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Publishable Summary 
 

This deliverable describes the Recommender System in GoTriple. It gives an overview of the 
background and of the work done so far in Task 5.2.  

The document is structured as follows: after a brief introduction into the topic that is given in 
Section 1, a summary of how the Recommender System service is applied in GoTriple and what 
benefits it provides to the user can be found in Section 2. Section 3 gives an overview of ScaR – 
Scalable Recommendation-as-a-service and its software architecture. ScaR is a novel 
recommender framework following the Software-as-a-Service paradigm. It forms the foundation 
of the GoTriple recommendation system. How ScaR is used and integrated in GoTriple is presented 
in Section 4. This includes a fairly detailed description of REST-API services as well as 
recommendation algorithms and configurations (i.e., profiles) that have been implemented so far.  

Section 5 outlines the current state of the work done in TRIPLE. As this is only the first stage of the 
Recommender System development in GoTriple, we give an overview of planned future work and 
focus directions in Section 6.    
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1 DESCRIPTION OF THE SERVICE 
With GoTriple we build a platform that harvests different sources of scientific data collections and 
provides researchers with a unique access point for this information. Task 5.2 is adding to the 
platform’s user friendliness, focusing on the exploration and integration of tailored information 
through ranking algorithms implemented in form of a Recommender System.  

Recommender Systems (RSs) are software components that predict and suggest items of interest 
to users or user groups. Dedicated software services, which are typically embedded in websites, 
exploit user data to ease the information overload or act as sales assistants, supporting decision-
making processes and gain customer loyalty [1]. RS have become quite popular being commonly 
integrated in all kind of information providing websites. Most prominent examples of 
Recommender System applications include companies, such as Amazon [2] or Netflix [3].  

While initial recommendation approaches mainly exploited user preferences based on explicit 
ratings, later approaches explored a greater variation of user interactions to train recommendation 
models within observed environments [4]. To date, recommendation algorithms mostly use data 
about users, items and user-item interactions, where users’ historical data traces form the main 
information source of the recommendation logic [5]. This means that algorithms continuously 
predict users’ preferences and needs based on choices they made in the past. To deal with large 
data volumes and the constant embedding of user interactions, sophisticated models, methods 
and technical frameworks are required to cope with respective data while collecting, analysing, 
providing and predicting information in real-time [6]. 

Based on the ScaR – Scalable Recommendation-as-a-service framework our aim is to offer an 
intelligent and GoTriple tailored bundle of hybrid recommendation services, extending on 
collaborative and content-based recommendation approaches. To this end, we collect, model and 
exploit a rich amount of user and content data to suggest valuable diverse and interesting research 
documents, research projects and research peers. 

While the full integration with GoTriple is still work in progress, we follow a continuous 
implementation approach updating the interfaces, algorithms and database structures on 
availability of new data sources and user study insights.  

To incorporate the user needs, the task will benefit from the results of T3.3, where workshops are 
conducted in order to understand what GoTriple users consider most beneficial in 
recommendation services.  

In accordance with the GoTriple development, we will implement an A/B testing approach. With 
this, the recommendation services can be evaluated and tailored to the specific needs of 
researchers who are visiting the GoTriple platform. This will form the final adaptation and selection 
of recommendation algorithms.  
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2 THE SERVICE IN TRIPLE 
While GoTriple provides researcher with an amazing opportunity to explore and connect within 
different research fields, the overload of information may lead to the need of additional guidance 
and personalization. GoTriple’s Recommender System (RS) is a service that supports researchers 
in finding their items of interest and with this enhances their discovery experience.  

The final version of the GoTriple Recommender System will offer recommendation strategies that 
suggest research documents, research peers, and research projects to the user. A simplified 
depiction of the platform integration is illustrated in Figure 1. 

 
FIGURE 1: INTEGRATION OF RECOMMENDER SYSTEM IN GOTRIPLE 

 

The RS is based on static data available in the system (i.e., meta-data of documents, research 
projects and research peers) and in addition, is continuously informed with emerging user profile 
and user interaction data. GoTriple user data is collected in the platform and sent to the RS on 
occurrence, in an event-based manner. This data is integrated and taken into account by the 
recommendation services in near-real time. Triggered by the navigation of the user in the platform, 
GoTriple calls respective recommendation service endpoints to retrieve a list of suggested items 
that are then displayed in the GoTriple GUI.  

Figure 2 presents a screenshot of document recommendations in GoTriple. In line with the 
GoTriple GUI design, the RS provides two options of research document recommendations: (i) 
Content-based document recommendations based on document properties and (ii) personalized 
document recommendations based on the user’s past interactions with GoTriple. The illustration 
shows option (i) which is embedded in the main document view.  The recommendations are 
requested and presented to users when the “Related Publication” tab is selected. Option (ii), 
recommendations tailored to the user preferences, can be found in the personal page of the user 
but in later stages might also be available in a sidebar.  
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FIGURE 2: SCREENSHOT OF GOTRIPLE SHOWING CONTENT-BASED DOCUMENT RECOMMENDATIONS. THE TAB IS 

MARKED IN RED 

 

In line with the progress in platform development (e.g., availability of meta-data) at the time only 
document recommendations are fully implemented and available within the GoTriple platform. 

However, the software infrastructure for the recommendation of research project and research 
peers is already in place and ready to be adapted.  

The next two Sections provide a detailed technical description of the Recommender System, its 
underlying software framework ScaR (Section 3) and its application in Triple (Section 4).   
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3 SOFTWARE ARCHITECTURE 
The system architecture used in the GoTriple Recommender System (RS) is based on the scalable 
recommendation framework ScaR. This section gives a technical overview of ScaR’s software 
design, its deployment and configuration options.  

3.1 Recommender System 
In a nutshell, ScaR is composed of six modules. It implements the Microservice1 architectural 
design pattern that structures the application as a set of loosely connected but collaborating 
modules. Communication is implemented with REST-based webservices. This supports a high level 
of maintenance and testability [7].  ScaR’s general composition is depicted in Figure 3. 

 
FIGURE 3: SCAR COMPONENTS 

 

The following briefly elaborates on the function of the modules and their interconnections to each 
other: the Recommendation Service and the Data Integration Service provide interfaces to 
external systems. The Recommendation Service implements an interface for requesting 
recommendations. These recommendations are computed in the Recommender Engine which 
forms the central part of the framework. Using the Recommender Customizer module, it is 
possible to adapt the recommender to the domain data through the use of customization profiles. 

The Data Integration service provides the API for pushing item meta-data and user interaction data 
to the RS. The Data Modification Layer handles all communication (i.e., storing and querying data) 
with the underlying data backend Apache Solr 8 that serves as the main backend data storage. 

The services are implemented in the Java programming language and use either the open-source 
framework Spring2 or Dropwizard3. For deployment they are packaged as Docker images, which 
enables operating system level virtualization. 

 

The following Subsections describe the modules in greater detail. 

 
1 https://en.wikipedia.org/wiki/Microservices 
2 https://spring.io/ 
3 https://www.dropwizard.io/en/latest/ 
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 Recommendation Service 
The Recommendation Service provides RESTful services for requesting recommendations. 
Together with the Data Integration Service, it functions as the main entry- and communication -
point between the platform and the RS. When the Recommendation Service is queried for 
recommendations, the query is parsed and then sent to the Recommender Engine. Finally, the 
Recommender Engine's response is delivered to the caller. Figure 4 shows this process of 
generating a recommendation.  

 

 
FIGURE 4: SEQUENCE DIAGRAM FOR RECOMMENDATION. 

  Recommender Engine 
The Recommender Engine is the centrepiece module of ScaR since its purpose is to calculate 
recommendations. Herein Apache Solr’s built-in data structures are being leveraged to enable 
efficient similarity calculation. The Recommender Engine supports standard approaches like 
collaborative and content-based filtering as well as hybrids between them. In addition, other 
algorithms can be added as needed, depending on the particular use case. The Recommender 
Engine generates recommendations requested by the Recommendation Service as shown in 
Figure 4. For this, it retrieves the recommendation profile from the Recommender Customizer, 
generates the required search queries, queries the Data Modification Layer, and finally composes 
the recommendation result.  

IMPLEMENTED RECOMMENDER ALGORITHMS 
The RS supports the following recommendation algorithms: 
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● Most Popular (MP): This is an un-personalized algorithm. MP recommends to each user the 
same set of items, which are weighted and ranked by their popularity (e.g., the item which 
was accessed the most). 

● Collaborative Filtering (CF): This is a personalized algorithm that analyses the interaction 
data on items to find similar users, and then recommends items of these similar users [9]. 
In particular, CF finds the nearest neighbours based on some similarity metric, and then 
recommends items that the neighbours have liked but the target user still has not 
consumed. 

● Content-based Filtering (CBF): This also is a personalized algorithm that calculates item-
similarities based on content features (e.g., title, full text, keywords, ...) and then 
recommends these similar items [10]. Content-based recommendation systems analyses 
item meta-data to identify other items that could be of interest for a specific user. This can 
be done based on user profile data or on the meta-data of the items that the user has liked 
or purchased in the past. Our implementation of the content-based recommender utilizes 
similarity queries directly supported by the database backend and allows to tune 
parameters for respective built-in similarity measures, if needed.  

● Hybrid Recommendations (CCF): All three mentioned recommender algorithms have 
unique strengths and weaknesses, e.g., CF suffers from sparse data and cold start 
problems, while content-based approaches strongly depend on the quality of meta-data to 
be utilized. Hybrid recommenders combine different algorithms to tackle this issue in order 
to produce more robust recommendations. Considering that we want to favour items 
recommended by more than one method, we chose to implement a hybrid approach called 
Cross-Source Hybrid defined in [11], where the combined weighting of the recommended 
item i, is given by the sum of all single weightings from within each recommender method, 
multiplied by the weights of the recommender methods themselves. This combination can 
be further extended by theory-informed models of the problem space. 

  Recommender Customizer 
The Recommender Customizer module holds customization profiles for each recommendation 
algorithm, which allow to adapt the recommender to the domain data. Here, it is specified what is 
recommended, which features are considered, the adjustment of individual input parameters 
(e.g., the number of recommended items) and how recommendation algorithms shall be applied 
in principle. For example, we could define the similarity measure (e.g., Jaccard or Cosine) in case 
of CF or the weightings of used recommender methods in case of hybrid approaches. The 
Recommender Engine automatically takes into account respective recommender profiles to 
directly affect the calculation of recommendations. Figure 5 shows a typical recommendation 
profile and depicts the common hierarchical structure defined with the help of the YAML4  data 
serialization language [13]. Currently, ScaR supports 14 different types of recommendation 
profiles.  

 
4 https://en.wikipedia.org/wiki/YAML 
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FIGURE 5: A TYPICAL RECOMMENDER PROFILE. 

  Data Integration Service 
The Data Integration Service provides RESTful APIs for uploading data and user interactions to the 
backend database. Together with the Recommendation Service, it functions as the main entry- and 
communication-point between the GoTriple platform and the RS.  

Two types of data objects are ingested by the Data Integration Service: items, and user 
interactions. 

Items are all entities who are recommended to users. Typically, items are posted to the Data 
Ingestion’s REST interface, processed, and sent to the Data Modification Layer for storage in the 
database as depicted in Figure 6. 
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FIGURE 6: INGESTION OF ITEMS. 

 

Figure 7 shows the ingestion process for user interactions. User interactions are posted to the Data 
Integration Service’s REST interface. When interaction data is pushed to the Data Integration 
Service, then the service validates the interaction data. If the interaction is valid the service 
executes the required database updates: this includes at least the storing of the interaction itself 
but, depending on the type of interaction, other database entries (e.g., items) must be updated as 
well. The resulting database update requests are then sent to the Data Modification Layer and 
stored in the database. 
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FIGURE 7: INGESTION OF A USER INTERACTION. 

 Data Modification Layer 
The Data Modification Layer (DML) serves as data transfer intermediary between the individual 
ScaR modules and performs CRUD (create, retrieve, update and delete) operations in interaction 
with the Apache Solr database. It is responsible for encapsulating the underlying data storage and 
can be adapted accordingly. This data backend solution not only guarantees scalability and near 
real-time recommendations but also the support of multiple data sources. The DML makes 
extensive use of these search capabilities to increase the system performance. 
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  Apache Solr 
ScaR uses Apache Solr 5 as an underlying database. In principle, ScaR could be extended to work 
with different document-based database engines such as Elasticsearch6.  Currently, Solr has been 
selected as the database because it offers two major advantages for recommendation use cases. 
The first is its query speed [11], which is most important for near real-time applications such as RS 
as they demand a fast execution of the search operations. The second is its ability to work 
seamlessly with different types of entities. Solr schemas, which define how a core/collection (i.e., 
document index) stores data, are very flexible, and easy to extend via configuration files. Besides, 
Solr can have multiple cores, which allows for storing data with different structures and provides 
both full-text and similarity search.  Thanks to its cloud and cluster capabilities, Solr is well suited 
to handle big datasets and to apply distributed search and indexing which is highly relevant 
especially for long-term deployments.   

In ScaR, different cores store information about items and interactions along with metadata about 
the generated recommendations. A typical configuration in ScaR uses three Solr cores. These are 
named “items”, “interactions” and “feedbacks”. The items core contains the items to recommend, 
the interactions core contains the recorded user interactions, and the feedbacks core contains the 
calculated recommendations as well as information regarding the evaluation of the system. 

For deployment, the official Docker image is used, in a form that is adapted to the specifics of a 
project. 

3.2 Deployment 
ScaR is provided via Docker Images and runs in Docker Containers with the help of Docker 
Compose. 

 Docker Container 
Docker7 is a free software for isolating applications by using Operation System-level virtualization. 
Applications deployed with Docker are executed in entities called containers. Containers are 
standardized, lightweight, standalone, executable units. They contain the application with all its 
dependencies. These may be code, libraries, runtime, system tools, configurations and more. 
These containers are encapsulated environments and the delivered application runs within this 
environment. This isolation of containers from each other prevents conflicts between applications. 
Containers can be easily transported and installed as files, denoted as "images". This significantly 
simplifies the deployment of the ScaR modules. In comparison to virtual machines, Docker 
Containers are more efficient because with Docker the system hardware is not virtualized. Docker 
Images are also significantly smaller than images of virtual machines. 

 
5 https://solr.apache.org  
6 https://www.elastic.co/elasticsearch/ 
7 https://www.docker.com  
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Containers are isolated from each other by definition. Following the Microservice architectural 
design pattern [7], every ScaR module is deployed in its own container as depicted in Figure 8. This 
approach requires and guarantees a certain level of modularization. With this high degree of 
modularization, we ensure flexibility and a high degree of maintainability of the code and of the 
deployed system. 

 

 
FIGURE 8: SCAR MODULES DEPLOYED AS DOCKER CONTAINERS. 
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4 INTEGRATION STRATEGIES OF THE SERVICE IN GOTRIPLE 

4.1 Deployment Setting 
To meet the current requirements of GoTriple, the recommendation services are provided via two 
separate and continuously deployed instances which offer a development and a production 
environment, respectively. To operate the recommendation services for two different maturity 
levels, Know-Center offers increased backup functionality for the production-ready service 
instance. Hence, to support the development cycle executed in Triple, most recent functionalities 
and bug-fixes can be accessed via the development server at https://triple.know-
center.at/sp/swagger-ui.html. To make sure only stable versions of the service are used for the 
GoTriple production environment, the production-ready service can be accessed via https://prod-
triple.know-center.at/sp/swagger-ui.html. Both instances are secured with the help of HTTP Basic 
Authentication requiring username and password to login on top of HTTP connections which are 
encrypted with TSL. 

Continuous integration of the recommendation services is supported by the use of Jenkins hosted 
at Know-Center which in turn is also used to build and deploy the latest Docker Images of 
respective services to the two different environments. For ease of deployment and keeping the 
services independent of the underlying virtual machine environments, the recommendation 
services are run via Docker (more specifically via Docker Compose). 

4.2 System Architecture 
The system architecture is based on the scalable recommendation framework ScaR. Its general 
infrastructure and modules are depicted in Figure 9. The Data Integration Service and the 
Recommendation Service, which provide the REST interface for the GoTriple platform, are 
customized to meet Triple’s needs. The Apache Solr cores are configured to store data and 
interactions from the Triple domain, and the Recommender Customizer is equipped with 
recommendation profiles for Triple’s use cases. 

 
FIGURE 9: SYSTEM ARCHITECTURE 
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4.3 Recommender REST API 
This section provides an overview of the REST API, which can be divided into Data Ingestion 
Services and Recommendation Services. The former includes resources for storing user interaction 
to the RS and a resource to trigger the data synchronization process. The latter provides the 
services for requesting recommendations from the system. 

Please note that the schemas also reflect fields that are yet not implemented in GoTriple but have 
been agreed upon for future platform releases. This is true for instance for the search query 
objects which can only be partly completed by the current GoTriple GUI input, but already offer 
additional fields for a planned “advanced search” extension.   

Both API parts are described in OpenAPI Specification Version 2.0 format, which is formerly known 
as “Swagger RESTful API Documentation Specification” [13, 14].  

To developers the interface specification is presented through the visual documentation tool 
SpringFox [15] online 8 9, as shown in Figure 10. 

 

 

 

 
8 On the development server the API specifications are located at: 
https://triple.know-center.at/sp/swagger-ui.html and  https://triple.know-center.at/di/swagger-ui.html  
9 On the production server the API specifications are located at: 
https://prod-triple.know-center.at/sp/swagger-ui.html and https://prod-triple.know-center.at/di/swagger-ui.html 
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FIGURE 10: AVAILABLE REST-SERVICES. 
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 Triple Data Ingestion Service 
The Data Ingestion Service resources are provided by the Data Integration Service module. These 
REST resources are responsible for storing interaction data in the RS and for triggering the data 
synchronization process. The resources provided are described in more detail below. 

 

/triple/data/sync  

A call to this resource triggers the data synchronization process, which fetches and stores 
research data objects from the GoTriple Elasticsearch instance and stores it in the RS 
database. 

Type: POST 

Parameters: None 

Responses:  

TABLE 1: API RESPONSES FOR /TRIPLE/DATA/SYNC 
Code Description Schema 
200 OK GeneralResult 
 

/triple/interactions/store/follow-author  

This API call stores a “follow author” interaction to the backend database. The interaction is 
provided as a JSON object following the “Follow Author Interaction” schema. The response is a 
GeneralResult object. 

Type: POST 

Parameters:  

TABLE 2: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/FOLLOW-AUTHOR 
Name Located in Description Required Schema 

interaction body 
The follow author 
interaction data object. Yes Follow Author Interaction 

Responses:  

TABLE 3: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/FOLLOW-AUTHOR 
Code Description Schema 
200 OK GeneralResult 
 

/triple/interactions/store/open-document  

This API call stores an “open document” interaction to the backend database. The interaction is 
provided as a JSON object following the “Open Document Interaction” schema. 
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Type: POST 

Parameters:  

TABLE 4:  API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/OPEN-DOCUMENT 
Name Located in Description Required Schema 

interaction body 
The open document 
interaction data object. Yes Open Document Interaction 

Responses:  

TABLE 5: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/OPEN-DOCUMENT 
Code Description Schema 
200 OK GeneralResult 

/triple/interactions/store/open-profile   
This API call stores an “open profile” interaction to the backend database. The interaction is 
provided as a JSON object following the “Open Profile Interaction” schema. The response is a 
GeneralResult object. 

Type: POST 

Parameters:  

TABLE 6: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROFILE 
Name Located in Description Required Schema 

interaction body 
The open profile interaction 
data object. Yes Open Profile Interaction 

Responses:  

TABLE 7: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROFILE 
Code Description Schema 
200 OK GeneralResult 
 

/triple/interactions/store/open-project  

This API call stores an “open project” interaction to the backend database. The interaction is 
provided as a JSON object following the “Open Project Interaction” schema. The response is a 
GeneralResult object. 

Type: POST 

Parameters:  

TABLE 8: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROJECT 
Name Located in Description Required Schema 

interaction body 
The open project interaction 
data object. Yes Open Project Interaction 

Responses:  

TABLE 9: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/OPEN-PROJECT 
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Code Description Schema 
200 OK GeneralResult 

/triple/interactions/store/search/keyword  

This API call stores “search keyword” interaction to the backend database. The interaction is 
provided as a JSON object following the “Search Keyword Interaction” schema. The response is a 
GeneralResult object. 

Type: POST 

Parameters:  

TABLE 10: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/SEARCH/KEYWORD 
Name Located in Description Required Schema 

interaction body 
The search keyword 
interaction data object. Yes Search Keyword Interaction 

Responses:  

TABLE 11: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/SEARCH/KEYWORD 
Code Description Schema 
200 OK GeneralResult 

/triple/interactions/store/search/query  

This API call stores a “search query” interaction to the backend database. The interaction is 
provided as a JSON object following the “Search Query Interaction” schema. The response is a 
GeneralResult object. 

Type: POST 

Parameters:  

TABLE 12: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/SEARCH/QUERY 
Name Located in Description Required Schema 

interaction body 
The search query interaction 
data object.  Yes Search Query Interaction 

Responses:  

TABLE 13: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/SEARCH/QUERY 
Code Description Schema 
200 OK GeneralResult 

/triple/interactions/store/search/similar-subject  

This API call stores a “search similar subject” interaction to the backend database. The interaction 
is provided as a JSON object following the “Search Similar Subject Interaction” schema. The 
response is a GeneralResult object. 
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Type: POST 

Parameters:  

TABLE 14: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/SEARCH/SIMILAR-SUBJECT 
Name Located in Description Required Schema 

interaction body 
The search similar interaction 
data object. Yes 

Search Similar Subject 
Interaction 

Responses:  

TABLE 15: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/SEARCH/SIMILAR-SUBJECT 
Code Description Schema 
200 OK GeneralResult 

/triple/interactions/store/tag-document  

Search Similar Subject Interaction a “tag document” interaction to the backend database. The 
interaction is provided as a JSON object. The response is a GeneralResult object. 

Type: POST 

Parameters:  

TABLE 16: API PARAMETERS OF /TRIPLE/INTERACTIONS/STORE/TAG-DOCUMENT 
Name Located in Description Required Schema 

interaction body 
The tag document interaction 
data object. Yes Tag Document Interaction 

Responses:  

TABLE 17: API RESPONSES OF /TRIPLE/INTERACTIONS/STORE/TAG-DOCUMENT 
Code Description Schema 
200 OK GeneralResult 

  Triple Recommendation Service 
The recommendation service resources are provided by the Recommendation Service module. 
These REST resources are used to retrieve recommendations from the RS. The provided resources 
are described in detail below. The TripleRecoResult is described in Section 4.3.3 with more detail. 

/triple/reco/research-item-personalized  

An API call to retrieve personalized research items as recommendations. Parameters are the 
number of recommendations to generate and the ID of the user for whom the recommendations 
should be generated. The response contains the list of recommended item IDs and optionally some 
additional meta data.  

Type: GET 

Parameters:  

TABLE 18: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-ITEM-PERSONALIZED 
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Name Located in Description Required Schema 
count query Number of recommendations to be generated. No integer 

userId query 
The ID of the user for whom the 
recommendations should be generated. Yes string 

Responses:  

TABLE 19: API RESPONSES OF /TRIPLE/RECO/RESEARCH-ITEM-PERSONALIZED 
Code Description Schema 
200 OK TripleRecoResult 
 

/triple/reco/research-item-similar  

An API call to retrieve similar research items as recommendations. Parameters are the number of 
recommendations to generate, the ID of the research item which serves as an example for the 
recommendations, and the ID of the user for whom the recommendations should be generated. 
The response contains the list of recommended item IDs and optionally some additional meta data.  

Type: GET 

Parameters:  

TABLE 20: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-ITEM-SIMILAR 
Name Located in Description Required Schema 
count query Number of recommendations to be generated. No integer 

researchItemId query 
The ID of the research item which serves as an 
example for the recommendations. Yes string 

userId query 
The ID of the user for whom the 
recommendations should be generated. Yes string 

Responses:  

TABLE 21: API RESPONSES OF /TRIPLE/RECO/RESEARCH-ITEM-SIMILAR 
Code Description Schema 
200 OK TripleRecoResult 
 

/triple/reco/research-peer  

An API call to retrieve research peers as recommendations. Parameters are the number of 
recommendations to generate the ID of the research peer which serves as an example for the 
recommendations, and the ID of the user for whom the recommendations should be generated. 
The response contains the list of recommended user IDs and optionally some additional meta data.  

Type: GET 

Parameters:  

TABLE 22: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-PEER 
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Name Located in Description Required Schema 
count query Number of recommendations to be generated. No integer 

researchPeerId query The ID of the research peer which serves as an 
example for the recommendations. 

Yes string 

userId query The ID of the user for whom the 
recommendations should be generated. 

Yes string 

Responses:  

TABLE 23: API RESPONSE OF /TRIPLE/RECO/RESEARCH-PEER 
Code Description Schema 
200 OK TripleRecoResult 
 

/triple/reco/research-projects-personalized  

An API call to retrieve personalized research projects as recommendations. Parameters are the 
number of recommendations to generate and the ID of the user for whom the recommendations 
should be generated. The response contains the list of recommended item IDs and optionally some 
additional meta data.  

Type: GET 

Parameters:  

TABLE 24: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-PROJECTS-PERSONALIZED 
Name Located in Description Required Schema 
count query Number of recommendations to be generated. No integer 

userId query The ID of the user for whom the 
recommendations should be generated. 

Yes string 

Responses:  

TABLE 25: API RESPONSE OF /TRIPLE/RECO/RESEARCH-PROJECTS-PERSONALIZED 
Code Description Schema 
200 OK TripleRecoResult 
 

/triple/reco/research-projects-similar  

An API call to retrieve similar research projects as recommendations. Parameters are the number 
of recommendations to generate, the ID of the research project which serves as an example for 
the recommendations, and the ID of the user for whom the recommendations should be 
generated. The response contains the list of recommended item IDs and optionally some 
additional meta data.  

Type: GET 

Parameters:   

TABLE 26: API PARAMETERS OF /TRIPLE/RECO/RESEARCH-PROJECTS-SIMILAR 
Name Located in Description Required Schema 
count query Number of recommendations to be No integer 
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generated. 

researchProjectId query 
The ID of the research project which serves 
as an example for the recommendations. Yes string 

userId query 
The ID of the user for whom the 
recommendations should be generated. Yes string 

Responses:   

TABLE 27: API RESPONSE OF /TRIPLE/RECO/RESEARCH-PROJECTS-SIMILAR 
Code Description Schema 
200 OK TripleRecoResult 

  API Data Schema 
On several occasions JSON data objects are used in the API as parameters or response objects. 
These objects must be in line with the schemas described in this section but do not need to provide 
for all of their fields.  

Author  

The Author data object is used as an attribute of the Follow Author Interaction data object. It 
represents an author identified by the author ID and optionally the author’s name. 

TABLE 28:  DATA SCHEMA “AUTHOR” 
Name Type Description Required 
Id string The unique author ID Yes 
Name string The author’s name No 
 

Follow Author Interaction  

The Follow Author Interaction data object is used to store a follow author interaction to the 
database by use of the Data Integration Module’s REST API.  

 

TABLE 29: DATA SCHEMA “FOLLOW AUTHOR INTERACTION” 
Name Type Description Required 
Author Author Author data object Yes 
recommenderId string Optional reference of the recommended item. No 
sessionId string The user’s session ID No 

timestamp long Timestamp of the interaction in milliseconds, e.g., May 
15, 2020 = 1589500800000 

Yes 

userId string The user’s user ID No 
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GeneralResult  

The GeneralResult data object solves as result object for use cases where no data needs to be 
returned to the caller. It contains the HTTP status code and optionally a human readable 
message. 

 

TABLE 30: DATA SCHEMA “GENERALRESULT” 
Name Type Description Required 
http_status integer HTTP status code Yes 
message string Human readable status message. No 
 

Open Document Interaction  

The Open Document Interaction data object is used to store an open document interaction to the 
database by use of the Data Integration Module’s REST API.  

 

TABLE 31: DATA SCHEMA “OPEN DOCUMENT INTERACTION” 
Name Type Description Required 
documentId string ID of the opened document Yes 

openDocumentInteractionType string 

Type of the open document interaction. 
Valid values are: 

● OPEN_DESCRIPTION 
● ACCESS_DOCUMENT 
● EXPORT_INFORMATION 

Yes 

recommenderId string 
Optional reference on the recommended 
item. No 

sessionId string The user’s session ID No 

timestamp long 
Timestamp of the interaction in 
milliseconds, e.g., May 15, 2020 = 
1589500800000 

Yes 

userId string The user’s user ID No 
 

Open Profile Interaction  

The Open Profile Interaction data object is used to store an open profile interaction to the 
database by use of the Data Integration Module’s REST API.  

 

TABLE 32:  DATA SCHEMA “OPEN PROFILE INTERACTION” 
Name Type Description Required 
profileId string ID of the opened profile. Yes 

openProfileInteractionType string 
Type of the open profile interaction. 
Valid values are: Yes 
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● OPEN_PROFILE_DESCRIPTION 
● ACCESS_PROFILE 
● EXPORT_PROFILE_INFORMATION 

recommenderId string 
Optional reference on the recommended 
item. No 

sessionId string The user’s session ID No 

timestamp long 
Timestamp of the interaction in milliseconds, 
e.g., May 15, 2020 = 1589500800000 

Yes 

userId string The user’s user ID No 
 

Open Project Interaction  
The Open Project Interaction data object is used to store an open project interaction to the 
database by use of the Data Integration Module’s REST API.  
 

TABLE 33: DATA SCHEMA “OPEN PROJECT INTERACTION” 
Name Type Description Required 
projectId string ID of the opened project Yes 

openProfileIntera
ctionType 

string 

Type of the open project interaction. 
Valid values are: 

● OPEN_PROJECT_DESCRIPTION 
● ACCESS_PROJECT 
● EXPORT_PROJECT_INFORMATION 

Yes 

recommenderId string Optional reference on the recommended item. No 
sessionId string The user’s session ID No 

timestamp long Timestamp of the interaction in milliseconds, e.g., May 
15, 2020 = 1589500800000 

Yes 

userId string The user’s user ID No 
 
Search Keyword Interaction  
The Search Keyword Interaction data object is used to store a search keyword interaction to the 
database by use of the Data Integration Module’s REST API.  
 

TABLE 34:  DATA SCHEMA “SEARCH KEYWORD INTERACTION” 
Name Type Description Required 
keyword string Query keyword Yes 
recommenderId string Optional reference on the recommended item. No 
sessionId string The user’s session ID No 

timestamp long Timestamp of the interaction in milliseconds, e.g., May 
15, 2020 = 1589500800000 

Yes 
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userId string The user’s user ID No 
 

Search Query Interaction  
The Search Query Interaction data object is used to store a search query interaction to the 
database by use of the Data Integration Module’s REST API.  
 

TABLE 35:  DATA SCHEMA “SEARCH QUERY INTERACTION” 
Name Type Description Required 

query 
Search-Query-Interaction 
Query 

Query data object.  
See: “Search-Query-Interaction 
Query” 

Yes 

recommenderId string 
Optional reference on the 
recommended item. No 

sessionId string The user’s session ID No 

timestamp long 
Timestamp of the interaction in 
milliseconds, e.g., May 15, 2020 = 
1589500800000 

Yes 

userId string The user’s user ID No 
 

Search Similar Subject Interaction  
The Search Similar Subject Interaction data object is used to store a search similar subject 
interaction to the database by use of the Data Integration Module’s REST API.  
 

TABLE 36: DATA SCHEMA “SEARCH SIMILAR SUBJECT INTERACTION” 
Name Type Description Required 
subject string Subject Yes 
language string Language No 
recommenderId string Optional reference on the recommended item. No 
sessionId string The user’s session ID No 

timestamp long 
Timestamp of the interaction in milliseconds, e.g., May 
15, 2020 = 1589500800000 Yes 

userId string The user’s user ID No 
 

Search-Query-Interaction Query  
The Search-Query-Interaction Query data object is used as an attribute of a Search Query 
Interaction data object, where it represents the search query.  
 

TABLE 37: DATA SCHEMA “SEARCH-QUERY-INTERACTION QUERY” 
Name Type Description Required 
discipline string list List of disciplines No 
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text string Query text No 
type string list List of types No 
 

Tag Document Interaction  
The Tag Document Interaction data object is used to store a tag document interaction to the 
database by use of the Data Integration Module’s REST API.  
 

TABLE 38: DATA SCHEMA “TAG DOCUMENT INTERACTION” 
Name Type Description Required 
documentId string ID of the opened document Yes 
userTags string list List of tags Yes 
recommenderId string Optional reference on the recommended item. No 
sessionId string The user’s session ID No 

timestamp long Timestamp of the interaction in milliseconds, e.g., 
May 15, 2020 = 1589500800000 

Yes 

userId string The user’s user ID No 
 

TripleRecoResult  

The TripleRecoResult data object is used in the response of recommendation request calls, where 
it represents the generated recommendations. 

TABLE 39: DATA SCHEMA “TRIPLERECORESULT” 
Name Type Description Required 
http_status integer HTTP status message. Yes 
message string Human readable message. No 
reco_id string Recommendation Id. No 
results string list Recommendation results. No 

4.4 Recommendation Service 
The modular design of ScaR allows to follow a standardized recommendation sequence which is 
depicted in Figure 4. Integration efforts for the Recommendation Service focussed on the adaption 
of the REST interface provided to GoTriple and the associated validation routines. The REST 
interface and the validation routines are now tailored to TRIPLE’s use cases. Valid recommendation 
requests are parsed and mapped to the associated recommendation profile ID. Then the 
Recommendation Service requests the recommendations from the Recommender Engine and 
delivers the retrieved results to the caller. The adaptation to the domain data is done mainly via 
recommendation profiles which are described in the next section. 
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4.5 Recommendation Profiles 
For the integration with GoTriple two different types of algorithms are applied so far:  

● Collaborative Filtering and 
● Content Based Filtering 

To instantiate these algorithms for the recommendation of research items, two instances of 
recommender profiles have been created: 

● triple_document_cf.yaml: Profile for recommending personalized research items. 
● triple_document_item_cb.yaml: Profile for recommending similar research items. 

After respective data is available, additional profiles for the aforementioned algorithms will be 
prepared and will be set up for the recommendation of research projects and research peers: 

● triple_project_cf.yaml: Profile for recommending personalized research projects. 
● triple_project_item_cb.yaml: Profile for recommending similar research projects. 
● triple_user_cf.yaml: Profile for recommending individually matched research peers. 

  Personalized research items 
The recommender profile for recommending personalized research items is configured in the file 
triple_document_cf.yaml whose contents are shown in Figure 11. It uses the InteractionCfProfile 
which is a profile for the Collaborative Filtering algorithm. It is configured to recommend entities 
from the items core which is named “items”. Up to 10 items from the user’s history are considered. 
These items are extracted from the “document_id” field of the user’s last 40 interactions. Users 
are identified either by their user ID or their session ID. The interactions taken into account are of 
the types “TAG_DOCUMENT”, “OPEN_DESCRIPTION”, “ACCESS_DOCUMENT”, and 
“EXPORT_INFORMATION”. Up to 40 similar users are considered for generating recommendations. 
Users must have at least one common item to be considered for similarity calculations. Similar 
items are considered when they are of type “DOCUMENT”. Item similarity calculations are based 
on the interaction fields “users_tag_document”, “users_access_document”, 
“users_export_information”, and “users_open_description”.  DRAFT
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FIGURE 11: TRIPLE_DOCUMENT_CF.YAML 

  Similar Research Items 
The recommender profile for recommending similar research items is configured in the file 
triple_document_item_cb.yaml whose contents are shown in Figure 12. It uses the ItemCbProfile 
which is a profile for the Content Based Filtering algorithm. It is configured to recommend entities 
from the items core which is named “items”. User history is not considered for recommendations. 
Similar items are identified based on the contents of the following fields using a TF-IDF score [16] 
for: “abstracts”, “headlines”, “keywords”, “topics”, “knows_about”, , and. Currently, all fields are 
considered with the same importance. Words shorter than three characters are ignored and there 
are no limitations on term frequency and document frequency. The length of the generated 
similarity query is limited to the 25 most important terms and the query result is limited to 10 
items. Similar items are considered for recommendation when they are of type “DOCUMENT”. 
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FIGURE 12: TRIPLE_DOCUMENT_ITEM_CB.YAML 

4.6 Data Ingestion Service 
The Data Ingestion Service provides the REST interface for ingesting data and user interactions. Its 
interface and functionality have been customized for use with the GoTriple platform. In terms of 
data integration, we need to distinguish two types of data: i) static and ii) dynamic data. As static 
data we consider data that describe items relevant to the recommendation process, e.g., metadata 
of documents, projects and researchers that do not change frequently. The term dynamic data is 
used for user interaction data that is produced and updated at the time of occurrence.  

  Integration of Static Data 
TRIPLE’s research data objects serve as the items in the RS. Meta-data describing these research 
data objects are retrieved from the Elasticsearch instance of GoTriple which for now happens 
whenever a synchronisation request is made, while a subsequent version will implement a periodic 
automatic synchronization e.g., once a day. Retrieved data objects are processed and sent to the 
Data Modification Layer for storage in the database. The GoTriple data ingestion process is 
visualized in Figure 13.  
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FIGURE 13: INGESTION OF RESEARCH DATA OBJECTS IN GOTRIPLE. 

  Integration of Dynamic Data 
The approach for ingesting GoTriple’s user interaction data is depicted in Figure 14. Interactions 
are posted to the Data Ingestion Services’ REST interface, and subsequently processed and sent to 
the Data Modification Layer for storing. Interaction data validation routines have been adapted to 
accurately reflect the specifics of GoTriple’s interaction data. The processing routines have also 
been adjusted so that TRIPLE-specific attributes are handled correctly and result in the appropriate 
updates to the backend database. 
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FIGURE 14: INGESTION OF USER INTERACTION DATA IN GOTRIPLE. 

4.7 Apache Solr 
In GoTriple three Solr cores are used. These are named “items”, “interactions” and “feedbacks”. 
The Items core contains the documents, the Interactions core contains the recorded interactions, 
and the Feedbacks core contains the calculated recommendations as well as information regarding 
the evaluation of the system. Please note that the core schema also reflects fields that are yet not 
implemented in GoTriple but have been agreed upon for future platform releases.  

 The Items Core  
Item documents (e.g., research documents, projects, peers) are stored in the Items core. In a 
typical setting these are the objects which can be recommended to the users. From a conceptual 
viewpoint the fields of an item document serve one of two purposes. The first purpose is to 
describe and identify the item itself. These are fields which hold meta-data like item ID, type, 
keywords and item descriptions or in case of textual documents the item’s content. The contents 
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of these fields are static. They are defined when the item is first stored to the backend database 
and do not change unless an update is explicitly requested. The second purpose is to capture how 
users interact with the item. These fields contain for example user IDs and interaction counts. They 
represent who interacted with an item and how many interactions an item gets. These field 
contents are updated every time an interaction with the specific item is logged. For this, the atomic 
update capability of Solr is used, which allows for the isolated updating of fields in a document. 
The Items core’s configuration was adapted so that GoTriple items can be stored in the Items core. 
This domain specific configuration is located in the fields section of the schema.xml configuration 
file corresponding to the Items core. Figure 15 shows the configured fields and their data types as 
provided in the core’s schema configuration. 

 

 
FIGURE 15: ITEMS CORE SCHEMA 
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For better comprehension, the fields can be divided into several property categories. This is not 
depicted in the database but added for a better understanding of related fields. The “general” 
category contains the item id and its type. 

The fields in the “general” category hold information about the item itself. The “interaction data” 
fields contain information about the interactions and the list of session IDs associated with these 
interactions.  The fields of the Items core are listed in Table 40. 

The fields in the interaction data category are updated every time an interaction with the particular 
item is logged. For this, the Data Modification Layer uses the atomic update capability of Solr. This 
feature allows for updating fields of a document separately. The fields in the other categories 
reflect static item properties which are not affected by user interactions.  

 

TABLE 40: ITEMS CORE FIELDS 
Property 
category 

Field name 
Content 

general 

id The ID of the item. 
type Type of the stored item. 
abstracts Tokenized abstracts of the document 
abstracts_text Abstracts of the document. 

headlines The tokenized “headline” property 
retrieved from the data source. 

headlines_text The tokenized “headline” property 
retrieved from the data source. 

keywords The tokenized “keyword” property 
retrieved from the data source. 

keywords_text The “keyword” property retrieved 
from the data source. 

topics 
The tokenized “topics” property 
retrieved from the data source. 

topics_text 
The “topics” property retrieved from 
the data source. 

knows_about 
The tokenized “knows_about” 
property retrieved from the data 
source. 

knows_about_text The “knows_about” property retrieved 
from the data source. 

authors Full names of the authors. 

languages Languages in which the item is 
available. 

projects 
List of project IDs associated with the 
item. 

publishers List of publishers. 
urls List of URLs. 
contributors The “contributors” property retrieved 
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from the data source. 

additional_types 
The “additional_types” property 
retrieved from the data source. 

date_published 
The “date_published” property 
retrieved from the data source. 

interaction 
data 

users_tag_document 
An array of unique IDs pointing to 
users who tagged the document. 

users_tag_document_count Total number of times the document 
was tagged. 

users_access_document An array of unique IDs pointing to 
users who accessed the document. 

users_export_information 
An array of unique IDs pointing to 
users who exported the document 
information. 

users_open_description 
An array of unique IDs pointing to 
users who opened the document 
description. 

users_access_document_count 
Total number of times the document 
was accessed. 

users_export_information_count 
Total number of times the document 
information was exported. 

users_open_description_count Total number of times the document 
description was opened. 

users_access_project An array of unique IDs pointing to 
users who accessed the project. 

users_export_project_information 
An array of unique IDs pointing to 
users who exported the project 
information. 

users_open_project_description 
An array of unique IDs pointing to 
users who opened the project 
description. 

users_access_project_count 
Total number of times the project was 
accessed. 

users_export_project_information_count 
Total number of times the project 
information was exported. 

users_open_project_description_count Total number of times the project 
description was opened. 

users_access_profile An array of unique IDs pointing to 
users who accessed the profile. 

users_export_profile_information 
An array of unique IDs pointing to 
users who exported the profile 
information. 
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users_open_profile_description 
An array of unique IDs pointing to 
users who opened the profile 
description. 

users_access_profile_count Total number of times the profile was 
accessed. 

users_export_profile_information_count Total number of times the profile 
information was exported. 

users_open_profile_description_count 
Total number of times the profile 
description was opened. 

  The Interactions Core 
The Interactions core contains interaction data of the users. Some fields are common for all 
interaction types, such as the interaction ID, the type and the timestamp. These fields form the 
minimal required information to create a valid interaction entry. Further commonly used fields are 
the user-ID and the item-ID that describe objects involved in the interaction. Additional fields can 
be added based on the project requirements. There are also fields that are only meaningful for a 
particular interaction type. They are meant to capture interaction metadata like for example the 
query settings in case of a search interaction or keywords in case of a tagging interaction. These 
fields depend on the domain properties and are defined during ScaR integration. Like the items 
core, the Interactions core was adapted to store interaction data of GoTriple users. This domain 
specific configuration is located in the fields section of the schema.xml configuration file 
corresponding to the interactions core. Figure 16 shows the configured fields and their data types 
as provided in the core’s schema configuration. 
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FIGURE 16: INTERACTIONS CORE SCHEMA 

The fields can be divided into several property categories. The categories are not depicted in the 
database but added for a better understanding of related fields. The “general” category contains 
the fields, common to more than one interaction type. At least the interaction ID, type, and 
timestamp must be present for a valid entry. The other categories - “search query”, “search 
similar subject”, “search keyword”, and “tag document” - are only used for one particular 
interaction type. The fields of the Interactions core are listed in 

Table 41. 

 

TABLE 41: INTERACTIONS CORE – FIELD DESCRIPTION 
Property category Field name Content 

general 

id The ID of the interaction. 
type The type of the interaction. 

timestamp The timestamp indicates at which point in time a 
certain interaction was made. 

user_id The ID of the user who is responsible for the 
interaction. 
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session_id The session ID of the user who is responsible for 
the interaction. 

reco_id The ID of the recommendation which resulted in 
the current interaction. 

document_id The ID of the document the user interacted with. 
project_id The ID of the project the user interacted with. 
author_id The ID of the author the user interacted with. 
profile_id The ID of the profile the user interacted with. 

search query 
disciplines The list of disciplines stated in the query. 
query_text The query text. 
types The list of types stated in the query. 

search similar subject 
subject The subject stated in the query. 
language The language stated in the query. 

search keyword  keyword The keyword stated in the query. 

tag document user_tags 
The list of tags assigned to the document by the 
user. 

  The Feedbacks Core 
The Feedbacks core contains feedback data regarding recommendations and their respective 
evaluation metrics. This information serves for recommender evaluations as, for instance, 
implemented in the form of A/B testing. Typically, the Feedbacks core is stable over different target 
domains and fields remain as listed in Table 42. 

TABLE 42: FEEDBACKS CORE - FIELD DESCRIPTION 

Fieldname Description 

Id The ID of the recommendation. 

recomm_profile_name The name of the profile in the Recommender Customizer module used 
for generating the recommendation. 

recomm_ids An array of IDs indicating the items which were recommended. 

item_ids An array of IDs indicating the items on which the recommendation is 
based on. 

hybrid_recomm_* 10 
These fields contain additional properties of the recommendation 
algorithm. 

user_id The ID of the user who received the recommendation. 

custom_filters The recommendation filter specified on the client side used for filtering 
the results. 

recomm_algo The algorithm which was applied for calculating the recommendation. 

 
10 The Feedbacks Core contains a set of parameters starting with the suffix ‘hybrid_recomm_’. 
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max_recomm_results The number of recommendations requested by the client. 

recomm_type A parameter indicating whether users or items were recommended. 

recomm_time Datetime indicating when the recommendation happened. 

duration The time it took the recommendation algorithm to finish. 

eval_id The ID of the evaluation. 

expected_ids 
An array of items which should have been recommended. Used for 
calculating evaluation metrics. 

interaction_count The number of interactions resulting from the recommendation. 

There was no need to adapt the Feedbacks core schema as the TRIPLE evaluation requirements 
can be satisfied by the default configuration. The field configuration and their data types are given 
in Figure 17.  

 

 
FIGURE 17: FEEDBACKS CORE SCHEMA 

 

 

DRAFT



 

 

Page 44 D 5.2 Recommender System 

5 DESCRIPTION OF THE WORK DONE IN TASK 5.2 
The work done so far in this task can be summarized to the following main points: 

• Understanding the role and possibilities of the Recommender System in GoTriple 
The results of this process enter various sections of this document and the so far 
development of the RS. They are grounded on two main questions:  
(i) What kind of recommendations can support the user? This question was worked on 

in collaboration with WP3 (see also D 3.4) and is slightly discussed in Section 6. 
(ii) How can the RS be integrated in GoTriple? The outcome of this rather technical 

discussion mainly influenced the design of API and interaction sequences. 
• Integrating the Recommender System with the GoTriple main platform and its data backend 

o Setting up server environments and service instances of the RS to provide for the 
GoTriple development and the GoTriple production platform which is described in 
Subsection 4.1.Erreur ! Source du renvoi introuvable. 

o Adapting the ScaR service API and backend to meet the requirements of GoTriple 
which is described in great detail in Sections 3 and 4. 

o Further developing the technical infrastructure of ScaR to provide better flexibility 
and a more stable environment, which is described in Subsection 5.1 

• Implementing a first set of recommendations as described in Subsection 5.2 

5.1 Infrastructure Development 
As the TRIPLE project aims to innovate practices that promote the exploration of research and the 
delivery of content, the infrastructural level of services must also be considered to support the 
given ambition. Hence, the approach of deploying and hosting the recommendation services 
needed to be adapted to provide a reliable, scalable and maintainable system which can offer its 
functionality in light of the demands of the envisioned GoTriple platform.  

The previous approach of deploying the RS was to individually host and run each contained 
module/service on its own, e.g., in dedicated servers, which made it dependent on both the 
underlying operating system and 3rd party software installed. Horizontally scaling the RS, with 
regard to the number of available instances of each module to cover varying service request 
claims, was complex in terms of interventions needed.  

Therefore, the transition to containerized services (i.e., Docker containers11) bound together with 
the help of Docker Compose12 was implemented, yielding the possibility to scale services more 
efficiently. From that, the infrastructure of the RS was lifted from a manually managed set of 
services to a compact software-package independent of the operational execution environment. 
Additionally, as services are now kept together in a smaller decoupled bundle, ease of 
maintenance is improved. From that, undertaken developments also considered the reliability of 

 
11 https://www.docker.com/resources/what-container 
12 https://docs.docker.com/compose/ 
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services, as this is directly influenced by the effort for maintenance and the process to scale 
services based on the number of requests.  

Steps to create the new setup included a range of code changes so that the communication 
between the modules is able to exploit Docker-based endpoints and to allow Docker to work with 
the configurations and data needed for recommendation services. Further, respective Docker 
images, which contain required 3rd party software and operating system dependencies for the 
services to be able to execute, have been created.  

Hosting the RS together with other services from within the GoTriple platform now can be 
seamlessly implemented by adapting/extending the given Docker Compose configuration to the 
needs of the envisioned (cloud) infrastructure environment (e.g., Docker, Kubernetes13, AWS14, 
Google Cloud15, etc.). 

5.2 Recommendations in GoTriple 
Currently, two types of algorithms are deployed for the GoTriple platform: (i) Collaborative 
Filtering (CF) [9] which is a personalized algorithm that analyses items’ interaction data to find 
similar users. Subsequently, items of these similar users (i.e., nearest neighbours) are extracted 
and recommended. (ii) Content-based Filtering (CBF) [10] which calculates item similarities based 
on content features and recommends a ranked list of these similar items. The algorithms are 
described in a more general manner in Subsection 3.1.2. 

To enable CF-based recommendations, which are based on users’ interaction traces extracted 
from the GoTriple platform, different interactions are taken into account, i.e., tagging, accessing 
and opening research items and exporting information about these items. As the platform evolves, 
additional interaction possibilities can and will be included into the algorithm. To find research 
items of interest, items from within the traces of other users which share the same interests in 
research items are considered. 

To be able to offer users with content-based documents recommendations, we calculate 
similarities to a user’s currently viewed research item. These CBF recommendations are provided 
based on the similarity (i.e., using TF-IDF) of a research item’s headlines, abstracts, full texts and 
sets of categorizing keywords attached to them. As the recommender services evolve, these 
attributes will be further analysed to understand the importance of their content for improving 
the relevance of recommended research items. 

 

 

 
13 https://kubernetes.io/ 
14 https://aws.amazon.com/ 
15 https://cloud.google.com/ 
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6 NEXT STEPS AND EVOLUTIONS 
At this point in time a first set of document recommendation algorithms (described in Section 5.2.) 
is available in GoTriple. This is aligned with the current state of platform development, available 
meta-data and GUI design. As there is a strong dependency of the recommender implementation 
on the data of the application context, further recommendation strategies for research peers and 
projects have been prepared but cannot be fully implemented and integrated yet.  

However, within the upcoming period of the project we will - in line with the progressing 
development of the platform - expand the offered recommendation strategies to also suggest 
research projects and research peers with different algorithmic approaches as presented in more 
detail in Subsection 6.1.  

For additional inspiration on state-of-the-art evolutions, we will moreover attend related 
international conferences as for instance RecSys16, were we also plan to publish within the next 
phase of the project. From this, we expect insights and new trends in relation to building fair, 
transparent and bias aware recommendation systems. A selection of which will enter the design 
and further development of our ScaR framework. Subsection 6.2 provides a first glimpse on the 
impact of fairness in Recommender Systems and how it can be considered.  

6.1 Further Development of Recommendations 
In the course of work conducted by WP3 an end user workshop has been completed, which is 
described in further detail in D 3.4.            

 While the session only included seven participants, the qualitative nature of it allows us to draw 
some insights that will feed into the further development of the recommender. The following list 
is a summary of these insights:  

● Frequency of desired recommendations depends on the context.  
● Nature of desired recommendations depends on the research stage.  
● User control is essential. 
● High serendipity is important to users. 
● There is a high interest in peer recommendations. 

Taken this into account we will offer a bundle of different recommendation approaches, 
suggesting research documents, research peers and research projects. Recommendations will not 
be pushed on users but delivered on demand within the platform. Hence, a variety of 
recommendation services is provided at different entry points on the GoTriple platform. The user 
can navigate to dedicated recommendation tabs and thus controls its consumption as desired.  

Similar to the available document recommendations the RS will offer first a standard 
implementation of a content-based and collaborative filtering recommendation algorithm for 
projects as well as for research peers. Using an A/B testing approach, the recommendation services 
will then be evaluated and tailored to the specific needs of researchers who engage with the 
GoTriple platform. This will inform the fine-tuning and adaptation of the algorithms. Building on 

 
16 RecSys 2020 (Online) – RecSys (acm.org) 
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the resulting, most accurate recommendation approaches, hybrid recommendation strategies will 
be developed that also incorporate the notion of fairness.  

6.2 Fairness 
Recommender systems traditionally train on data that has been collected within the specific 
application context in the past (i.e., historic data). This data is used to calculate similarities and 
correlations that form the basis for personalized recommendations. Because historic data is 
captured from human interaction, this data and consequently the recommendations are prone 
to all kinds of biases. This may lead to the emergence of unwanted patterns in relation to a user 
e.g., filter bubble effects, or a social group e.g., the unfair treatment of specific user groups [19].   

The detection and mitigation of biases in Recommender Systems is an emerging and complex 
research field. In addition to better known classification problems, challenges arise with the 
calculation of repeated, varying and personally individual suggestions, with effects of ranking and 
often with the interest of multiple stakeholders [18].  

In the recent past we have investigated means to measure and mitigate a number of different 
biases such as gender bias [20], popularity bias [21] and confirmation bias [22].   

In GoTriple we will exploit existing expertise, providing hybrid extensions of traditional 
recommendation algorithms to mitigate 

(i) gender and popularity bias through a fair consideration of all researchers regardless of 
gender, seniority, popularity and affiliation.  

(ii) confirmation bias by optimizing algorithms not strictly for accuracy but also serendipity.  
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8 APPENDIX I: RECOMMENDATION PROFILE CONFIGURATION 
This appendix describes the most relevant recommendation profiles, followed by a description of 
the relevant parameter groups in alphabetical order. 

8.1 The InteractionCfProfile 
The InteractionCfProfile configures a collaborative filtering algorithm based on the interactions 
from many users. The underlying assumption of the collaborative filtering approach is that if 
person A has the same opinion as person B on an issue, A is more likely to have B's opinion on a 
different issue as well. 

InteractionCfProfiles start with following header: 

!!at.knowcenter.sc.recomm.common.profiles.InteractionCfProfile 

At root level a InteractionCfProfile supports the parameters and parameter groups listed in  

Table 43. 

 

TABLE 43: SETTINGS AVAILABLE FOR THE INTERACTIONCFPROFILE 

Name Type Description 

coreNames group This parameter group holds the names of the Solr cores. 
At least one of the contained parameters must be given. 

fetchUserHistoryProperties group This group contains settings for fetching the user history. 

recommProps boolean  
This parameter defines whether recommendation 
properties should be filled. This functionality is required 
for flex filters. 

recommType string  
This parameter specifies which type of entities can be 
recommended. Accepted values are “items”, “users” and 
“linkedItems” 

similarItemsProperties group settings for how to retrieve similar items 

similarUsersProperties group user retrieval settings 

8.2 The ItemCbProfile 
The ItemCbProfile configures a content-based filtering algorithm. Content-based filtering methods 
are based on a description of the item and a profile of the user's preferences. 

ItemCbProfiles start with following header:  
!!at.knowcenter.sc.recomm.common.profiles.ItemCbProfile 

At root level an ItemCbProfile supports the parameters and parameter groups listed in  

TABLE 44. 
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TABLE 44: SETTINGS AVAILABLE FOR THE ITEMCBPROFILE 

Name Type Description 

coreNames group This parameter group holds the names of the Solr cores. 
At least one of the contained parameters must be given. 

fetchUserHistoryProperties group This group contains settings for fetching the user 
history. 

mltProperties group This parameter group holds the parameters related to 
database similarity search. 

recommProps boolean  
This parameter defines whether recomm properties 
should be filled. This functionality is required for flex 
filters. 

recommType string  
This parameter specifies which type of entities can be 
recommended. Accepted values are “items”, “users” 
and “linkedItems” 

similarItemsProperties group settings for how to retrieve similar items 

8.3 Parameter groups 
The coreNames parameter group is used in all non-hybrid recommendation profiles at root level. 
It specifies which backend database cores hold which type of objects. The parameters for all used 
cores must be set. The contents of the coreNames parameter group are described in  

TABLE 45. 

 

TABLE 45: THE CORENAMES PARAMETER GROUP. 

Name Type Description 

feedback string Name of the feedbacks core. 

interaction string Name of the interactions core. 

item string Name of the items core. 

user string Name of the users core. 
 
The fetchUserHistoryProperties parameter group is used in all non-hybrid recommendation 
profiles at root level. The contents of the fetchUserHistoryProperties parameter group are 
described in  

TABLE 46. 
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TABLE 46: THE FETCHUSERHISTORYPROPERTIES PARAMETER GROUP. 

Name Type Description 

fetch boolean 
If set, to true then the user’s history data will be 
included (i.e., user’s preferences) 

interactionCoreProperties group 
Contains properties for fetching the user history based 
on the interaction core. 

itemCount integer 
The number of items from the user's history which 
should be considered. 

 

The flexFilters parameter group specifies a set of filters to define a subset of items. Parameters 
contained in the flexFilters parameter group are listed in 

Table 47. 

 

TABLE 47: THE FLEXFILTERS PARAMETER GROUP. 

Name Type Description 

fieldFilters list of 
fieldFilters 

Filters items based on a list of field name-value pairs. 
 
Example for the inclusion of items with the type 
“DOCUMENT”: 
 
fieldFilters 
  - fieldName: type 
    fieldValue: DOCUMENT 

The interactionCoreProperties parameter group contains properties for fetching the user history 
based on the interaction core. The possible entries are described in  

TABLE 48. 

 

TABLE 48: THE INTERACTIONCOREPROPERTIES PARAMETER GROUP. 

Name Type Description 

fetchType string 

Defines how documents are fetched from the interactions 
core. Possible values are “SORTED_TIME_BASED” and 
“FACETED_ITEM_COUNT_BASED”. 
 

interactionCount integer The number of user interactions to query for item extraction. 

interactionTypes list of strings Interaction types to include. 

itemFieldName string Field in the interaction core to include which identifies an 
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item. 

timeFieldName string Field to be observed if the time component of user 
interactions is important. 

userFieldNames list of strings Fields in the interaction core to include which identify users. 
 
The mltProperties parameter group holds parameters related to database similarity search. 
Available entries are described in  

Table 49. 

 

TABLE 49: THE MLTPROPERTIES PARAMETER GROUP. 

Name Type Description 

mindf integer 
Specifies the Minimum Document Frequency, the frequency at 
which words will be ignored which do not occur in at least this 
many documents. 

mintf integer Specifies the Minimum Term Frequency, the frequency below 
which terms will be ignored in the source document. 

minwl integer Sets the minimum word length below which words will be ignored. 

maxqt integer Sets the maximum number of query terms that will be included in 
any generated query. 

maxResultsPerItem integer Number of documents to include in the result of the similarity 
query. 

queries list 

List of boosting options: The importance of a field can be 
“boosted”. A boosting option contains a boosting factor (“boost”) 
and a field name (“field”). 
 
Example for boosting the fields “title” and “full_text” with different 
boosting factors: 
 
queries: 
  - boost: 1.0 
    field: title 
  - boost: 1.5 
    field: fullt_text 

 
The similarItemsProperties parameter group can be used in non-hybrid recommendation profiles 
at root level when item similarities are used in the recommendation algorithm. Available entries 
for this parameter group are described in  
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TABLE 50. 

 

TABLE 50: THE SIMILARITEMSPROPERTIES PARAMETER GROUP. 

Name Type Description 

filterUserItems boolean Whether to include user's preference data (e.g. 
users interactions with items of interest). 

flexFilters list of flexFilters Contains a list of filters, which define a subset of 
items to include. See group “flexFilters” for details. 

interactionFields group 

User interaction fields to use. This group contains 
only the parameters “fields”, which holds a list of field 
names. 
 
Example with four fields: 
 
interactionFields: 
  fields: 
  - name: users_tag_document 
  - name: users_access_document 
  - name: users_export_information 
  - name: users_open_descriptio 

usersToIgnore list of strings A list of user IDs to ignore. Typically used to filter out 
dummy users. 

 

The similarUsersProperties parameter group defines the condition for the retrieval of similar users. 
These settings are relevant when an algorithm uses user similarities. Possible values are described 
in Table 51. 

 

TABLE 51: THE SIMILARUSERSPROPERTIES PARAMETER GROUP. 

Name Type Description 

checkWhetherUsersExist boolean Check whether the users exist for which 
the interactions were recorded. 

minItemOverlap integer Minimal number of overlapping items to 
conclude that 2 users are similar. 

similarUserCount integer Maximal number of users included in the 
result of the similarity calculation. 

topKSimilarUserCount integer Maximum number of uses to include in the 
result of top K user similarity calculation. 
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 Personalized research projects 
The recommender profile for recommending personalized research projects is configured in the 
file triple_project_cf.yaml whose contents are shown in Figure Figure 18: triple_project_cf.yaml. 
The profile resembles the profile for recommending personalized research documents but uses 
interactions that can only be done on research projects. The profile uses the InteractionCfProfile 
which is a profile for the Collaborative Filtering algorithm. It is configured to recommend entities 
from the items core which is named “items”. Up to 10 items from the user’s history are considered. 
These items are extracted from the “document_id” field of the user’s last 40 interactions. Users 
are identified either by their user ID or their session ID. Project specific interaction types are taken 
into account. These are “OPEN_PROJECT_DESCRIPTION”, “ACCESS_PROJECT”, and 
“EXPORT_PROJECT_INFORMATION”. Up to 40 similar users are considered for generating 
recommendations.  Users must have at least one common item to be considered for similarity 
calculations. Similar items are considered when they are of type “PROJECT”. Item similarity 
calculations are based on the project specific interaction fields “users_access_project”, 
“users_export_project_information”, and “users_open_project_description”.  

DRAFT



 

 

Page 56 D 5.2 Recommender System 

 
FIGURE 18: TRIPLE_PROJECT_CF.YAML 

 Similar research projects 
The recommender profile for recommending similar research projects is configured in the file 
triple_project_item_cb.yaml whose contents are shown in Figure 19. It uses the ItemCbProfile 
which is a profile for the Content Based Filtering algorithm. It is configured to recommend entities 
from the items core which is named “items”. User history is not considered for recommendation. 
Similar items are identified based on the contents of following fields: “full_text”, “title”, 
“abstracts”, “headlines”, “keywords”, “topics”, “knows_about”, “disciplines”, and 
“similar_subjects”. All fields are considered with the same importance. Words shorter than three 
characters are ignored and there are no limitations on term frequency and document frequency. 
The length of the generated similarity query is limited to 25 query terms and the query result is 
limited to 10 items. Similar items are considered for recommendation when they are of type 
“PROJECT”. 
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FIGURE 19: TRIPLE_PROJECT_ITEM_CB.YAML 

Research peers 
The recommender profile for recommending research peers is another example for Collaborative 
Filtering. The profile is configured in the file triple_user_cf.yaml and uses the ItemCbProfile. File 
contents but is not finished yet. 
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9 APPENDIX II: INSTALLATION AND CONFIGURATION 

9.1 Installation Guide 
This section gives an introduction to the deployment and configuration procedure. The system is 
delivered and deployed with a working configuration.  

PREREQUISITES 
ScaR requires Docker and Docker-Compose to be installed on the host system. 

FOLDER STRUCTURE 
Figure 20 gives an overview of the folder structure on the server. The configuration files are 
located in the conf folder, the recommender profiles are located in conf/profiles, and 
the Solr database configuration goes in the solr folder. The Docker configuration is contained 
in the Docker Compose file. 

 
FIGURE 20: FOLDER STRUCTURE. 

DEPLOYMENT PROCEDURE 
1. Stop ScaR 

For proper re-deployment or modification all affected modules must be stopped. This is 
especially important if the changes affect the backend database in any way. 

To stop all services at once, change into the project root folder and execute: 

 docker-compose down 

2. Get and install the Docker images 

This step varies depending on the project. It depends on the delivery modalities agreed 
between the project partners. 

3. Database configuration 
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The system is shipped with a working database configuration. Copy the provided database 
configuration in the solr folder before the first run. It is important that the Solr database 
service has complete read and write permissions for the database folder. This condition 
must also hold for the user named “solr” inside the Docker container. The most effective 
method to achieve this is to make the solr directory with its content completely "open" in 
terms of read/write permissions. To achieve this, change to the project root folder and 
execute: 

sudo chmod -R 777 solr 

4. Copy the (updated) configuration to the conf folder. 

5. Copy the (updated) recommender profiles to the conf/profiles folder. 

Note: The conf/profiles directory must not contain other files than the 
recommendation profiles. 

6. Copy the (updated) docker-compose.yml file to the project root folder. 

7. To start ScaR, enter the project root folder and execute the final command: 

docker-compose up 

RECOMMENDER CONFIGURATION FILES 
- dml.yaml:  The configuration file for the Data Modification Layer 
- engine.yaml: The configuration file for the Recommender Engine 
- repo.yaml: The configuration file for the Recommender Customizer. 

DATABASE ACCESS CONFIGURATION 
- security.json: Solr’s configuration file for authentication and authorization. Please consult 

the official Solr documentation [11]. 

RECOMMENDATION PROFILES 
The system is delivered with preconfigured recommendation profiles. A detailed description can 
be found in Appendix I: Recommendation Profile Configuration. 

9.2  Database Configuration 
This section gives a short overview on the methods used to configure the Solr database. For 
detailed in depth documentation of Solr configuration please consult the official Solr Reference 
Guide [11]. 

Solr provides an administrative web interface, where the database can be configured with a 
comfortable graphical user interface. All operations necessary for maintenance and configuration 
can be performed here. Figure 21 shows a screenshot of the administrative web interface. 
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FIGURE 21: SOLR ADMIN GUI 

 

The Solr Admin GUI comes in handy for quick configuration updates, but initial database 
configuration becomes tedious via the admin GUI. Therefore, the core schemas are configured in 
the associated schema.xml file. These schema configuration files are matched to the target domain 
during system integration and are delivered together with the software.  
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