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• Exascale

• AllScale

• AmDaDos (Why DD)

• Early experiments and MPI

• Conclusion and future work
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Exascale computing refers to computing systems capable of at least one exaFLOPS, or a billion

billion calculations per second. Such capacity represents a thousand fold increase over the first

petascale computer that came into operation in 2008.
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© www.allscale.euMotivation

• Exascale systems will likely be

• multi-node 

• multi-core  (millions)

• accelerator based

architectures exhibiting multiple 

levels of parallelism, including

• nodes

• sockets

• cores

• vector units, and

• instruction level parallelism

How to harness 
this power?
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• Dominating HPC languages are 

– tailored for specific architecture designs

– largely static (e.g. fixed number of threads)

• Most languages promote flat parallelism like parallel loops, which 

imposes the need for global synchronization

• Accelerator languages and MPI: 

– Low-level style of programming – everything left to the developer

• Hybrid parallel programs suffer from

– hard-coded problem decompositions schemas

– lack of coordination among runtime systems
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AllScale Vision
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Objectives

• Objective 1 – Single Source to Any Scale

– substantial improvement in productivity

• Objective 2 – Exploit Recursive Parallelism

– foundation of scalability

• Objective 3 – Multi-Objective Optimization

– time, energy, resource usage

• Objective 4 – Unified Runtime System

– one to rule them all (objects and resources)

• Objective 5 – Mitigating Hardware Failures

– let system manage recovery

• Objective 6 – Integrated Monitoring 

– runtime system supported online/offline profiling
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Conventional Flat Parallelism
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Recursively Nested Parallelism

Global Synchronisation

Local Synchronisation
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Recursive Parallelism
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• Analyzes rec primitive usage and data accesses

• Generates multiple code versions for each step

– Sequential

– Shared memory parallel

– Distributed memory parallel

– Accelerator

• Reports potential issues to programmer

– Data dependencies, race conditions, …

• Provides additional information to runtime

– E.g. type of recursion and data dependencies

– Improves dynamic optimization potential
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• Provides an abstract parallel machine as target for compiler-

generated code

• Manages distributed resources

– Data locality

– Communication & synchronization

– Accelerators

– Dynamic load balancing

• Selects from compiler-generated code versions

– Depending on hardware and execution context
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Components
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AmDaDos

Motivation

• Large Scale Oil Spills requires quick and prompt response.

• Tracking at high resolution the impact of the oil is key to proper emergency 

management operations.

• The computational complexity of high resolution models for oils spills 

tracking is computationally very difficult if real time is required.

Components

• Transport of a chemical constituent

• Data assimilation 

• Adaptive meshing

Algorithms

• First generation FEM advection-diffusion model

• Scalable data assimilation algorithms
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AmDaDos - Approach

• First generation advection-diffusion model 

with data assimilation
𝜕𝐶

𝜕𝑡
= μ

𝜕𝐶

𝜕𝑥
+ μ

𝜕𝐶

𝜕𝑦

• Domain Decomposition with FEM (ADN)

• Make data assimilation algorithms 

computationally feasible

• Requires coordination of solution 

across adjacent subdomains

• Adaptive Meshing with Data Assimilation

• refinements at observations and 

boundaries

• Computational expense dictated by number 

of cells in each domain
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AmDaDos - Challenge

• Issues

– Actual MPI existing benchmarks in DA are not scalable and  

cannot achieve real time

Nesting 

Region 

Resolution 

(meters)

# cells (108) AM FLOPS DA FLOPS Data per day 

(TB)

1) Global Model 100 0.03 6*1013 3*1018 0.2

2.1) AM oil 20 0.01 1*1014 1*1018 0.07

2.2) AM oil 4 62.5 3*1018 6*1022 432

3.1) AM coast 20 0.03 3*1014 3*1018 0.2

3.2) AM coast 4 0.34 2*1016 3*1020 2.35

4.1) AM 

observations 

20 25.0 1*1017 2*1019 172

4.2) AM 

observations

4 156.25 4*1018 2*1021 1078

Total 244.17 8*1018 N/A 1686
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AmDaDos - Utilizing AllScale

• ca 20k lines of C++ code

• FEM code 

• Sequential code and MPI code

• API with 20+ subroutines

• Synchronization

– global at each time step

– global at checkpoints

• Main solvers:

– DiscretizeSubProblemByFEM

– SolveRiccatiEquation

– SolveFilterEquation

• Global synchronization

– UpdateBoundaryData

• Libraries dependencies:

– Armadillo

– OPenBlas
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1. Experiments done on 3 x 1 

domain varying number 

elements per domain

2. Total simulation time:

1. Subdomain solution

2. Boundary Exchange

3. Subdomain solution involves 

matrix operations on n x n 

element matrix – exponential 

compute complexity

4. Schwarz exchange passes 

boundary information between 

subdomains (flat profile)

Serial performance 1) function of number Elements 
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1. Increase number of 

subdomains from 1x1 to 

10x10 (100 subdomains total). 

2. For all sims, each subdomain 

composed of 20 x 20 elements

3. Simulation time increases 

linearly as function of number 

of subdomains.

4. Schwarz does not become 

punitive (green)

5. Obviously this is serial, in 

parallel one could expect 

better scaling with concurrent 

task allocations...

Serial performance: 2) function of number domains 
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1. In serial, matrix operation 

significant component of 

total simulation time

2. Linear algebra built on 

optimized blas library with 

intrinsic OpenMP

parallelization

3. Simulation time using 

different number of openMP

threads

4. At 10000 elements 2 OMP 

threads gives superlinear

speedup of 2.43 

Pseudo parallel performance – Scaling as 

function of OpenMp threads
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1. Parallel speedup

2. Parallel efficiency

3. At 12 OMP threads 

speedup is 6.7 

corresponding to parallel 

efficiency of 55%

4. Suggests 2 OMP threads 

optimum configuration...

𝑆 =
𝑇1
𝑇𝑝

𝐸 =
1

𝑁𝑃

𝑇1
𝑇𝑝

Pseudo parallel performance – Speedup & 

parallel efficiency
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Parallel structure



© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research 

and innovation programme under grant agreement No. 671603

1. Experimental design: 40 x 40 

element subdomain attached to 

each MPI domain

2. Distributed across 7 nodes (24 

cores) with max eight MPI 

processes (with two OMP 

threads) on each node

3. Problem size increases as 

number of MPI processes 

increases

4. Provides insight into parallel 

scalability of algorithm

5. Schwarz update routine 

(MPI_Send/Recv) and Error 

Compute (MPI_reduce) contains 

MPI functions

6. Significant increase in 

simulation time up to ~10 MPI 

processes and then levels off

Parallel performance – Weak Scaling
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1. Same experimental design as 

previous

2. Equal distribution of MPI 

processes across nodes (round 

robin), e.g. for 5 MPI processes 

one process assigned to each 

node 

3. Simulation time flat up to ~ 10 

MPI processes

4. A more linear increase in 

simulation time as MPI process 

number increases beyond this

5. As before significant increase in 

simulation time due to 

Computational component (not 

MPI)

6. Of MPI component, Error 

computation the most expensive 

(global reduction)

Parallel performance – Weak Scaling – Distributed 

across cores equally
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1. Simulation time for fixed size 

problem

2. Provides insight into 

potential throughput of 

application

3. A 100 x 100 element global 

domain distributed across 

MPI domains

4. Rapid decrease in simulation 

time resulting from both 

mathematical 

implementation and work 

distribution

5. Levels off as computation 

attached to each core 

becomes too small

Parallel performance – Strong Scaling
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• Domain decomposition as an approach to reduce computational time

• Parallel improvements from OpenMP paradigm in optimized blas library for linear algebra

• MPI parallelization within subdomains:

• Efficient means to reduce simulation times

• Error computation and domain synchronization requires global MPI call which is the most 

expensive parallel module

• As number of MPI processes per node increases computational time increases:

• Multiple calls to linear algebra library

• Data locality of finite element codes

• Cache misses

• expensive component is error computation due to global calls (same as conj grad methods)

• Future work

• detailed analysis of computational expense of blas calls as number of processes increase

• move to HPX and AllScale runtime

Conclusion and Future Work


