Leaf reflectance can surrogate foliar economics better than physiological traits across macrophyte species

Paolo Villa^{1,*}, Rossano Bolpagni^{1, 2}, Monica Pinardi¹, Viktor R. Tóth^{3,*}

¹ Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Milan (Italy)

² Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma (Italy)

³ Balaton Limnological Research Institute, Tihany (Hungary)

*corresponding authors:

P. Villa: villa.p@irea.cnr.it (email), +39.02-23699292 (phone)

V. R. Tóth: toth.viktor@blki.hu (email), +36.87-448244 (phone)

Supplementary Material

Supplementary Table S1. Summary of *in situ* samples collected for this study.

		Location		Number of leaves sampled					
Date	Site	Lat (N)	Lon (E)	Species	Reflectance spectra	Photophysiology traits	Biochemistry traits (pigments)	Structure traits	
21/07/2016	Hídvégi	46.6524	17.1433	Trapa	-	-	3	3	
21/07/2016	Hídvégi	46.6581	17.1231	Trapa	-	-	3	3	
21/07/2016	Hídvégi	46.6589	17.1238	Trapa	-	-	3	3	
21/07/2016	Hídvégi	46.6131	17.1674	Trapa	-	-	3	3	
22/07/2016	Hídvégi	46.6045	17.1665	Trapa	-	-	3	3	
22/07/2016	Hídvégi	46.6003	17.1594	Trapa	-	-	3	3	
22/07/2016	Hídvégi	46.6077	17.1428	Trapa	-	-	3	3	
22/07/2016	Hídvégi	46.6135	17.1406	Trapa	-	-	2	2	
21/07/2016	Hídvégi	46.6152	17.1675	Nuphar	-	-	3	3	
21/07/2016	Hídvégi	46.6134	17.1676	Nymphaea	-	-	3	3	
21/07/2016	Hídvégi	46.6146	17.1673	Nymphaea	-	-	3	3	
27/07/2016	Mantua	45.1578	10.7463	Nelumbo	6	6	-	-	
27/07/2016	Mantua	45.1608	10.7345	Nuphar	6	6	-	-	
27/07/2016	Mantua	45.1601	10.7294	Phragmites	6	6	-	-	
27/07/2016	Mantua	45.1608	10.7357	Trapa	5	5	-	-	
27/07/2016	Mantua	45.1611	10.7331	Trapa	6	6	-	-	
28/07/2016	Mantua	45.1624	10.7100	Ludwigia	-	6	-	-	
28/07/2016	Mantua	45.1578	10.7141	Phragmites	-	6	-	-	
29/07/2016	Mantua	45.1709	10.7971	Ludwigia	-	3	-	-	
29/07/2016	Mantua	45.1643	10.8040	Trapa	6	6	-	-	
29/07/2016	Mantua	45.1685	10.7929	Trapa	6	6	-	-	

00/07/001 6		15 1510	10.0101	T	-			
29/07/2016	Mantua	45.1513	10.8121	Trapa	6	6	-	-
29/05/2017	Mantua	45.1624	10.7101	Ludwigia	-	12	9	9
29/05/2017	Mantua	45.1631	10.7819	Nelumbo	3	3	-	-
29/05/2017	Mantua	45.1629	10.7769	Nelumbo	3	3	-	-
29/05/2017	Mantua	45.1604	10.7670	Nelumbo	3	3	-	-
29/05/2017	Mantua	45.1625	10.7092	Nuphar	-	11	11	12
29/05/2017	Mantua	45.1608	10.7346	Nuphar 4 4		4	4	4
29/05/2017	Mantua	45.1689	10.7869	Nuphar	4	4	-	-
29/05/2017	Mantua	45.1606	10.7358	Trapa	4	4	-	-
30/05/2017	Mantua	45.1705	10.7929	Nymphaea	4	4	4	4
30/05/2017	Mantua	45.1647	10.8059	Trapa	4	4	4	4
30/05/2017	Mantua	45.1705	10.7929	Trapa	4	4	4	4
30/05/2017	Mantua	45.1686	10.7926	Trapa	4	4	4	4
30/05/2017	Mantua	45.1490	10.8146	Trapa	6	6	4	4
14/06/2017	Hídvégi	46.6040	17.1667	Trapa	6	6	-	-
14/06/2017	Hídvégi	46.6523	17.1427	Trapa	6	6	-	-
14/06/2017	Hídvégi	46.6584	17.1231	Trapa	6	6	-	-
14/06/2017	Hídvégi	46.6124	17.1414	Trapa	6	6	-	-
27/07/2017	Mantua	45.1627	10.7092	Ludwigia	7	9	7	9
27/07/2017	Mantua	45.1633	10.7828	Nelumbo	6	9	9	9
27/07/2017	Mantua	45,1623	10.7739	Nelumbo	6	6	6	6
27/07/2017	Mantua	45 1611	10 7682	Nelumbo	5	6	6	6
27/07/2017	Mantua	45 1627	10.7092	Nunhar	3	3	2	3
27/07/2017	Mantua	45 1633	10.7473	Trana	9	9	27	8
28/07/2017	Mantua	45 1704	10.7473	Nunhar	6	5	6	6
28/07/2017	Mantua	45 1704	10.7927	Nymphaea	6	6	6	6
28/07/2017	Mantua	45 1688	10.7913	Trana	6	6	6	6
28/07/2017	Mantua	45 1652	10.7913	Trapa	6	6	6	0
28/07/2017	Mantua	45.1052	10.8055	Trapa	6	6	5	6
17/07/2018	Hídvági	46 6140	17 1675	Nunhar	6	6	5	0
17/07/2018	Líduági	40.0149	17.1075	Nuphar	6	0	-	-
17/07/2018	Hidvégi	40.0140	17.1074	Trana	5	0	-	-
17/07/2018	Huvegi	40.0324	17.1431	1 гара Тиара	Trapa 5 6		-	-
17/07/2018	Hidvégi	40.0388	17.1241	Trapa Trapa	Trana 6 6		-	-
18/07/2018	Hidvégi	40.0003	17.1001	Trapa Trapa	<i>i</i> 6 -		-	-
18/07/2018	niavegi	40.0127	0.7((1	1rapa	12	10	-	-
24/07/2018	v arese	45.8065	8.7001	Luawigia	12	12	-	-
24/07/2018	v arese	45.8008	8.//1/	Luawigia	12	12	-	-
24/07/2018	v arese	45.8144	8.7581	Nelumbo	0	0	-	-
24/07/2018	Varese	45.8138	8./588	Nelumbo	6	6	-	-
24/07/2018	Varese	45.8042	8.7/56	Irapa	6	6	-	-
25/07/2018	Mantua	45.1626	10.7092	Ludwigia	10	12	12	12
25/07/2018	Mantua	45.1626	10.7098	Ludwigia	12	12	11	12
25/07/2018	Mantua	45.1633	10.7838	Nelumbo	6	6	6	6
25/07/2018	Mantua	45.1614	10.7689	Nelumbo	5	6	6	6
25/07/2018	Mantua	45.1632	10.7475	Trapa	6	6	5	6
26/07/2018	Mantua	45.1704	10.7933	Nuphar	6	6	6	6
26/07/2018	Mantua	45.1704	10.7933	Nymphaea	6	6	6	6
26/07/2018	Mantua	45.1652	10.8050	Trapa _	6	6	6	6
26/07/2018	Mantua	45.1686	10.7920	Trapa	6	6	6	6
26/07/2018	Mantua	45.1482	10.8148	Trapa	6	6	6	6

Supplementary Figure S1. Violin plots (with encompassed box plots) showing range and distribution of all leaf traits - photophysiological parameters, biochemistry (pigments) and leaf structure traits - measured over 6 macrophyte species (LH=*Ludwigia hexapetala*; NN=*Nelumbo nucifera*; NL=*Nuphar lutea*; NA=*Nymphaea alba*; PA=*Phragmites australis*; TN=*Trapa natans*). Plots show significant differences (p < 0.05) in pairwise comparison performed via Dunn's post-hoc test with Benjamini-Hochberg adjustment.

Supplementary Figure S2. Comparison of NDSI correlations (p < 0.01, Bonferroni adjusted) with ETR_{max} for all samples (N = 324), in the visible to near-infrared spectral range (400-1000 nm): computed using Pearson's *r* and Spearman's ρ on raw data (top row), or Pearson's *r* based on raw and transformed $(1/\sqrt{ETR_{max}})$ data (bottom row).

Supplementary Figure S3. Comparison of NDSI correlations (p < 0.01, Bonferroni adjusted) with LMA for all samples (N = 152), in the full spectral range (400-2500 nm): computed using Pearson's *r* and Spearman's ρ on raw data (top row), or Pearson's *r* based on raw and transformed (\sqrt{LMA}) data (bottom row).

Supplementary Figure S4. Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf photophysiology parameters measured on all macrophyte species sampled (N = 324) in the visible to near-infrared spectral range (400-1000 nm).

Supplementary Figure S5. Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf photophysiology parameters measured on *Ludwigia hexapetala* samples (N = 53) in the visible to near-infrared spectral range (400-1000 nm).

Supplementary Figure S6. Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf photophysiology parameters measured on *Nelumbo nucifera* samples (N = 55) in the visible to near-infrared spectral range (400-1000 nm).

Supplementary Figure S7. Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf photophysiology parameters measured on *Nuphar lutea* and *Nymphaea alba* samples (N = 57) in the visible to near-infrared spectral range (400-1000 nm).

Supplementary Figure S8. Statistically significant (p < 0.01, Bonferroni adjusted) NDSI correlations with leaf photophysiology parameters measured on *Trapa natans* samples (N = 154) in the visible to near-infrared spectral range (400-1000 nm).

All species	<i>r</i> > 0.5				N	²(NDSI) >	0.15)				
0 400 800	0.5 0.7 0.2 0.6		0.2 0.6 1.0	5 10 15 2			2 3 4 5 0.10 0.20 0.30				
α 0.22***	0.05	0.15**	-0.27***	0.42***	0.07	-0.05	-0.01	0.30***	0.11	0.26***	-0.09
ETR _{max}	0.97***	-0.05	-0.20***	0.40***	0.24**	0.19*	0.21**	0.11	-0.03	0.17*	-0.19*
		-0.08	-0.15**	0.36***	0.26***	0.23**	0.24**	0.05	-0.05	0.12	-0.16*
	.	F _v /F _m	0.00	-0.30***	0.15*	0.13	0.02	0.01	0.24**	-0.14	-0.11
			qN	-0.07	-0.18*	-0.09	-0.08	-0.22**	-0.12	-0.08	0.10
				q₽ ⊿∏∏	0.07	0.04	0.13	0.08	-0.13	0.32***	-0.12
				-	Chl-a	0.80***	0.69***	0.18*	0.13	0.38***	0.19**
	÷	~			- AND	Chl-b	0.59***	-0.42***	0.21**	0.20**	0.21**
	÷.	<u></u>					Car	0.05	-0.55***	0.44***	0.52***
		**						Ca/Cb	-0.13	0.24***	-0.02
	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- A			James				Chi/Car	-0.36***	-0.48***
		`						- Ale			0.16*
					200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100					and the second	
0.10 0.20 0.30 1000 3000 0.0 0.4 0.8 Photophysiology						5 10 15 20 25 2 3 4 5 6 Biochemistry (pigments)				Structure	

Supplementary Figure S9. Correlation matrix of leaf traits measured over 6 species. Pairwise scatter plots are shown in the lower left half, histograms are shown on the diagonal, and the coefficient of correlation (Pearson's r) of each pair of traits is shown in the upper right half, including info about its significance level (* p<0.05, ** p<0.01, *** p<0.001).

Supplementary Figure S10. Variation of root mean square error of prediction (RMSEP) with PLSR model components, computed against the full dataset (training or leave-one-out cross-validation) for selected leaf traits estimated from leaf spectral reflectance for all macrophyte species sampled.

Supplementary Figure S11. Comparison of distribution of selected spectral proxies (NDSI) derived from APEX data at Lake Hídvégi and Mantua lakes system for mono-specific stands and connected leaf traits measured in our dataset (at peak of growth conditions). Data points represent median scores and whiskers delimit the extremes of values observed. Linear regression lines and their coefficient of determination (R²) separating stands in senescence phase at the time of overflight over Mantua site (27 September 2014) are superimposed on the graphs. LH_yel: *Ludwigia hexapetala* (with signs of chlorotic conditions); NN_sen: *Nelumbo nucifera* (in early senescence phase); NL: *Nuphar lutea*; NA: *Nymphaea alba*; TN: *Trapa natans*; TN_sen: *Trapa natans* (around senescence conditions).