Arm prosthetic control through electromyographic recognition of leg gestures

Kenneth R. Lyons and Sanjay S. Joshi

Robotics, Autonomous Systems, and Controls Laboratory (RASCAL)

Department of Mechanical and Aerospace Engineering, University of California, Davis

Introduction

Currently, the only technique offering intuitive myoelectric
control of upper-limb prostheses to transhumeral or shoulder
disarticulation amputees is a surgical procedure called targeted
muscle reinnervation (TMR) [1].

We propose a new approach that is completely non-invasive,
where users command an upper limb prosthetic with analogous

leg gestures that are recognized by surface elctromyography
(EMG@G).

As a preliminary step toward this goal, we developed an
intuitive mapping between movements and muscles of the arm
and the leg, then we used standard methods in EMG-based
gesture recognition [2] to test the ability of naive subjects to
produce recognizable leg gestures in open loop.

Arm-Leg Mapping

Intuitive control of an arm prosthetic with leg movements
begins with a mapping between the arm and leg. Seven of the
gestures that subjects performed in our experiment are shown
below, demonstrating the natural relationship between the
degrees of freedom of both limbs.
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In addition to the gesture mapping, we have also identified a set
of muscles of the arm and leg which have analogous primary
functions on the corresponding limb. These muscles are the
ones targeted by surface EMG in our gesture recognition
system.

Methods

Subjects performed gestures with the leg in three different conditions: sitting, standing,

and standing with the leg litfted from the ground (open-loop kinematic chain). For
comparison, they also performed the analogous gestures with the arm. All recording
was done in a single session for each subject.

Six EMG sensors recorded the activity of specific muscles. The recordings were divided

iNnto segments, and for each segment, a feature vector was calculated using four time-
domain features for each channel: mean absolute value (MAV), waveftorm length (WL),

zero crossings (ZC), and slope sign changes (SSC).

Linear discriminant analysis (LDA) classified the

gestures offline.

Subjects were prompted to perform the gestures
with a custom graphical user interface which
displayed a picture of the prompted arm gesture
regardless of whether they were moving the arm or
the leg, establishing the intuitive nature of the arm-

leg mapping.
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Results

The results for three randomly selected
participants are presented. The bar plot to
the right shows classification accuracy
averaged across gesture classes for each
participant in the four different
experimental conditions.

This establishes that accuracy for leg
gestures In the sitting condition Is close to
that of the arm gestures, though it is
somewhat lower across participants.
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The confusion matrix to the left shows the
classification rates for the primary set of
gesture classes when participants
performed leg gestures in the sitting
condition. These accuracies are
comparable to results in targeted muscle
reinnervation studies.

High misclassification rates, such as toe
extension being misclassified as hallux
extension, may be caused by the proximity
of the two different toe extensor muscles
targeted and the relative difficulty of
measuring their activity via surface EMG.

Discussion

With this initial work, we have demonstrated that it is possible
to classity leg gestures using current standard techniques in
electromyographic gesture recognition. Furthermore, the
classification accuracy of leg gestures in a seated position
compares well with the same system classitfying arm gestures.

We have also developed a mapping between the arm and leg
which is natural and intuitive enough for naive subjects to
convert images of arm movements to the corresponding leg
movements with no training. This could lead to an intuitive
prosthetic control system which recognizes leg gestures and
transmits the analogous arm gestures to an upper-limb
prosthetic.
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The main limitation of this study Is that it is based on offline
analysis only, meaning subjects received no feedback regarding
classifier output during the gesture recording trials. Providing
such feedback is an essential part of evaluating a prosthetic
control scheme, so Iin the future we will run experiments in
which the classifier output is displayed to the user in real time.
This will allow us to more accurately determine the feasibility of
controlling an upper-limb prosthetic with leg gestures.
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