
© www.allscale.eu

An Exascale Programming, Multi-objective Optimisation and Resilience
Management Environment Based on Nested Recursive Parallelism

This project has received funding from

the European Union‘s Horizon 2020

research and innovation programme

under grant agreement No. 671603

AllScale – Pilots Applications

AmDaDos

Adaptive Meshing and Data Assimilation for

the Deepwater Horizon Oil Spill

Emanuele Ragnoli, Fearghal O Donncha

IBM Research, Ireland

© www.allscale.euAgenda

• Exascale

• AllScale

• AmDaDos (Why DD)

• Early experiments and MPI

• Conclusion and future work

2

© www.allscale.eu

Exascale computing refers to computing systems capable of at least one exaFLOPS, or a billion

billion calculations per second. Such capacity represents a thousand fold increase over the first

petascale computer that came into operation in 2008.

3

© www.allscale.euMotivation

• Exascale systems will likely be

• multi-node

• multi-core (millions)

• accelerator based

architectures exhibiting multiple

levels of parallelism, including

• nodes

• sockets

• cores

• vector units, and

• instruction level parallelism

How to harness
this power?

4

© www.allscale.euMotivation

• Exascale systems will likely be

• multi-node

• multi-core (millions)

• accelerator based

architectures exhibiting multiple

levels of parallelism, including

• nodes

• sockets

• cores

• vector units, and

• instruction level parallelism

How to program
such systems?

5

© www.allscale.euProblems

• Dominating HPC languages are

– tailored for specific architecture designs

– largely static (e.g. fixed number of threads)

• Most languages promote flat parallelism like parallel loops, which

imposes the need for global synchronization

• Accelerator languages and MPI:

– Low-level style of programming – everything left to the developer

• Hybrid parallel programs suffer from

– hard-coded problem decompositions schemas

– lack of coordination among runtime systems

6

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

AllScale Vision

Memory

$

C C

C C

M

$

C G

M

M

$

C

M

$

C

M

$

C

M

$

C C

C C

G

M
M

$

C C

C C

G

M
M

$

C C

C C

G

M
M

$

C C

C C

G

M

Application

Unified Parallel Programming Model

Toolchain

Parallel Algorithm

Portability, Tuning,
and Resilience

Multicore Accelerators Clusters Heterogeneous Clusters

7

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

Objectives

• Objective 1 – Single Source to Any Scale

– substantial improvement in productivity

• Objective 2 – Exploit Recursive Parallelism

– foundation of scalability

• Objective 3 – Multi-Objective Optimization

– time, energy, resource usage

• Objective 4 – Unified Runtime System

– one to rule them all (objects and resources)

• Objective 5 – Mitigating Hardware Failures

– let system manage recovery

• Objective 6 – Integrated Monitoring

– runtime system supported online/offline profiling

8

© www.allscale.eu
Conventional Flat Parallelism

… global barrier

lin
e

ar p
arallel gro

w
th

How to map flat parallelism to a hierarchical parallel architecture?
Complex handling of errors – global operations

ti
m

e

A t=N

A t=0
parallelism

ti
m

e

A t=N

A t=0
parallelism

ti
m

e

parallelism

A t=N

A t=0

9

© www.allscale.eu
Recursively Nested Parallelism

Global Synchronisation

Local Synchronisation

ti
m

e

space

A t=N

A t=0

A t=N/2

10

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

Recursive Parallelism

11

© www.allscale.euCompiler

• Analyzes rec primitive usage and data accesses

• Generates multiple code versions for each step

– Sequential

– Shared memory parallel

– Distributed memory parallel

– Accelerator

• Reports potential issues to programmer

– Data dependencies, race conditions, …

• Provides additional information to runtime

– E.g. type of recursion and data dependencies

– Improves dynamic optimization potential

12

© www.allscale.euRuntime System

• Provides an abstract parallel machine as target for compiler-

generated code

• Manages distributed resources

– Data locality

– Communication & synchronization

– Accelerators

– Dynamic load balancing

• Selects from compiler-generated code versions

– Depending on hardware and execution context

13

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

Components

14

Applications [KTH,IBM,Numeca]

API-aware high-
level Compiler

[UIBK]

Unified
Runtime System

[FAU]

Standard
C++

Toolchain

Desktop
Hardware

Small- to Extreme-Scale
Parallel Architectures

O
n

lin
e

M
o

n
it

o
ri

n
g

an
d

 A
n

al
ys

is
 [

K
TH

]

R
es

ili
en

ce
 M

an
ag

em
e

n
t

[Q
U

B
]

Single Source
User Interface

Generic APIs for
abstract Algorithm

Descriptions

Development Tuning & Deployment

Code Generation for
Accelerators and

Distributed Memory

Dynamic Load, Data
and Resource
Management

Parallel
Hardware

Universal Abstract
Machine Model D

ec
o

m
p

o
si

ti
o

n
 &

R

es
tr

u
ct

u
ri

n
g

Id
en

ti
fy

 &
 E

xp
re

ss
Pa

ra
lle

lis
m

C
o

m
p

u
ta

ti
o

n
 &

 D
at

a
M

an
ag

em
e

n
t

Generic Parallel Primitives
(C++ Template API)

[UIBK] Core API [UIBK]

User-Level API [UIBK]

Pilot Applications

Scheduler [IBM]

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

AmDaDos

Motivation

• Large Scale Oil Spills requires quick and prompt response.

• Tracking at high resolution the impact of the oil is key to proper emergency

management operations.

• The computational complexity of high resolution models for oils spills

tracking is computationally very difficult if real time is required.

Components

• Transport of a chemical constituent

• Data assimilation

• Adaptive meshing

Algorithms

• First generation FEM advection-diffusion model

• Scalable data assimilation algorithms

16

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

AmDaDos - Approach

• First generation advection-diffusion model

with data assimilation
𝜕𝐶

𝜕𝑡
= μ

𝜕𝐶

𝜕𝑥
+ μ

𝜕𝐶

𝜕𝑦

• Domain Decomposition with FEM (ADN)

• Make data assimilation algorithms

computationally feasible

• Requires coordination of solution

across adjacent subdomains

• Adaptive Meshing with Data Assimilation

• refinements at observations and

boundaries

• Computational expense dictated by number

of cells in each domain

17

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

AmDaDos - Approach

• First generation advection-diffusion model

with data assimilation
𝜕𝐶

𝜕𝑡
= μ

𝜕𝐶

𝜕𝑥
+ μ

𝜕𝐶

𝜕𝑦

• Domain Decomposition with FEM (ADN)

• Make data assimilation algorithms

computationally feasible

• Requires coordination of solution

across adjacent subdomains

• Adaptive Meshing with Data Assimilation

• refinements at observations and

boundaries

• Computational expense dictated by number

of cells in each domain

18

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

AmDaDos - Challenge

• Issues

– Actual MPI existing benchmarks in DA are not scalable and

cannot achieve real time

Nesting

Region

Resolution

(meters)

cells (108) AM FLOPS DA FLOPS Data per day

(TB)

1) Global Model 100 0.03 6*1013 3*1018 0.2

2.1) AM oil 20 0.01 1*1014 1*1018 0.07

2.2) AM oil 4 62.5 3*1018 6*1022 432

3.1) AM coast 20 0.03 3*1014 3*1018 0.2

3.2) AM coast 4 0.34 2*1016 3*1020 2.35

4.1) AM

observations

20 25.0 1*1017 2*1019 172

4.2) AM

observations

4 156.25 4*1018 2*1021 1078

Total 244.17 8*1018 N/A 1686

19

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

AmDaDos - Utilizing AllScale

• ca 20k lines of C++ code

• FEM code

• Sequential code and MPI code

• API with 20+ subroutines

• Synchronization

– global at each time step

– global at checkpoints

• Main solvers:

– DiscretizeSubProblemByFEM

– SolveRiccatiEquation

– SolveFilterEquation

• Global synchronization

– UpdateBoundaryData

• Libraries dependencies:

– Armadillo

– OPenBlas

20

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. Experiments done on 3 x 1

domain varying number

elements per domain

2. Total simulation time:

1. Subdomain solution

2. Boundary Exchange

3. Subdomain solution involves

matrix operations on n x n

element matrix – exponential

compute complexity

4. Schwarz exchange passes

boundary information between

subdomains (flat profile)

Serial performance 1) function of number Elements

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. Increase number of

subdomains from 1x1 to

10x10 (100 subdomains total).

2. For all sims, each subdomain

composed of 20 x 20 elements

3. Simulation time increases

linearly as function of number

of subdomains.

4. Schwarz does not become

punitive (green)

5. Obviously this is serial, in

parallel one could expect

better scaling with concurrent

task allocations...

Serial performance: 2) function of number domains

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. In serial, matrix operation

significant component of

total simulation time

2. Linear algebra built on

optimized blas library with

intrinsic OpenMP

parallelization

3. Simulation time using

different number of openMP

threads

4. At 10000 elements 2 OMP

threads gives superlinear

speedup of 2.43

Pseudo parallel performance – Scaling as

function of OpenMp threads

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. Parallel speedup

2. Parallel efficiency

3. At 12 OMP threads

speedup is 6.7

corresponding to parallel

efficiency of 55%

4. Suggests 2 OMP threads

optimum configuration...

𝑆 =
𝑇1
𝑇𝑝

𝐸 =
1

𝑁𝑃

𝑇1
𝑇𝑝

Pseudo parallel performance – Speedup &

parallel efficiency

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

Parallel structure

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. Experimental design: 40 x 40

element subdomain attached to

each MPI domain

2. Distributed across 7 nodes (24

cores) with max eight MPI

processes (with two OMP

threads) on each node

3. Problem size increases as

number of MPI processes

increases

4. Provides insight into parallel

scalability of algorithm

5. Schwarz update routine

(MPI_Send/Recv) and Error

Compute (MPI_reduce) contains

MPI functions

6. Significant increase in

simulation time up to ~10 MPI

processes and then levels off

Parallel performance – Weak Scaling

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. Same experimental design as

previous

2. Equal distribution of MPI

processes across nodes (round

robin), e.g. for 5 MPI processes

one process assigned to each

node

3. Simulation time flat up to ~ 10

MPI processes

4. A more linear increase in

simulation time as MPI process

number increases beyond this

5. As before significant increase in

simulation time due to

Computational component (not

MPI)

6. Of MPI component, Error

computation the most expensive

(global reduction)

Parallel performance – Weak Scaling – Distributed

across cores equally

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

1. Simulation time for fixed size

problem

2. Provides insight into

potential throughput of

application

3. A 100 x 100 element global

domain distributed across

MPI domains

4. Rapid decrease in simulation

time resulting from both

mathematical

implementation and work

distribution

5. Levels off as computation

attached to each core

becomes too small

Parallel performance – Strong Scaling

© www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research

and innovation programme under grant agreement No. 671603

• Domain decomposition as an approach to reduce computational time

• Parallel improvements from OpenMP paradigm in optimized blas library for linear algebra

• MPI parallelization within subdomains:

• Efficient means to reduce simulation times

• Error computation and domain synchronization requires global MPI call which is the most

expensive parallel module

• As number of MPI processes per node increases computational time increases:

• Multiple calls to linear algebra library

• Data locality of finite element codes

• Cache misses

• expensive component is error computation due to global calls (same as conj grad methods)

• Future work

• detailed analysis of computational expense of blas calls as number of processes increase

• move to HPX and AllScale runtime

Conclusion and Future Work

