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Abstract : Quantitative structure activity relationship (QSAR) study has been performed on the dihydro-pyrazolyl-
thiazolinone derivatives. This study is based on modeling the COX-2 inhibitors of dihydro-pyrazolyl-thiazolinone derivatives
using topological and physicochemical parameters. It has been demonstrated that steric, electronic and topological
parameters along with indicator variables are significantly correlated with activity. The multiple regression analysis
revealed that the four-parametric model containing eq, Mv, I1, I2 are correlating parameters and best for modeling
the activity of the compounds under present study which was able to explain 89.7% of the variance in the data. The
QSAR models were tested for their statistical significance and reliability by using leave one out (LOO) cross validation
method.
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Introduction

The discovery and development of new drug is an
expensive and time consuming process. Healing effects
are hazardous to health and to estimate the property of a
drug, series of experimental and in vivo tests are required.
For experimental test, usage of animal model is often
subject to ethical considerations. Therefore alternative
methods are being developed to reduce the requirement
of animal testing. In silico methods are often implemented
due to their lower cost and high purity. Quantitative struc-
ture activity relationship (QSAR) has been widely used in
the field of drug design and now a day most of the drug
evolved by this technique. In pharmaceutical research,
QSAR has a particular interest in the preclinical stages of
drug discovery to replace the tedious and costly experi-
ments, to avoid the uses of large chemical databases and
to select specific drug candidates1. Historically, the pri-
mary objective of QSAR was to understand which pro-
perties are important to control a specific biological ac-
tivity of a series of compounds. However, the main use
of these techniques now a day is the prediction of novel
compounds on the basis of previously synthesized mole-
cules2.

Non-steroidal and anti-inflammatory drugs (NSAIDs)
provides relief from symptoms of inflammation and pain
by inhibiting the cyclooxgenases (COX) enzyme.
Cyclooxgenases enzyme are present in two isoform COX-
1 and COX-2. COX enzyme produced prostaglandins,
prostacyclin, and thromboxanes by transformation of
arachidonic acid. The primary effect of the non-steroidal
anti-inflammatory drugs (NSAIDs) is to inhibit
cyclooxygenase (COX or prostaglandin synthase [PGHS]),
thereby impairing the ultimate transformation of arachi-
donic acid to prostaglandins, prostacyclin, and throm-
boxanes3. COX-2 selective inhibitor is a form of non-
steroidal anti-inflammatory drug (NSAID) that directly
targets COX-2, an enzyme responsible for inflammation
and pain. Targeting selectivity for COX-2 reduces the
risk of peptic ulceration, and is the main feature of
celecoxib, rofecoxib and other members of this class of
drug. Therefore, the development of selective inhibitors
of compounds COX-2 is an important target in order to
reduce adverse side effects.

The pyrazole nucleus is a common scaffold which are
used in many selective COX-2 inhibitors due to their anti-
tumor4, anti-bacterial5, anti-inflammatory6 pharmacologi-



J. Indian Chem. Soc., Vol. 92, November 2015

1748

cal activities. On the other hand thiazolinone is an impor-
tant class of heterocyclic compounds, which exhibit anti-
inflammatory, anti-proliferative, anti-viral and anti-bac-
terial activity7,8. On that basis, we select dihydro-
pyrazolyl-thiazolinone derivatives for QSAR analysis as
part of continuing effort for designing of various COX-2
inhibitors. For that purpose we have taken the activity of
various derivative of dihydro-pyrazolyl-thiazolinone as
pIC50 from literature9.

Theoretical background :

In the present work, steric parameters such as mo-
lecular weight (Mw), molecular volume (Mv), molar re-
fractivity (Mr), parachor (Pc), index of refraction (IOR),
surface tension (st), density (D), molecular connectivity
(); topological parameters such as Balaban indices (J),
Wiener index (W), mean Wiener index (WA), Balaban
centric index (BAC), information theoretic index (ID);
electronic parameters such as equalized electronegativity
(eq), polarizability (Pz); and hydrophobic parameter such
as partition coefficient (log P) have been calculated for
all the derivative of dihydro-pyrazolyl-thiazolinone pre-
sented in the series. Out of above descriptors molecular
weight (Mw), molecular volume (Mv), molar refractivity
(Mr), parachor (Pc), surface tension (st), density (D),
index of refraction (IOR),  and polarizability (Pz)  were
calculated by ACD Lab Chem. Sketch version 10 Soft-
ware10 where as molecular connectivity (), Balaban in-
dices (J), Wiener index (W), mean Wiener index (WA),
Balaban centric index (BAC), were evaluated by E-Dragon
Software11. The statistical significance of the models was
determined by examining the regression coefficient, the
standard deviation, the number of variables, the cross
validation leave-one out statistics and the proportion be-
tween the cases and variables in the equation12. We have
used Hansch analysis for developing the models13. The
multiple regression analysis was used to derive the corre-
lation by using SPSS 7.5 version program.

Parameter used :

Equalized electro-negativity (eq) :

The eq was evaluated using Sanderson’s principle of
electro-negativity equalization. When two or more atoms
initially different in electronegativity combine chemically
to form a molecule, they adjust to have the same interme-
diate electro-negativity within the compound.

eq = N/ (V/)

where, N is the total number of atoms in the species

formula, V is the number of atoms of a particular ele-
ment in the species formula,  is the electro-negativity of
that particular atom.

Molar volume (Mv) :

The molar volume is the volume occupied by one
mole of a substance (chemical element or chemical com-

pound) at a given temperature and pressure.

M
Mv = ——



Information theoretic index (ID) :

It is a numerical descriptor of molecular structure and

is sensitive to size, shape symmetry and heterogeneity of
atomic environment in the molecules.

i
i

ii 1

d d
ID(G) n log 2

d d




 

ni = number of different sets.

Partition coefficient (log P) :

The octanol-water partition coefficient, P, is a mea-
sure of the differential solubility of a neutral substance

between the immiscible liquids and thereby, a descriptor
of hydrophobicity (or the lipophilicity) of a neutral sub-

stance. It is typically used in its logarithmic form, log P.

Wiener index (WA) :

The Wiener index (WA) is a widely used topological

index. It is based on the vertex-distances of the respective
molecular graph. The Wiener index (WA) was proposed
in 1947 by Wiener and is defined as the sum of overall

bonds of the product of the number of vertices on each
side of the bond.

Indicator variables :

These are not QSAR parameters but are used to indi-
cate the significance of any particular group or species at

a particular substitution site in a given series of drugs.

Results and discussion

The success of QSAR studies mainly depends whether

or not the molecular descriptors chosen are appropriate
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to explain the biological activity. In an attempt to deter-
mine the role of structural features, which appear to in-
fluence the observed activity of reported compounds,
QSAR studies were undertaken using linear free energy
relationship (LFER) model proposed by Hansch and
Fujita14–19. QSAR studies were performed on set of 20
derivatives of dihydro-pyrazolyl-thiazolinone derivatives.
The biological activity data were correlated with differ-
ent molecular descriptors such as equalized electronega-
tivity (eq), information theoretic index (ID), partition
coefficient (log P), mean Wiener index (WA), molecular
volume (Mv) which are listed in Table 1. In this series
COX-2 inhibitory activity has been expressed as IC50
values in micro molar units which represents the con-

centration of drug that inhibits 50% of COX-2 enzyme.

The values were converted to negative logarithms (pIC50)
20

in order to reduce the skewness of the data set and obtain

a linear relationship in the QSAR equations. The mono-

parametric models cannot be used for modeling the pIC50

because the quality of statistical data is not very good.

Biparametric models were also discarded because of poor

quality of statistical data. Hence, an attempt has been

made to obtain multi-parametric models. In order to study

the role of different substituents at different positions,

indicator parameters I1 for 4-H at R2 position and I2 for

2-CH3 at R2 position were introduced and are also listed

in Table 1.

Table 1. Structural detail with biological activity and physicochemical data of dihydro-pyrazolyl-thiazolinone derivatives

Compd. R1 R2 pIC50 eq I1 I2 log P ID WA Mv

1 3,4-2Me 4-H 6.301 2.349 1 0 4.710 4.579 4.847 270.60

2 3,4-2Me 4-F 5.194 2.377 0 0 4.870 4.624 5.018 273.50

3 3,4-2Me 4-Cl 5.347 2.369 0 0 5.270 4.624 5.018 279.90

4 3,4-2Me 4-Br 5.745 2.364 0 0 5.540 4.624 5.018 283.20

5 3,4-2Me 4-Me 5.921 2.340 0 0 5.200 4.624 5.018 285.80

6 3,4-2Me 4-OMe 5.538 2.356 0 0 4.590 5.302 5.225 292.30

7 3,4-2Me 3-Cl 5.284 2.369 0 0 5.270 4.624 4.960 279.90

8 3,4-2Me 3-Me 5.569 2.340 0 0 5.200 4.624 4.960 285.80

9 3,4-2Me 2-Cl 5.143 2.369 0 0 5.270 4.624 4.902 258.80

10 3,4-2Me 2-Me 5.201 2.340 0 1 5.200 4.624 4.902 261.70

11 3,4-2Cl 4-H 5.569 2.419 1 0 4.860 4.579 4.847 268.10

12 3,4-2Cl 4-F 4.712 2.454 0 0 5.010 4.624 5.018 271.40

13 3,4-2Cl 4-Cl 4.931 2.444 0 0 5.410 4.624 5.018 274.00

14 3,4-2Cl 4-Br 5.119 2.437 0 0 5.680 4.624 5.018 280.50

15 3,4-2Cl 4-Me 5.328 2.403 0 0 5.340 4.624 5.018 268.10

16 3,4-2Cl 4-OMe 5.167 2.421 0 0 4.730 5.302 5.225 274.00

17 3,4-2Cl 3-Cl 4.793 2.444 0 0 5.410 4.624 4.960 268.10

18 3,4-2Cl 3-Me 5.143 2.403 0 0 5.340 4.624 4.960 274.00

19 3,4-2Cl 2-Cl 4.735 2.444 0 0 5.410 4.624 4.902 268.10

20 3,4-2Cl 2-Me 4.788 2.403 0 1 5.340 4.624 4.902 274.00
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Multiple regression analysis of the data gave several
regression models. The first step in obtaining a statisti-
cally significant model is to investigate whether or not
any collinearity exists between the parameters used. This
is achieved by obtaining correlation matrix; which are
shown in Table 2.

The above model showed that parameter ID, log P,
WA and Mv have positive coefficient while eq have nega-
tive coefficient, which indicate that more hydrophobic
and bulkier group having more molar volume and less
electro negativity should be preferred for future drug
designing and enhances the activity of the drugs towards

Table 2. Correlation matrix demonstrating physicochemical parameters with indicator  parameters

pIC50 eq I1 I2 Mv log P ID WA

pIC50 1.000

eq –0.723 1.000

I1 0.547 –0.071 1.000

I2 –0.234 –0.179 –0.111 1.000

Mv 0.374 –0.313 –0.213 –0.274 1.000

log P –0.376 0.263 –0.463 0.102 –0.084 1.000

ID 0.027 –0.027 –0.176 –0.103 0.359 –0.572 1.000

WA –0.040 0.047 –0.476 –0.289 0.557 –0.295 0.834 1.000

Model 1

pIC50 =   –7.730 (±2.126) eq + 0.628 (±0.276) I1
– 0.414 (±0.277) I2 + 0.112 (±0.400) ID + 23.225

n = 20, R= 0.932, R2 = 0.868, R2
A = 0.833, S.E.

= 0.168 F(4–15) = 24.694, Q = 5.548

Model 2

pIC50 = –8.004 (± 2.184) eq + 0.666 (±0.299) I1
– 0.436 (±0.273) I2 + 0.127 (±0.326) log P + 23.744

n = 20, R = 0.933, R2 = 0.871, R2
A = 0.837, S.E.

= 0.166 F(4–15) = 25.318, Q = 5.620

Model 3

pIC50 = –7.665 (±1.964) eq + 0.742 (±0.296) I1 –
0.336 (±0.275) I2 + 0.760 (±0.935) WA + 19.781

n = 20, R = 0.942, R2 = 0.888, R2
A = 0.858, S.E.

= 0.155 F(4–15) = 29.603, Q = 6.077

Model 4

pIC50 = –6.884 (±2.07) eq + 0.694 (±0.252) I1 –
0.317 (±0.264) I2 + 0.010 (±0.011) Mv + 18.855

n = 20, R = 0.947, R2 = 0.897, R2
A = 0.870, S.E.

= 0.149 F(4–15) = 32.664, Q = 6.356

where, n = number of compounds in the data set, R =
correlation coefficient, R2 = coefficient of determina-
tion, R2

A = adjusted coefficient of determination, S.E.
= standard error of estimate, F = variance ratio21,22 and
Q = quality of fit23,24.

COX-2 enzyme. The positive coefficient of indicator pa-
rameter I1 suggest that presence of hydrogen (4-H) at R2
position enhances the activity of the drugs and should be
used at particular position in future drug modeling, while
negative coefficient of indicator parameter I2 suggest that
presence of methyl group (2-Me) at R2 position should be
strictly avoided in the future drug modeling.

From the above all QSAR models, model (4) is the
best model. According to model (4) compound having
lowest value of equalized electro negativity, highest value
of molar volume, presence of hydrogen (4-H) at R2 posi-
tion and absence of methyl group (2-Me) at R2 position
show highest inhibitory effect towards COX-2 enzyme.
Focusing on Table 1 we find that compound 1 has maxi-
mum value of molar volume, minimum value of equal-
ized electro negativity and hydrogen (4-H) is also present
at R2 position, which indicate that compound 1 inhibit
COX-2 enzyme more potentially which is in good agree-
ment with experimental finding Qiu et al. (2012). In or-
der to confirm that the model with excellent statistics has
also excellent prediction power too, we have evaluated
quality factor Q. The predictive power as determined by
the Pogliani Q parameter for the model (4) [Q = 6.356]
confirms that this model has excellent statistics as well as
excellent predictive power.

Predicted and residual values for the best model (4)
are given in Table 3. Predicted values are the calculated
activities of the equation and the residual values are the
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difference between the observed biological activities and
the calculated activities, which are found to be low.

In order to examine the relative potential of models,

predictive correlation coefficient (R2
Pred) were estimated

by plotting graphs between observed and calculated pIC50
values obtained with the help of model (4), which are
presented in Fig. 1. From the Fig. 1 R2

Pred value ob-
tained for model (4) is 0.897 and this is fairly high indi-
cating the quality of the models.

Cross validation :

The cross validation analysis was performed using leave
one out (LOO) method25, in which one compound is re-
moved from the data set and the activity is correlated
using the rest of the data set. The cross-validated R2 in
each case was found to be very close to the value of R2

for the entire data set and hence these models can be
termed as statistically significant. Cross validation pro-
vides the values of PRESS, SSY, PSE, R2

CV and R2
A

from which we can test the predictive power of the pro-
posed model. These statistical parameters can be calcu-
lated from following equations :

PRESS = (Xobs – Xcal)
2 (i)

SSY = (Xobs – Xmean)
2 (ii)

PSE PRESS/n (iii)

PRESS
R2

cv = 1 – ————— (iv)
SSY

2 2
A

n 1
R 1 (r )

n p 1

 
     

(v)

Table 3. Comparison between observed and predicted activities
and their residual values for model (4)

Sr. pIC50 Model (4)

no. (Observed) Predicted activity Residual  activity

1. 6.301 6.189   0.112

2. 5.194 5.332 –0.138

3. 5.347 5.454 –0.107

4. 5.745 5.523 0.222

5. 5.921 5.715 0.206

6. 5.538 5.672 –0.134

7. 5.284 5.454 –0.170

8. 5.569 5.715 –0.146

9. 5.143 5.235 –0.092

10. 5.201 5.147 0.054

11. 5.569 5.681 –0.112

12. 4.712 4.781 –0.069

13. 4.931 4.876 0.055

14. 5.119 4.992 0.127

15. 5.328 5.097 0.231

16. 5.167 5.035 0.132

17. 4.793 4.815 –0.022

18. 5.143 5.159 –0.016

19. 4.735 4.815 –0.080

20. 4.788 4.842 –0.054

Fig. 1. A plot showing comparison between observed activity and predicted activity of model (4).

JICS-20
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It is argued that PRESS, is a good estimate of the real
predictive error of the model and if it is smaller than SSY
the model predicts better than chance and can be consid-
ered statistically significant. Furthermore, the ratio of
PRESS/SSY can be used to calculate approximate confi-
dence intervals of prediction of a new compound. To be
a reasonable QSAR model PRESS/SSY should be smaller
than 0.4. Also, if PRESS value is transformed in a di-
mension less term by relating it to the initial sum of
squares, we obtain R2

CV i.e. the complement to the traces
on of unexplained variance over the total variance. The
PRESS and R2

CV have good properties. However, for
practical purposes of end users the use of square root of
PRESS/n, which is called predictive square error (PSE),
is more directly related to the uncertainty of the predic-
tions. The PSE values also support our results. The cal-
culated cross-validated parameters confirm the validity of
the models. All the requirements for an ideal model have
been fulfilled by model (4), that’s why, we have consid-
ered model (4) as the best model. R2

A takes into account
the adjustment of R2. R2

A is a measure of the percentage
explained variation in the dependent variable that takes
into account the relationship between the number of cases
and the number of independent variables in the regres-
sion model, whereas R2 will always increase when an
independent variable is added. R2

A will decrease if the
added variable does not reduce the unexplained variable
enough to offset the loss of decrease of freedom.

Predictive error of coefficient of correlation (PE) :

The predictive error of coefficient of correlation (PE)26

is yet another parameter used to decide the predictive
power of the proposed models. We have calculated PE
value of all the proposed models and they are reported in
Table 4. It is argued that if the values R < PE, then such
correlation is not significant; however if values are R >
PE in several times (at least three times), then values are
correlated. However, if values are R > 6PE, then math-

ematically the correlation is unquestionably good. For all
the models developed the condition R > 6PE is satisfied
and hence they can be said to have a good predictive
power.

Conclusions

The current study was performed to examine the ap-
plicability of the various empirical parameters in QSAR
analysis for studying the biological activity of a series of
dihydro-pyrazolyl-thiazolinone derivatives as potential
COX-2 inhibitors. The calculated QSAR results based on
empirical parameter demonstrate that more hydrophobic
and bulkier group having more molar volume and less
electro negativity should be preferred in future drug de-
signing and enhances the activity of the drugs towards
COX-2 enzyme. Indicator parameter suggest that  the
presence of hydrogen (4-H) and absence of methyl group
(2-Me) at R2 position enhances the activity of the drugs
towards COX-2 enzyme.
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