities called containers. Containers are
standardized, lightweight, standalone, executable units. They contain the application with all its
dependencies. These may be code, libraries, runtime, system tools, configurations and more.
These containers are encapsulated environments and the delivered application runs within this
environment. This isolation of containers from each other prevents conflicts between applications.
Containers can be easily transported and installed as files, denoted as "images". This significantly
simplifies the deployment of the ScaR modules. In comparison to virtual machines, Docker
Containers are more efficient because with Docker the system hardware is not virtualized. Docker
Images are also significantly smaller than images of virtual machines.

5 https://solr.apache.org
6 https://www.elastic.co/elasticsearch/
7 https://www.docker.com

DRAFT

D 5.2 Recommender System Page 17

Containers are isolated from each other by definition. Following the Microservice architectural
design pattern [7], every ScaR module is deployed in its own container as depicted in Figure 8. This
approach requires and guarantees a certain level of modularization. With this high degree of
modularization, we ensure flexibility and a high degree of maintainability of the code and of the
deployed system.

FIGURE 8: SCAR MODULES DEPLOYED AS DOCKER CONTAINERS.

DRAFT

Page 18 D 5.2 Recommender System

4 INTEGRATION STRATEGIES OF THE SERVICE IN GOTRIPLE

4.1 Deployment Setting
To meet the current requirements of GoTriple, the recommendation services are provided via two
separate and continuously deployed instances which offer a development and a production
environment, respectively. To operate the recommendation services for two different maturity
levels, Know-Center offers increased backup functionality for the production-ready service
instance. Hence, to support the development cycle executed in Triple, most recent functionalities
and bug-fixes can be accessed via the development server at https://triple.know-
center.at/sp/swagger-ui.html. To make sure only stable versions of the service are used for the
GoTriple production environment, the production-ready service can be accessed via https://prod-
triple.know-center.at/sp/swagger-ui.html. Both instances are secured with the help of HTTP Basic
Authentication requiring username and password to login on top of HTTP connections which are
encrypted with TSL.

Continuous integration of the recommendation services is supported by the use of Jenkins hosted
at Know-Center which in turn is also used to build and deploy the latest Docker Images of
respective services to the two different environments. For ease of deployment and keeping the
services independent of the underlying virtual machine environments, the recommendation
services are run via Docker (more specifically via Docker Compose).

4.2 System Architecture
The system architecture is based on the scalable recommendation framework ScaR. Its general
infrastructure and modules are depicted in Figure 9. The Data Integration Service and the
Recommendation Service, which provide the REST interface for the GoTriple platform, are
customized to meet Triple’s needs. The Apache Solr cores are configured to store data and
interactions from the Triple domain, and the Recommender Customizer is equipped with
recommendation profiles for Triple’s use cases.

FIGURE 9: SYSTEM ARCHITECTURE

DRAFT

D 5.2 Recommender System Page 19

4.3 Recommender REST API
This section provides an overview of the REST API, which can be divided into Data Ingestion
Services and Recommendation Services. The former includes resources for storing user interaction
to the RS and a resource to trigger the data synchronization process. The latter provides the
services for requesting recommendations from the system.

Please note that the schemas also reflect fields that are yet not implemented in GoTriple but have
been agreed upon for future platform releases. This is true for instance for the search query
objects which can only be partly completed by the current GoTriple GUI input, but already offer
additional fields for a planned “advanced search” extension.

Both API parts are described in OpenAPI Specification Version 2.0 format, which is formerly known
as “Swagger RESTful API Documentation Specification” [13, 14].

To developers the interface specification is presented through the visual documentation tool
SpringFox [15] online 8 9, as shown in Figure 10.

8 On the development server the API specifications are located at:
https://triple.know-center.at/sp/swagger-ui.html and https://triple.know-center.at/di/swagger-ui.html
9 On the production server the API specifications are located at:
https://prod-triple.know-center.at/sp/swagger-ui.html and https://prod-triple.know-center.at/di/swagger-ui.html

DRAFT

Page 20 D 5.2 Recommender System

FIGURE 10: AVAILABLE REST-SERVICES.

DRAFT

D 5.2 Recommender System Page 21

 Triple Data Ingestion Service
The Data Ingestion Service resources are provided by the Data Integration Service module. These
REST resources are responsible for storing interaction data in the RS and for triggering the data
synchronization process. The resources provided are described in more detail below.

/triple/data/sync

A call to this resource triggers the data synchronization process, which fetches and stores
research data objects from the GoTriple Elasticsearch instance and stores it in the RS
database.

Type: POST

Parameters: None

Responses:

TABLE 1: API RESPONSES FOR /TRIPLE/DATA/SYNC
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/follow-author

This API call stores a “follow author” interaction to the backend database. The interaction is
provided as a JSON object following the “Follow Author Interaction” schema. The response is a
GeneralResult object.

Type: POST

Parameters:

TABLE 2: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/FOLLOW-AUTHOR
Name Located in Description Required Schema

interaction body
The follow author
interaction data object. Yes Follow Author Interaction

Responses:

TABLE 3: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/FOLLOW-AUTHOR
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/open-document

This API call stores an “open document” interaction to the backend database. The interaction is
provided as a JSON object following the “Open Document Interaction” schema.

DRAFT

Page 22 D 5.2 Recommender System

Type: POST

Parameters:

TABLE 4: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/OPEN-DOCUMENT
Name Located in Description Required Schema

interaction body
The open document
interaction data object. Yes Open Document Interaction

Responses:

TABLE 5: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/OPEN-DOCUMENT
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/open-profile
This API call stores an “open profile” interaction to the backend database. The interaction is
provided as a JSON object following the “Open Profile Interaction” schema. The response is a
GeneralResult object.

Type: POST

Parameters:

TABLE 6: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROFILE
Name Located in Description Required Schema

interaction body
The open profile interaction
data object. Yes Open Profile Interaction

Responses:

TABLE 7: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROFILE
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/open-project

This API call stores an “open project” interaction to the backend database. The interaction is
provided as a JSON object following the “Open Project Interaction” schema. The response is a
GeneralResult object.

Type: POST

Parameters:

TABLE 8: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROJECT
Name Located in Description Required Schema

interaction body
The open project interaction
data object. Yes Open Project Interaction

Responses:

TABLE 9: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROJECT

DRAFT

D 5.2 Recommender System Page 23

Code Description Schema
200 OK GeneralResult

/triple/interactions/store/search/keyword

This API call stores “search keyword” interaction to the backend database. The interaction is
provided as a JSON object following the “Search Keyword Interaction” schema. The response is a
GeneralResult object.

Type: POST

Parameters:

TABLE 10: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/SEARCH/KEYWORD
Name Located in Description Required Schema

interaction body
The search keyword
interaction data object. Yes Search Keyword Interaction

Responses:

TABLE 11: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/SEARCH/KEYWORD
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/search/query

This API call stores a “search query” interaction to the backend database. The interaction is
provided as a JSON object following the “Search Query Interaction” schema. The response is a
GeneralResult object.

Type: POST

Parameters:

TABLE 12: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/SEARCH/QUERY
Name Located in Description Required Schema

interaction body
The search query interaction
data object. Yes Search Query Interaction

Responses:

TABLE 13: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/SEARCH/QUERY
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/search/similar-subject

This API call stores a “search similar subject” interaction to the backend database. The interaction
is provided as a JSON object following the “Search Similar Subject Interaction” schema. The
response is a GeneralResult object.

DRAFT

Page 24 D 5.2 Recommender System

Type: POST

Parameters:

TABLE 14: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/SEARCH/SIMILAR-SUBJECT
Name Located in Description Required Schema

interaction body
The search similar interaction
data object. Yes

Search Similar Subject
Interaction

Responses:

TABLE 15: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/SEARCH/SIMILAR-SUBJECT
Code Description Schema
200 OK GeneralResult

/triple/interactions/store/tag-document

Search Similar Subject Interaction a “tag document” interaction to the backend database. The
interaction is provided as a JSON object. The response is a GeneralResult object.

Type: POST

Parameters:

TABLE 16: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/TAG-DOCUMENT
Name Located in Description Required Schema

interaction body
The tag document interaction
data object. Yes Tag Document Interaction

Responses:

TABLE 17: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/TAG-DOCUMENT
Code Description Schema
200 OK GeneralResult

 Triple Recommendation Service
The recommendation service resources are provided by the Recommendation Service module.
These REST resources are used to retrieve recommendations from the RS. The provided resources
are described in detail below. The TripleRecoResult is described in Section 4.3.3 with more detail.

/triple/reco/research-item-personalized

An API call to retrieve personalized research items as recommendations. Parameters are the
number of recommendations to generate and the ID of the user for whom the recommendations
should be generated. The response contains the list of recommended item IDs and optionally some
additional meta data.

Type: GET

Parameters:

TABLE 18: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-ITEM-PERSONALIZED

DRAFT

D 5.2 Recommender System Page 25

Name Located in Description Required Schema
count query Number of recommendations to be generated. No integer

userId query
The ID of the user for whom the
recommendations should be generated. Yes string

Responses:

TABLE 19: API RESPONSES OF /TRIPLE/RECO/RESEARCH-ITEM-PERSONALIZED
Code Description Schema
200 OK TripleRecoResult

/triple/reco/research-item-similar

An API call to retrieve similar research items as recommendations. Parameters are the number of
recommendations to generate, the ID of the research item which serves as an example for the
recommendations, and the ID of the user for whom the recommendations should be generated.
The response contains the list of recommended item IDs and optionally some additional meta data.

Type: GET

Parameters:

TABLE 20: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-ITEM-SIMILAR
Name Located in Description Required Schema
count query Number of recommendations to be generated. No integer

researchItemId query
The ID of the research item which serves as an
example for the recommendations. Yes string

userId query
The ID of the user for whom the
recommendations should be generated. Yes string

Responses:

TABLE 21: API RESPONSES OF /TRIPLE/RECO/RESEARCH-ITEM-SIMILAR
Code Description Schema
200 OK TripleRecoResult

/triple/reco/research-peer

An API call to retrieve research peers as recommendations. Parameters are the number of
recommendations to generate the ID of the research peer which serves as an example for the
recommendations, and the ID of the user for whom the recommendations should be generated.
The response contains the list of recommended user IDs and optionally some additional meta data.

Type: GET

Parameters:

TABLE 22: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-PEER

DRAFT

Page 26 D 5.2 Recommender System

Name Located in Description Required Schema
count query Number of recommendations to be generated. No integer

researchPeerId query The ID of the research peer which serves as an
example for the recommendations.

Yes string

userId query The ID of the user for whom the
recommendations should be generated.

Yes string

Responses:

TABLE 23: API RESPONSE OF /TRIPLE/RECO/RESEARCH-PEER
Code Description Schema
200 OK TripleRecoResult

/triple/reco/research-projects-personalized

An API call to retrieve personalized research projects as recommendations. Parameters are the
number of recommendations to generate and the ID of the user for whom the recommendations
should be generated. The response contains the list of recommended item IDs and optionally some
additional meta data.

Type: GET

Parameters:

TABLE 24: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-PROJECTS-PERSONALIZED
Name Located in Description Required Schema
count query Number of recommendations to be generated. No integer

userId query The ID of the user for whom the
recommendations should be generated.

Yes string

Responses:

TABLE 25: API RESPONSE OF /TRIPLE/RECO/RESEARCH-PROJECTS-PERSONALIZED
Code Description Schema
200 OK TripleRecoResult

/triple/reco/research-projects-similar

An API call to retrieve similar research projects as recommendations. Parameters are the number
of recommendations to generate, the ID of the research project which serves as an example for
the recommendations, and the ID of the user for whom the recommendations should be
generated. The response contains the list of recommended item IDs and optionally some
additional meta data.

Type: GET

Parameters:

TABLE 26: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-PROJECTS-SIMILAR
Name Located in Description Required Schema
count query Number of recommendations to be No integer

DRAFT

D 5.2 Recommender System Page 27

generated.

researchProjectId query
The ID of the research project which serves
as an example for the recommendations. Yes string

userId query
The ID of the user for whom the
recommendations should be generated. Yes string

Responses:

TABLE 27: API RESPONSE OF /TRIPLE/RECO/RESEARCH-PROJECTS-SIMILAR
Code Description Schema
200 OK TripleRecoResult

 API Data Schema
On several occasions JSON data objects are used in the API as parameters or response objects.
These objects must be in line with the schemas described in this section but do not need to provide
for all of their fields.

Author

The Author data object is used as an attribute of the Follow Author Interaction data object. It
represents an author identified by the author ID and optionally the author’s name.

TABLE 28: DATA SCHEMA “AUTHOR”
Name Type Description Required
Id string The unique author ID Yes
Name string The author’s name No

Follow Author Interaction

The Follow Author Interaction data object is used to store a follow author interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 29: DATA SCHEMA “FOLLOW AUTHOR INTERACTION”
Name Type Description Required
Author Author Author data object Yes
recommenderId string Optional reference of the recommended item. No
sessionId string The user’s session ID No

timestamp long Timestamp of the interaction in milliseconds, e.g., May
15, 2020 = 1589500800000

Yes

userId string The user’s user ID No

DRAFT

Page 28 D 5.2 Recommender System

GeneralResult

The GeneralResult data object solves as result object for use cases where no data needs to be
returned to the caller. It contains the HTTP status code and optionally a human readable
message.

TABLE 30: DATA SCHEMA “GENERALRESULT”
Name Type Description Required
http_status integer HTTP status code Yes
message string Human readable status message. No

Open Document Interaction

The Open Document Interaction data object is used to store an open document interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 31: DATA SCHEMA “OPEN DOCUMENT INTERACTION”
Name Type Description Required
documentId string ID of the opened document Yes

openDocumentInteractionType string

Type of the open document interaction.
Valid values are:

● OPEN_DESCRIPTION
● ACCESS_DOCUMENT
● EXPORT_INFORMATION

Yes

recommenderId string
Optional reference on the recommended
item. No

sessionId string The user’s session ID No

timestamp long
Timestamp of the interaction in
milliseconds, e.g., May 15, 2020 =
1589500800000

Yes

userId string The user’s user ID No

Open Profile Interaction

The Open Profile Interaction data object is used to store an open profile interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 32: DATA SCHEMA “OPEN PROFILE INTERACTION”
Name Type Description Required
profileId string ID of the opened profile. Yes

openProfileInteractionType string
Type of the open profile interaction.
Valid values are: Yes

DRAFT

D 5.2 Recommender System Page 29

● OPEN_PROFILE_DESCRIPTION
● ACCESS_PROFILE
● EXPORT_PROFILE_INFORMATION

recommenderId string
Optional reference on the recommended
item. No

sessionId string The user’s session ID No

timestamp long
Timestamp of the interaction in milliseconds,
e.g., May 15, 2020 = 1589500800000

Yes

userId string The user’s user ID No

Open Project Interaction
The Open Project Interaction data object is used to store an open project interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 33: DATA SCHEMA “OPEN PROJECT INTERACTION”
Name Type Description Required
projectId string ID of the opened project Yes

openProfileIntera
ctionType

string

Type of the open project interaction.
Valid values are:

● OPEN_PROJECT_DESCRIPTION
● ACCESS_PROJECT
● EXPORT_PROJECT_INFORMATION

Yes

recommenderId string Optional reference on the recommended item. No
sessionId string The user’s session ID No

timestamp long Timestamp of the interaction in milliseconds, e.g., May
15, 2020 = 1589500800000

Yes

userId string The user’s user ID No

Search Keyword Interaction
The Search Keyword Interaction data object is used to store a search keyword interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 34: DATA SCHEMA “SEARCH KEYWORD INTERACTION”
Name Type Description Required
keyword string Query keyword Yes
recommenderId string Optional reference on the recommended item. No
sessionId string The user’s session ID No

timestamp long Timestamp of the interaction in milliseconds, e.g., May
15, 2020 = 1589500800000

Yes

DRAFT

Page 30 D 5.2 Recommender System

userId string The user’s user ID No

Search Query Interaction
The Search Query Interaction data object is used to store a search query interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 35: DATA SCHEMA “SEARCH QUERY INTERACTION”
Name Type Description Required

query
Search-Query-Interaction
Query

Query data object.
See: “Search-Query-Interaction
Query”

Yes

recommenderId string
Optional reference on the
recommended item. No

sessionId string The user’s session ID No

timestamp long
Timestamp of the interaction in
milliseconds, e.g., May 15, 2020 =
1589500800000

Yes

userId string The user’s user ID No

Search Similar Subject Interaction
The Search Similar Subject Interaction data object is used to store a search similar subject
interaction to the database by use of the Data Integration Module’s REST API.

TABLE 36: DATA SCHEMA “SEARCH SIMILAR SUBJECT INTERACTION”
Name Type Description Required
subject string Subject Yes
language string Language No
recommenderId string Optional reference on the recommended item. No
sessionId string The user’s session ID No

timestamp long
Timestamp of the interaction in milliseconds, e.g., May
15, 2020 = 1589500800000 Yes

userId string The user’s user ID No

Search-Query-Interaction Query
The Search-Query-Interaction Query data object is used as an attribute of a Search Query
Interaction data object, where it represents the search query.

TABLE 37: DATA SCHEMA “SEARCH-QUERY-INTERACTION QUERY”
Name Type Description Required
discipline string list List of disciplines No

DRAFT

D 5.2 Recommender System Page 31

text string Query text No
type string list List of types No

Tag Document Interaction
The Tag Document Interaction data object is used to store a tag document interaction to the
database by use of the Data Integration Module’s REST API.

TABLE 38: DATA SCHEMA “TAG DOCUMENT INTERACTION”
Name Type Description Required
documentId string ID of the opened document Yes
userTags string list List of tags Yes
recommenderId string Optional reference on the recommended item. No
sessionId string The user’s session ID No

timestamp long Timestamp of the interaction in milliseconds, e.g.,
May 15, 2020 = 1589500800000

Yes

userId string The user’s user ID No

TripleRecoResult

The TripleRecoResult data object is used in the response of recommendation request calls, where
it represents the generated recommendations.

TABLE 39: DATA SCHEMA “TRIPLERECORESULT”
Name Type Description Required
http_status integer HTTP status message. Yes
message string Human readable message. No
reco_id string Recommendation Id. No
results string list Recommendation results. No

4.4 Recommendation Service
The modular design of ScaR allows to follow a standardized recommendation sequence which is
depicted in Figure 4. Integration efforts for the Recommendation Service focussed on the adaption
of the REST interface provided to GoTriple and the associated validation routines. The REST
interface and the validation routines are now tailored to TRIPLE’s use cases. Valid recommendation
requests are parsed and mapped to the associated recommendation profile ID. Then the
Recommendation Service requests the recommendations from the Recommender Engine and
delivers the retrieved results to the caller. The adaptation to the domain data is done mainly via
recommendation profiles which are described in the next section.

DRAFT

Page 32 D 5.2 Recommender System

4.5 Recommendation Profiles
For the integration with GoTriple two different types of algorithms are applied so far:

● Collaborative Filtering and
● Content Based Filtering

To instantiate these algorithms for the recommendation of research items, two instances of
recommender profiles have been created:

● triple_document_cf.yaml: Profile for recommending personalized research items.
● triple_document_item_cb.yaml: Profile for recommending similar research items.

After respective data is available, additional profiles for the aforementioned algorithms will be
prepared and will be set up for the recommendation of research projects and research peers:

● triple_project_cf.yaml: Profile for recommending personalized research projects.
● triple_project_item_cb.yaml: Profile for recommending similar research projects.
● triple_user_cf.yaml: Profile for recommending individually matched research peers.

 Personalized research items
The recommender profile for recommending personalized research items is configured in the file
triple_document_cf.yaml whose contents are shown in Figure 11. It uses the InteractionCfProfile
which is a profile for the Collaborative Filtering algorithm. It is configured to recommend entities
from the items core which is named “items”. Up to 10 items from the user’s history are considered.
These items are extracted from the “document_id” field of the user’s last 40 interactions. Users
are identified either by their user ID or their session ID. The interactions taken into account are of
the types “TAG_DOCUMENT”, “OPEN_DESCRIPTION”, “ACCESS_DOCUMENT”, and
“EXPORT_INFORMATION”. Up to 40 similar users are considered for generating recommendations.
Users must have at least one common item to be considered for similarity calculations. Similar
items are considered when they are of type “DOCUMENT”. Item similarity calculations are based
on the interaction fields “users_tag_document”, “users_access_document”,
“users_export_information”, and “users_open_description”. DRAFT

D 5.2 Recommender System Page 33

FIGURE 11: TRIPLE_DOCUMENT_CF.YAML

 Similar Research Items
The recommender profile for recommending similar research items is configured in the file
triple_document_item_cb.yaml whose contents are shown in Figure 12. It uses the ItemCbProfile
which is a profile for the Content Based Filtering algorithm. It is configured to recommend entities
from the items core which is named “items”. User history is not considered for recommendations.
Similar items are identified based on the contents of the following fields using a TF-IDF score [16]
for: “abstracts”, “headlines”, “keywords”, “topics”, “knows_about”, , and. Currently, all fields are
considered with the same importance. Words shorter than three characters are ignored and there
are no limitations on term frequency and document frequency. The length of the generated
similarity query is limited to the 25 most important terms and the query result is limited to 10
items. Similar items are considered for recommendation when they are of type “DOCUMENT”.

DRAFT

Page 34 D 5.2 Recommender System

FIGURE 12: TRIPLE_DOCUMENT_ITEM_CB.YAML

4.6 Data Ingestion Service
The Data Ingestion Service provides the REST interface for ingesting data and user interactions. Its
interface and functionality have been customized for use with the GoTriple platform. In terms of
data integration, we need to distinguish two types of data: i) static and ii) dynamic data. As static
data we consider data that describe items relevant to the recommendation process, e.g., metadata
of documents, projects and researchers that do not change frequently. The term dynamic data is
used for user interaction data that is produced and updated at the time of occurrence.

 Integration of Static Data
TRIPLE’s research data objects serve as the items in the RS. Meta-data describing these research
data objects are retrieved from the Elasticsearch instance of GoTriple which for now happens
whenever a synchronisation request is made, while a subsequent version will implement a periodic
automatic synchronization e.g., once a day. Retrieved data objects are processed and sent to the
Data Modification Layer for storage in the database. The GoTriple data ingestion process is
visualized in Figure 13.

DRAFT

D 5.2 Recommender System Page 35

FIGURE 13: INGESTION OF RESEARCH DATA OBJECTS IN GOTRIPLE.

 Integration of Dynamic Data
The approach for ingesting GoTriple’s user interaction data is depicted in Figure 14. Interactions
are posted to the Data Ingestion Services’ REST interface, and subsequently processed and sent to
the Data Modification Layer for storing. Interaction data validation routines have been adapted to
accurately reflect the specifics of GoTriple’s interaction data. The processing routines have also
been adjusted so that TRIPLE-specific attributes are handled correctly and result in the appropriate
updates to the backend database.

 DRAFT

Page 36 D 5.2 Recommender System

FIGURE 14: INGESTION OF USER INTERACTION DATA IN GOTRIPLE.

4.7 Apache Solr
In GoTriple three Solr cores are used. These are named “items”, “interactions” and “feedbacks”.
The Items core contains the documents, the Interactions core contains the recorded interactions,
and the Feedbacks core contains the calculated recommendations as well as information regarding
the evaluation of the system. Please note that the core schema also reflects fields that are yet not
implemented in GoTriple but have been agreed upon for future platform releases.

 The Items Core
Item documents (e.g., research documents, projects, peers) are stored in the Items core. In a
typical setting these are the objects which can be recommended to the users. From a conceptual
viewpoint the fields of an item document serve one of two purposes. The first purpose is to
describe and identify the item itself. These are fields which hold meta-data like item ID, type,
keywords and item descriptions or in case of textual documents the item’s content. The contents

DRAFT

D 5.2 Recommender System Page 37

of these fields are static. They are defined when the item is first stored to the backend database
and do not change unless an update is explicitly requested. The second purpose is to capture how
users interact with the item. These fields contain for example user IDs and interaction counts. They
represent who interacted with an item and how many interactions an item gets. These field
contents are updated every time an interaction with the specific item is logged. For this, the atomic
update capability of Solr is used, which allows for the isolated updating of fields in a document.
The Items core’s configuration was adapted so that GoTriple items can be stored in the Items core.
This domain specific configuration is located in the fields section of the schema.xml configuration
file corresponding to the Items core. Figure 15 shows the configured fields and their data types as
provided in the core’s schema configuration.

FIGURE 15: ITEMS CORE SCHEMA

DRAFT

Page 38 D 5.2 Recommender System

For better comprehension, the fields can be divided into several property categories. This is not
depicted in the database but added for a better understanding of related fields. The “general”
category contains the item id and its type.

The fields in the “general” category hold information about the item itself. The “interaction data”
fields contain information about the interactions and the list of session IDs associated with these
interactions. The fields of the Items core are listed in Table 40.

The fields in the interaction data category are updated every time an interaction with the particular
item is logged. For this, the Data Modification Layer uses the atomic update capability of Solr. This
feature allows for updating fields of a document separately. The fields in the other categories
reflect static item properties which are not affected by user interactions.

TABLE 40: ITEMS CORE FIELDS
Property
category

Field name
Content

general

id The ID of the item.
type Type of the stored item.
abstracts Tokenized abstracts of the document
abstracts_text Abstracts of the document.

headlines The tokenized “headline” property
retrieved from the data source.

headlines_text The tokenized “headline” property
retrieved from the data source.

keywords The tokenized “keyword” property
retrieved from the data source.

keywords_text The “keyword” property retrieved
from the data source.

topics
The tokenized “topics” property
retrieved from the data source.

topics_text
The “topics” property retrieved from
the data source.

knows_about
The tokenized “knows_about”
property retrieved from the data
source.

knows_about_text The “knows_about” property retrieved
from the data source.

authors Full names of the authors.

languages Languages in which the item is
available.

projects
List of project IDs associated with the
item.

publishers List of publishers.
urls List of URLs.
contributors The “contributors” property retrieved

DRAFT

D 5.2 Recommender System Page 39

from the data source.

additional_types
The “additional_types” property
retrieved from the data source.

date_published
The “date_published” property
retrieved from the data source.

interaction
data

users_tag_document
An array of unique IDs pointing to
users who tagged the document.

users_tag_document_count Total number of times the document
was tagged.

users_access_document An array of unique IDs pointing to
users who accessed the document.

users_export_information
An array of unique IDs pointing to
users who exported the document
information.

users_open_description
An array of unique IDs pointing to
users who opened the document
description.

users_access_document_count
Total number of times the document
was accessed.

users_export_information_count
Total number of times the document
information was exported.

users_open_description_count Total number of times the document
description was opened.

users_access_project An array of unique IDs pointing to
users who accessed the project.

users_export_project_information
An array of unique IDs pointing to
users who exported the project
information.

users_open_project_description
An array of unique IDs pointing to
users who opened the project
description.

users_access_project_count
Total number of times the project was
accessed.

users_export_project_information_count
Total number of times the project
information was exported.

users_open_project_description_count Total number of times the project
description was opened.

users_access_profile An array of unique IDs pointing to
users who accessed the profile.

users_export_profile_information
An array of unique IDs pointing to
users who exported the profile
information.

DRAFT

Page 40 D 5.2 Recommender System

users_open_profile_description
An array of unique IDs pointing to
users who opened the profile
description.

users_access_profile_count Total number of times the profile was
accessed.

users_export_profile_information_count Total number of times the profile
information was exported.

users_open_profile_description_count
Total number of times the profile
description was opened.

 The Interactions Core
The Interactions core contains interaction data of the users. Some fields are common for all
interaction types, such as the interaction ID, the type and the timestamp. These fields form the
minimal required information to create a valid interaction entry. Further commonly used fields are
the user-ID and the item-ID that describe objects involved in the interaction. Additional fields can
be added based on the project requirements. There are also fields that are only meaningful for a
particular interaction type. They are meant to capture interaction metadata like for example the
query settings in case of a search interaction or keywords in case of a tagging interaction. These
fields depend on the domain properties and are defined during ScaR integration. Like the items
core, the Interactions core was adapted to store interaction data of GoTriple users. This domain
specific configuration is located in the fields section of the schema.xml configuration file
corresponding to the interactions core. Figure 16 shows the configured fields and their data types
as provided in the core’s schema configuration.

DRAFT

D 5.2 Recommender System Page 41

FIGURE 16: INTERACTIONS CORE SCHEMA

The fields can be divided into several property categories. The categories are not depicted in the
database but added for a better understanding of related fields. The “general” category contains
the fields, common to more than one interaction type. At least the interaction ID, type, and
timestamp must be present for a valid entry. The other categories - “search query”, “search
similar subject”, “search keyword”, and “tag document” - are only used for one particular
interaction type. The fields of the Interactions core are listed in

Table 41.

TABLE 41: INTERACTIONS CORE – FIELD DESCRIPTION
Property category Field name Content

general

id The ID of the interaction.
type The type of the interaction.

timestamp The timestamp indicates at which point in time a
certain interaction was made.

user_id The ID of the user who is responsible for the
interaction.

DRAFT

Page 42 D 5.2 Recommender System

session_id The session ID of the user who is responsible for
the interaction.

reco_id The ID of the recommendation which resulted in
the current interaction.

document_id The ID of the document the user interacted with.
project_id The ID of the project the user interacted with.
author_id The ID of the author the user interacted with.
profile_id The ID of the profile the user interacted with.

search query
disciplines The list of disciplines stated in the query.
query_text The query text.
types The list of types stated in the query.

search similar subject
subject The subject stated in the query.
language The language stated in the query.

search keyword keyword The keyword stated in the query.

tag document user_tags
The list of tags assigned to the document by the
user.

 The Feedbacks Core
The Feedbacks core contains feedback data regarding recommendations and their respective
evaluation metrics. This information serves for recommender evaluations as, for instance,
implemented in the form of A/B testing. Typically, the Feedbacks core is stable over different target
domains and fields remain as listed in Table 42.

TABLE 42: FEEDBACKS CORE - FIELD DESCRIPTION

Fieldname Description

Id The ID of the recommendation.

recomm_profile_name The name of the profile in the Recommender Customizer module used
for generating the recommendation.

recomm_ids An array of IDs indicating the items which were recommended.

item_ids An array of IDs indicating the items on which the recommendation is
based on.

hybrid_recomm_* 10
These fields contain additional properties of the recommendation
algorithm.

user_id The ID of the user who received the recommendation.

custom_filters The recommendation filter specified on the client side used for filtering
the results.

recomm_algo The algorithm which was applied for calculating the recommendation.

10 The Feedbacks Core contains a set of parameters starting with the suffix ‘hybrid_recomm_’.

DRAFT

D 5.2 Recommender System Page 43

max_recomm_results The number of recommendations requested by the client.

recomm_type A parameter indicating whether users or items were recommended.

recomm_time Datetime indicating when the recommendation happened.

duration The time it took the recommendation algorithm to finish.

eval_id The ID of the evaluation.

expected_ids
An array of items which should have been recommended. Used for
calculating evaluation metrics.

interaction_count The number of interactions resulting from the recommendation.

There was no need to adapt the Feedbacks core schema as the TRIPLE evaluation requirements
can be satisfied by the default configuration. The field configuration and their data types are given
in Figure 17.

FIGURE 17: FEEDBACKS CORE SCHEMA

DRAFT

Page 44 D 5.2 Recommender System

5 DESCRIPTION OF THE WORK DONE IN TASK 5.2
The work done so far in this task can be summarized to the following main points:

• Understanding the role and possibilities of the Recommender System in GoTriple
The results of this process enter various sections of this document and the so far
development of the RS. They are grounded on two main questions:
(i) What kind of recommendations can support the user? This question was worked on

in collaboration with WP3 (see also D 3.4) and is slightly discussed in Section 6.
(ii) How can the RS be integrated in GoTriple? The outcome of this rather technical

discussion mainly influenced the design of API and interaction sequences.
• Integrating the Recommender System with the GoTriple main platform and its data backend

o Setting up server environments and service instances of the RS to provide for the
GoTriple development and the GoTriple production platform which is described in
Subsection 4.1.Erreur ! Source du renvoi introuvable.

o Adapting the ScaR service API and backend to meet the requirements of GoTriple
which is described in great detail in Sections 3 and 4.

o Further developing the technical infrastructure of ScaR to provide better flexibility
and a more stable environment, which is described in Subsection 5.1

• Implementing a first set of recommendations as described in Subsection 5.2

5.1 Infrastructure Development
As the TRIPLE project aims to innovate practices that promote the exploration of research and the
delivery of content, the infrastructural level of services must also be considered to support the
given ambition. Hence, the approach of deploying and hosting the recommendation services
needed to be adapted to provide a reliable, scalable and maintainable system which can offer its
functionality in light of the demands of the envisioned GoTriple platform.

The previous approach of deploying the RS was to individually host and run each contained
module/service on its own, e.g., in dedicated servers, which made it dependent on both the
underlying operating system and 3rd party software installed. Horizontally scaling the RS, with
regard to the number of available instances of each module to cover varying service request
claims, was complex in terms of interventions needed.

Therefore, the transition to containerized services (i.e., Docker containers11) bound together with
the help of Docker Compose12 was implemented, yielding the possibility to scale services more
efficiently. From that, the infrastructure of the RS was lifted from a manually managed set of
services to a compact software-package independent of the operational execution environment.
Additionally, as services are now kept together in a smaller decoupled bundle, ease of
maintenance is improved. From that, undertaken developments also considered the reliability of

11 https://www.docker.com/resources/what-container
12 https://docs.docker.com/compose/

DRAFT

D 5.2 Recommender System Page 45

services, as this is directly influenced by the effort for maintenance and the process to scale
services based on the number of requests.

Steps to create the new setup included a range of code changes so that the communication
between the modules is able to exploit Docker-based endpoints and to allow Docker to work with
the configurations and data needed for recommendation services. Further, respective Docker
images, which contain required 3rd party software and operating system dependencies for the
services to be able to execute, have been created.

Hosting the RS together with other services from within the GoTriple platform now can be
seamlessly implemented by adapting/extending the given Docker Compose configuration to the
needs of the envisioned (cloud) infrastructure environment (e.g., Docker, Kubernetes13, AWS14,
Google Cloud15, etc.).

5.2 Recommendations in GoTriple
Currently, two types of algorithms are deployed for the GoTriple platform: (i) Collaborative
Filtering (CF) [9] which is a personalized algorithm that analyses items’ interaction data to find
similar users. Subsequently, items of these similar users (i.e., nearest neighbours) are extracted
and recommended. (ii) Content-based Filtering (CBF) [10] which calculates item similarities based
on content features and recommends a ranked list of these similar items. The algorithms are
described in a more general manner in Subsection 3.1.2.

To enable CF-based recommendations, which are based on users’ interaction traces extracted
from the GoTriple platform, different interactions are taken into account, i.e., tagging, accessing
and opening research items and exporting information about these items. As the platform evolves,
additional interaction possibilities can and will be included into the algorithm. To find research
items of interest, items from within the traces of other users which share the same interests in
research items are considered.

To be able to offer users with content-based documents recommendations, we calculate
similarities to a user’s currently viewed research item. These CBF recommendations are provided
based on the similarity (i.e., using TF-IDF) of a research item’s headlines, abstracts, full texts and
sets of categorizing keywords attached to them. As the recommender services evolve, these
attributes will be further analysed to understand the importance of their content for improving
the relevance of recommended research items.

13 https://kubernetes.io/
14 https://aws.amazon.com/
15 https://cloud.google.com/

DRAFT

Page 46 D 5.2 Recommender System

6 NEXT STEPS AND EVOLUTIONS
At this point in time a first set of document recommendation algorithms (described in Section 5.2.)
is available in GoTriple. This is aligned with the current state of platform development, available
meta-data and GUI design. As there is a strong dependency of the recommender implementation
on the data of the application context, further recommendation strategies for research peers and
projects have been prepared but cannot be fully implemented and integrated yet.

However, within the upcoming period of the project we will - in line with the progressing
development of the platform - expand the offered recommendation strategies to also suggest
research projects and research peers with different algorithmic approaches as presented in more
detail in Subsection 6.1.

For additional inspiration on state-of-the-art evolutions, we will moreover attend related
international conferences as for instance RecSys16, were we also plan to publish within the next
phase of the project. From this, we expect insights and new trends in relation to building fair,
transparent and bias aware recommendation systems. A selection of which will enter the design
and further development of our ScaR framework. Subsection 6.2 provides a first glimpse on the
impact of fairness in Recommender Systems and how it can be considered.

6.1 Further Development of Recommendations
In the course of work conducted by WP3 an end user workshop has been completed, which is
described in further detail in D 3.4.

 While the session only included seven participants, the qualitative nature of it allows us to draw
some insights that will feed into the further development of the recommender. The following list
is a summary of these insights:

● Frequency of desired recommendations depends on the context.
● Nature of desired recommendations depends on the research stage.
● User control is essential.
● High serendipity is important to users.
● There is a high interest in peer recommendations.

Taken this into account we will offer a bundle of different recommendation approaches,
suggesting research documents, research peers and research projects. Recommendations will not
be pushed on users but delivered on demand within the platform. Hence, a variety of
recommendation services is provided at different entry points on the GoTriple platform. The user
can navigate to dedicated recommendation tabs and thus controls its consumption as desired.

Similar to the available document recommendations the RS will offer first a standard
implementation of a content-based and collaborative filtering recommendation algorithm for
projects as well as for research peers. Using an A/B testing approach, the recommendation services
will then be evaluated and tailored to the specific needs of researchers who engage with the
GoTriple platform. This will inform the fine-tuning and adaptation of the algorithms. Building on

16 RecSys 2020 (Online) – RecSys (acm.org)

DRAFT

D 5.2 Recommender System Page 47

the resulting, most accurate recommendation approaches, hybrid recommendation strategies will
be developed that also incorporate the notion of fairness.

6.2 Fairness
Recommender systems traditionally train on data that has been collected within the specific
application context in the past (i.e., historic data). This data is used to calculate similarities and
correlations that form the basis for personalized recommendations. Because historic data is
captured from human interaction, this data and consequently the recommendations are prone
to all kinds of biases. This may lead to the emergence of unwanted patterns in relation to a user
e.g., filter bubble effects, or a social group e.g., the unfair treatment of specific user groups [19].

The detection and mitigation of biases in Recommender Systems is an emerging and complex
research field. In addition to better known classification problems, challenges arise with the
calculation of repeated, varying and personally individual suggestions, with effects of ranking and
often with the interest of multiple stakeholders [18].

In the recent past we have investigated means to measure and mitigate a number of different
biases such as gender bias [20], popularity bias [21] and confirmation bias [22].

In GoTriple we will exploit existing expertise, providing hybrid extensions of traditional
recommendation algorithms to mitigate

(i) gender and popularity bias through a fair consideration of all researchers regardless of
gender, seniority, popularity and affiliation.

(ii) confirmation bias by optimizing algorithms not strictly for accuracy but also serendipity.

 DRAFT

Page 48 D 5.2 Recommender System

7 REFERENCES
[1] Konstan, J. A. (Ed.). (2004). Introduction to recommender systems: Algorithms and

evaluation. ACM Trans. Inf. Syst. 22.1. Ed. By pp. 1-4.
[2] Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item

collaborative filtering. IEEE Internet computing 7.1(pp. 76-80).
[3] Gomez-Uribe, C., & Hunt, N. (2016). The Netflix Recommender System. ACM Transactions

on Management Information Systems (TMIS) 6.4, p. 13.
[4] Schafer, J. Ben, Joseph A. Konstan, and John Riedl (1999). Recommender systems in e-

commerce. Proceedings of the 1st ACM conference on Electronic commerce. ACM, (pp.
158–166).

[5] Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-based systems, 46, 109-132.

[6] Lacic, E., Traub, M., Kowald, D., & Lex, E. (2015). ScaR: Towards a Real-Time Recommender
Framework Following the Microservices Architecture. Workshop on Large Scale
Recommender Systems (LSRS'2015) co-located with the 9th ACM Conference on
Recommender Systems (RecSys'2015).

[7] Richardson, C. (2021). Pattern: Microservice Architecture. Retrieved August 30, 2021,
from http://microservices.io/patterns/microservices.html.

[8] Bostandjiev, S., O'Donovan, J., & Höllerer, T. (2012, September). TasteWeights: a visual
interactive hybrid recommender system. In Proceedings of the sixth ACM conference on
Recommender systems (pp. 35-42).

[9] Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering
recommender systems. In The adaptive web (pp. 291-324). Springer, Berlin, Heidelberg.

[10] Lacic, E., Kowald, D., Eberhard, L., Trattner, C., Parra, D., & Marinho, L. B. (2013). Utilizing
online social network and location-based data to recommend products and categories in
online marketplaces. In Mining, Modeling, and Recommending'Things' in Social Media (pp.
96-115). Springer, Cham.

[11] Apache Software Foundation (2019, October). Apache Solr Reference Guide.
https://solr.apache.org/guide/8_2/index.html.

[12] YAML Language Development Team (2021, September). Yaml ain’t markup language
(yaml™). https://yaml.org/spec/1.2.2.

[13] D. Miller, J. Whitlock, M. Gardiner, and R. Ratovsky (2014, September). OpenAPI
Specification v2.0, https://spec.openapis.org/oas/v2.0.

[14] Swagger. OpenAPI Specification - fka Swagger RESTful API Documentation Specification.
Version 2.0. Retrieved on September 22nd, 2021, https://swagger.io/specification/v2/

[15] Springfox. Spring Fox – Automated JSON API documentation for API’s built with Spring.
Retrieved on September 22nd, 2021, from http://springfox.github.io/springfox/.

[16] Salton, G., & Yang, C. S. (1973). On the specification of term values in automatic
indexing. Journal of documentation, vol. 29, no. 4, Art. no. 4, 1973-04, doi:
10.1108/eb026562.

DRAFT

D 5.2 Recommender System Page 49

[17] Lacic, E., Kowald, D., Parra, D., Kahr, M., & Trattner, C. (2014, April). Towards a scalable
social recommender engine for online marketplaces: The case of apache solr.
In Proceedings of the 23rd International Conference on World Wide Web (pp. 817-822).

[18] Ekstrand, M. D., Das, A., Burke, R., & Diaz, F. (2021). Fairness and Discrimination in
Information Access Systems. arXiv preprint arXiv:2105.05779.

[19] Baeza-Yates, R. (2020). Bias in Search and Recommender Systems. In Fourteenth ACM
Conference on Recommender Systems (RecSys '20). Association for Computing Machinery,
New York, NY, USA, 2. https://doi.org/10.1145/3383313.3418435

[20] Rekabsaz, N., Kopeinik, S., & Schedl, M. (2021). Societal Biases in Retrieved Contents:
Measurement Framework and Adversarial Mitigation for BERT Rankers. arXiv preprint
arXiv:2104.13640.

[21] Kowald, D., Schedl, M., & Lex, E. (2020). The unfairness of popularity bias in music
recommendation: a reproducibility study. Advances in Information Retrieval, 12036, 35.

[22] Kopeinik, S., Lex, E., Kowald, D., Albert, D., & Seitlinger, P. (2019, September). A Real-Life
School Study of Confirmation Bias and Polarisation in Information Behaviour. In European
Conference on Technology Enhanced Learning (pp. 409-422). Springer, Cham.

DRAFT

Page 50 D 5.2 Recommender System

8 APPENDIX I: RECOMMENDATION PROFILE CONFIGURATION
This appendix describes the most relevant recommendation profiles, followed by a description of
the relevant parameter groups in alphabetical order.

8.1 The InteractionCfProfile
The InteractionCfProfile configures a collaborative filtering algorithm based on the interactions
from many users. The underlying assumption of the collaborative filtering approach is that if
person A has the same opinion as person B on an issue, A is more likely to have B's opinion on a
different issue as well.

InteractionCfProfiles start with following header:

!!at.knowcenter.sc.recomm.common.profiles.InteractionCfProfile

At root level a InteractionCfProfile supports the parameters and parameter groups listed in

Table 43.

TABLE 43: SETTINGS AVAILABLE FOR THE INTERACTIONCFPROFILE

Name Type Description

coreNames group This parameter group holds the names of the Solr cores.
At least one of the contained parameters must be given.

fetchUserHistoryProperties group This group contains settings for fetching the user history.

recommProps boolean
This parameter defines whether recommendation
properties should be filled. This functionality is required
for flex filters.

recommType string
This parameter specifies which type of entities can be
recommended. Accepted values are “items”, “users” and
“linkedItems”

similarItemsProperties group settings for how to retrieve similar items

similarUsersProperties group user retrieval settings

8.2 The ItemCbProfile
The ItemCbProfile configures a content-based filtering algorithm. Content-based filtering methods
are based on a description of the item and a profile of the user's preferences.

ItemCbProfiles start with following header:
!!at.knowcenter.sc.recomm.common.profiles.ItemCbProfile

At root level an ItemCbProfile supports the parameters and parameter groups listed in

TABLE 44.

DRAFT

D 5.2 Recommender System Page 51

TABLE 44: SETTINGS AVAILABLE FOR THE ITEMCBPROFILE

Name Type Description

coreNames group This parameter group holds the names of the Solr cores.
At least one of the contained parameters must be given.

fetchUserHistoryProperties group This group contains settings for fetching the user
history.

mltProperties group This parameter group holds the parameters related to
database similarity search.

recommProps boolean
This parameter defines whether recomm properties
should be filled. This functionality is required for flex
filters.

recommType string
This parameter specifies which type of entities can be
recommended. Accepted values are “items”, “users”
and “linkedItems”

similarItemsProperties group settings for how to retrieve similar items

8.3 Parameter groups
The coreNames parameter group is used in all non-hybrid recommendation profiles at root level.
It specifies which backend database cores hold which type of objects. The parameters for all used
cores must be set. The contents of the coreNames parameter group are described in

TABLE 45.

TABLE 45: THE CORENAMES PARAMETER GROUP.

Name Type Description

feedback string Name of the feedbacks core.

interaction string Name of the interactions core.

item string Name of the items core.

user string Name of the users core.

The fetchUserHistoryProperties parameter group is used in all non-hybrid recommendation
profiles at root level. The contents of the fetchUserHistoryProperties parameter group are
described in

TABLE 46.

DRAFT

Page 52 D 5.2 Recommender System

TABLE 46: THE FETCHUSERHISTORYPROPERTIES PARAMETER GROUP.

Name Type Description

fetch boolean
If set, to true then the user’s history data will be
included (i.e., user’s preferences)

interactionCoreProperties group
Contains properties for fetching the user history based
on the interaction core.

itemCount integer
The number of items from the user's history which
should be considered.

The flexFilters parameter group specifies a set of filters to define a subset of items. Parameters
contained in the flexFilters parameter group are listed in

Table 47.

TABLE 47: THE FLEXFILTERS PARAMETER GROUP.

Name Type Description

fieldFilters list of
fieldFilters

Filters items based on a list of field name-value pairs.

Example for the inclusion of items with the type
“DOCUMENT”:

fieldFilters
 - fieldName: type
 fieldValue: DOCUMENT

The interactionCoreProperties parameter group contains properties for fetching the user history
based on the interaction core. The possible entries are described in

TABLE 48.

TABLE 48: THE INTERACTIONCOREPROPERTIES PARAMETER GROUP.

Name Type Description

fetchType string

Defines how documents are fetched from the interactions
core. Possible values are “SORTED_TIME_BASED” and
“FACETED_ITEM_COUNT_BASED”.

interactionCount integer The number of user interactions to query for item extraction.

interactionTypes list of strings Interaction types to include.

itemFieldName string Field in the interaction core to include which identifies an

DRAFT

D 5.2 Recommender System Page 53

item.

timeFieldName string Field to be observed if the time component of user
interactions is important.

userFieldNames list of strings Fields in the interaction core to include which identify users.

The mltProperties parameter group holds parameters related to database similarity search.
Available entries are described in

Table 49.

TABLE 49: THE MLTPROPERTIES PARAMETER GROUP.

Name Type Description

mindf integer
Specifies the Minimum Document Frequency, the frequency at
which words will be ignored which do not occur in at least this
many documents.

mintf integer Specifies the Minimum Term Frequency, the frequency below
which terms will be ignored in the source document.

minwl integer Sets the minimum word length below which words will be ignored.

maxqt integer Sets the maximum number of query terms that will be included in
any generated query.

maxResultsPerItem integer Number of documents to include in the result of the similarity
query.

queries list

List of boosting options: The importance of a field can be
“boosted”. A boosting option contains a boosting factor (“boost”)
and a field name (“field”).

Example for boosting the fields “title” and “full_text” with different
boosting factors:

queries:
 - boost: 1.0
 field: title
 - boost: 1.5
 field: fullt_text

The similarItemsProperties parameter group can be used in non-hybrid recommendation profiles
at root level when item similarities are used in the recommendation algorithm. Available entries
for this parameter group are described in

DRAFT

Page 54 D 5.2 Recommender System

TABLE 50.

TABLE 50: THE SIMILARITEMSPROPERTIES PARAMETER GROUP.

Name Type Description

filterUserItems boolean Whether to include user's preference data (e.g.
users interactions with items of interest).

flexFilters list of flexFilters Contains a list of filters, which define a subset of
items to include. See group “flexFilters” for details.

interactionFields group

User interaction fields to use. This group contains
only the parameters “fields”, which holds a list of field
names.

Example with four fields:

interactionFields:
 fields:
 - name: users_tag_document
 - name: users_access_document
 - name: users_export_information
 - name: users_open_descriptio

usersToIgnore list of strings A list of user IDs to ignore. Typically used to filter out
dummy users.

The similarUsersProperties parameter group defines the condition for the retrieval of similar users.
These settings are relevant when an algorithm uses user similarities. Possible values are described
in Table 51.

TABLE 51: THE SIMILARUSERSPROPERTIES PARAMETER GROUP.

Name Type Description

checkWhetherUsersExist boolean Check whether the users exist for which
the interactions were recorded.

minItemOverlap integer Minimal number of overlapping items to
conclude that 2 users are similar.

similarUserCount integer Maximal number of users included in the
result of the similarity calculation.

topKSimilarUserCount integer Maximum number of uses to include in the
result of top K user similarity calculation.

DRAFT

D 5.2 Recommender System Page 55

 Personalized research projects
The recommender profile for recommending personalized research projects is configured in the
file triple_project_cf.yaml whose contents are shown in Figure Figure 18: triple_project_cf.yaml.
The profile resembles the profile for recommending personalized research documents but uses
interactions that can only be done on research projects. The profile uses the InteractionCfProfile
which is a profile for the Collaborative Filtering algorithm. It is configured to recommend entities
from the items core which is named “items”. Up to 10 items from the user’s history are considered.
These items are extracted from the “document_id” field of the user’s last 40 interactions. Users
are identified either by their user ID or their session ID. Project specific interaction types are taken
into account. These are “OPEN_PROJECT_DESCRIPTION”, “ACCESS_PROJECT”, and
“EXPORT_PROJECT_INFORMATION”. Up to 40 similar users are considered for generating
recommendations. Users must have at least one common item to be considered for similarity
calculations. Similar items are considered when they are of type “PROJECT”. Item similarity
calculations are based on the project specific interaction fields “users_access_project”,
“users_export_project_information”, and “users_open_project_description”.

DRAFT

Page 56 D 5.2 Recommender System

FIGURE 18: TRIPLE_PROJECT_CF.YAML

 Similar research projects
The recommender profile for recommending similar research projects is configured in the file
triple_project_item_cb.yaml whose contents are shown in Figure 19. It uses the ItemCbProfile
which is a profile for the Content Based Filtering algorithm. It is configured to recommend entities
from the items core which is named “items”. User history is not considered for recommendation.
Similar items are identified based on the contents of following fields: “full_text”, “title”,
“abstracts”, “headlines”, “keywords”, “topics”, “knows_about”, “disciplines”, and
“similar_subjects”. All fields are considered with the same importance. Words shorter than three
characters are ignored and there are no limitations on term frequency and document frequency.
The length of the generated similarity query is limited to 25 query terms and the query result is
limited to 10 items. Similar items are considered for recommendation when they are of type
“PROJECT”.

DRAFT

D 5.2 Recommender System Page 57

FIGURE 19: TRIPLE_PROJECT_ITEM_CB.YAML

Research peers
The recommender profile for recommending research peers is another example for Collaborative
Filtering. The profile is configured in the file triple_user_cf.yaml and uses the ItemCbProfile. File
contents but is not finished yet.

DRAFT

Page 58 D 5.2 Recommender System

9 APPENDIX II: INSTALLATION AND CONFIGURATION

9.1 Installation Guide
This section gives an introduction to the deployment and configuration procedure. The system is
delivered and deployed with a working configuration.

PREREQUISITES
ScaR requires Docker and Docker-Compose to be installed on the host system.

FOLDER STRUCTURE
Figure 20 gives an overview of the folder structure on the server. The configuration files are
located in the conf folder, the recommender profiles are located in conf/profiles, and
the Solr database configuration goes in the solr folder. The Docker configuration is contained
in the Docker Compose file.

FIGURE 20: FOLDER STRUCTURE.

DEPLOYMENT PROCEDURE
1. Stop ScaR

For proper re-deployment or modification all affected modules must be stopped. This is
especially important if the changes affect the backend database in any way.

To stop all services at once, change into the project root folder and execute:

 docker-compose down

2. Get and install the Docker images

This step varies depending on the project. It depends on the delivery modalities agreed
between the project partners.

3. Database configuration

DRAFT

D 5.2 Recommender System Page 59

The system is shipped with a working database configuration. Copy the provided database
configuration in the solr folder before the first run. It is important that the Solr database
service has complete read and write permissions for the database folder. This condition
must also hold for the user named “solr” inside the Docker container. The most effective
method to achieve this is to make the solr directory with its content completely "open" in
terms of read/write permissions. To achieve this, change to the project root folder and
execute:

sudo chmod -R 777 solr

4. Copy the (updated) configuration to the conf folder.

5. Copy the (updated) recommender profiles to the conf/profiles folder.

Note: The conf/profiles directory must not contain other files than the
recommendation profiles.

6. Copy the (updated) docker-compose.yml file to the project root folder.

7. To start ScaR, enter the project root folder and execute the final command:

docker-compose up

RECOMMENDER CONFIGURATION FILES
- dml.yaml: The configuration file for the Data Modification Layer
- engine.yaml: The configuration file for the Recommender Engine
- repo.yaml: The configuration file for the Recommender Customizer.

DATABASE ACCESS CONFIGURATION
- security.json: Solr’s configuration file for authentication and authorization. Please consult

the official Solr documentation [11].

RECOMMENDATION PROFILES
The system is delivered with preconfigured recommendation profiles. A detailed description can
be found in Appendix I: Recommendation Profile Configuration.

9.2 Database Configuration
This section gives a short overview on the methods used to configure the Solr database. For
detailed in depth documentation of Solr configuration please consult the official Solr Reference
Guide [11].

Solr provides an administrative web interface, where the database can be configured with a
comfortable graphical user interface. All operations necessary for maintenance and configuration
can be performed here. Figure 21 shows a screenshot of the administrative web interface.

DRAFT

Page 60 D 5.2 Recommender System

FIGURE 21: SOLR ADMIN GUI

The Solr Admin GUI comes in handy for quick configuration updates, but initial database
configuration becomes tedious via the admin GUI. Therefore, the core schemas are configured in
the associated schema.xml file. These schema configuration files are matched to the target domain
during system integration and are delivered together with the software.

DRAFT

