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* It has been estimated that a typical human is capable of * Target specifically and with high affinity
producing more than 10 different antibodies, each

capable of binding a distinct epitope * Can be raised against almost any antigen

e Recognise and bind to potentially harmful molecules e Currently >100 approved antibody “drugs”
(antigens)
* Antibody-based therapeutics are entering clinical study at

* Either inhibit the antigen themselves or recruit other a rapid rate
parts of the immune system to deal with them




Antibody Sequence/Structure - Orientation
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Antibody Next-Generation Sequencing

(immune repertoire seq
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GGTCCCTGAGACTCTCCTGTGCAGCCTCT
GGATTCACCTTTGATGATTATGCCATGCAC
TGGGTCCGCCAAGCTCCAGGGAAGGGCT
GGAGTGGGTCTCAGGTACTAGTTGGAGTA
GTAGTTCCATAGGCTATGTGGACTCTGTGA
AGGGCCGATTCACCATCTCCAGAGACAAC
GCCAAGAACTCCCTGTATCTGCAAATGAAC
AGTCTGAGAGTTGAGGACACGGCCTTATAT
TACTGTGCAAAAGATGTTCTTAGCCGCAGC
TGGCGATATCTTGACCCCTGGGGCCATGGA
ACCCTGGTCACCGTCTCCTCAGCATCCCCG
ACCAGCCCCAAGGTCTTCC
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* Snapshots between 10*and 107 antibody
sequences

* Theoretical antibody repertoire in humans
>1012- 101>

e Circulating diversity ~ 10°

* Naive human antibody repertoire

* Pre and post immunisation datasets

» Sequences repertoires from different
species
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Observed Antibody Space
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The Structural Antibody Database

Thera-SAbDab

(Therapeutic Structural Antibody Database)

Raybould et al. (2020)
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Observed Antibody Space

Over 80 BCR repertoire studies covering ~ 1.5 billion antibody sequences
across diverse immune states, organisms and individuals.

Contains Paired and unpaired data

Sorted, cleaned, annotated, translated and numbered

Structural Antibody Database
Fully automated updating collection of all publicly available antibody
structure data

As of 315t October 2021 contains 5534 structures

4575 antibody antigen complexes

Collect, curate and present structural data consistently.
Contains antibodies and nanobodies (849)

Thera-SAbDab

Self updating database of immunotherapeutic variable domain
sequences and their corresponding structural representatives in SAbDab

Harvests therapeutic sequences as they are released by the World Health
Organisation

October 2021 (696 entries)




Looking for Therapeutic Antibodies in OAS

Most similar OAS antibodies to variable regions of CSTs.
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242 post phase-1 antibodies

Unexpected high percentages of sequence

overlap with therapeutics

Many can be found in OAS with sequence

identities >95%

Enfortumab, heavy and light chain have 98%

seqlD

differences H38:N-S, H88:S-Y, L37:G-S, L52:F-L

54 have a perfect CDRH3 match

22 of these found in more than one dataset

A\

Krawczyk et al. (2019). mAbs



AbodyBuilder
Leem et al (2016)
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SPHINX
Marks et al (2017)

Dlab
Schneider et al (2021)

SCALOP
Wong et al. (2018)
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ATWDGSLRTV
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""" PEARS
SR Leem et al (2018)

ANARCI
Dunbar et al (2016)

ABlooper
Abanades et al. (2021)

AbAngle
Dunbar et al (2013)

¢ SAbPred

The Antibody Prediction Toolbox

Marks et al. (2021)

Epitope Profiling -

SPACE

Robinson et al. (2021)

BCR
repertoires
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Kovaltsuk et al. (2020)

Richardson et al. (2021)
Wong et al. (2021)
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> About Hu-mAb

o Hu-mAb is an antibody humanisation tool.

° Using ictrge—scaie sequence data from OAS, we genem‘ced Random Forest models that ciassify an’tibody variable
domain sequences as human/non-human.

o By making mutations that increase the 'humanness' score, we can efficiently humanise an antibody sequence,
making it less likely to be immunogenic.

o Mutations are only made to framework regions; CDR residues are left alone to maintain the antibody binding
properties.

o If not specified, the V-gene family to which your sequence will be compared is selected by evaiuating the
humanness score for the sequence compared to each V-gene type, choosing the highest-scoring.

o The Random Forests for each V-gene type have default 'threshold' scores - a humanness score above this value
would mean that the sequence is classified as human, and so by default this is the score the humaniser will try to
reach. However, if you would like to set your own threshold value you can.

o An exqmple of the output produced by Hu-mAb can be seen : Marks et al (2021) Bioinformatics



Humanization of antibodies using a machine
earning approach Hu-mAb

* Many antibody therapeutics derived from non-human sources
* “50% of those currently in development

* ‘Non-human’ antibodies can result in a potentially harmful immune
response in patients (immunogenicity)

* Important to ‘humanize’ antibody therapeutics for safety & efficacy

* Currently, humanization is normally carried out experimentally, in a
largely trial-and-error process.



Random Forest (RF) machine learning models built with >65 million

human and non-human sequences from the OAS database

.;, .l i1 | UM | . .
WWWWH‘W AL Train, Validate and Test Random
% OAS >65 million sequences total Forest Models

Observed Antibody Space
1 TR Separate into human (by V gene) & I%I

ARl | i non-human r()j
lgG sequences

Remove redundant sequences One-hot encode 1 1
Remove sequences missing Cys or FR1

Human Non-Human

« Separate models for each human V gene type

Human / non-human classification threshold set to maximize Youden's J statistic
(model performance)



Classification performance on OAS held out sets

Hu-mab e
VH ROCAUC YJS ROCAUC  YJS
V1 1.000000000 1.000000 [0.999772 0.9960
V2 1.000000000 1.000000 |0.999996 0.9970
V3 1.000000000 1.000000 |0.994383 0.9418
V4 1.000000000 1.000000 |0.991764 0.9917
V5 1.000000000 1.000000 |0.999954 0.9981
V6 1.000000000 1.000000 |0.999999 0.9997
V7 1.000000000 1.000000 |0.999991 0.9991
VL LSTM
Kappa ROCAUC YJS ROCAUC  YJS
V1 0.999999853 0.999796 |[0.939153 0.6790
V2 0.999999998 0.999958 |[0.997548 0.9481
V3 0.999999998 0.999956 |[0.993947 0.9156
V4 1.000000000 0.999997 |0.998431 0.9746
V5 1.000000000 1.000000 |0.999992 0.9993
V6 1.000000000 1.000000 |0.999683 0.9930
VL LSTM
Lambda ROCAUC YJS ROCAUC  YJS
V1 0.99999999994  0.999996 [0.998347 0.9702
V2  0.99999999998  0.999997 |0.995076 0.9191
V3 0.99999998860  0.999950 |0.999284 0.9740
V4  1.00000000000 0.999987 |0.999989 0.9989
V5 0.99999999941  0.999954 |0.999981 0.9959
V6  1.00000000000 1.000000 |0.999962 0.9939
V7  1.00000000000 1.000000 |0.999802 0.9919
V8  1.00000000000 1.000000 |0.999999 0.9996
V10  1.00000000000 0.999692 |0.999732 0.9933

Separate models for each HV, KV, LV
genes

Achieve very high ROC AUCs all over 0.99

Hu-mAb outperforms previous LSTM in
both AUC and YJS scores (Wollacott et al
2019)

Also outperforms more recent

humanness scorer BioPhi OASis (Prihoda
et al 2021)



Testing Hu-mAb on known therapeutics

\/ 100 1
Human . VL
75 . B v
- No. Ab Therapeutics
Humanized 50 4 Human 176
: Humanized 214
Chi/Humanized 34
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Mouse 14
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% therapeutics classified as human

Mouse Tested on known therapeutics (Phasel-3 & Approved) from Thera-SabDab



Relationship between Hu-mAb scores and experimental
Immunogenicity.

o 100% 5 88% 1.75%
= 90% 14.04% 14.67%
9_ D 80%
S< 70y
< <DE 37.33%
< — 60% L ..
S h ADA >50%  High immunogenicity
¢ 0
9 _8 50% 94 129% 54 215 ADA 10-50% Medium immunogenicity
E) — 40% - ADA <10%  Low immunogenicity
= 30%
o < 48.00%
5 20%
X 10%
0%
Positive Positive Negative
(high score, (score <0.9)
score > 0.9)

Therapeutic sequences classified as human by our model tend to have low immunogenicity levels,
while sequences classified as not human are more immunogenic




The Hu-mAb humanization procedure

* Computationally suggest the optimal mutations that would lower
Immunogenicity.

precursor IEVKLLESGGGLVQPGGSMRLSCAGSMNWIRQPAGKAPEWLGFEYNPSVKGRFTISRDNTQNMLYLQMNTLRAEDTATVYC
IEVKLLESGGGLVQPGGSMRLSCAGSHNWIRQPAGKAPEWLGFEVNPSVKGRFTISRDNTQNMLYLQMNTLRAEDTATYYCWGQGVMVTVSS
RvKirEsce6LvaPGGsHRLSCAGSIIREMERAMN Y IRQPAGKAPEWLG FEA R RRAE Y N PSVKGRFTISRONTQNMLYLQMNTLRAEDTATY Y (LA LR ARARg" GQGVHVTVSS

IQVKLLESGGGLVQPGGSMRLSCAGSHNWIRQPAGKAPEWLGFEYNPSVKGRFTISRDNTQNMLVLQMNTLRAADTATVYCWGQGVMVTVSS

vm

Hu-mAb

output VK EscPG LVKPSETHR LT CAGSIRRRREIRINN W TRQPAGKAPEWLG R L ARRRIE Y N PSLKGRFTISVDTTQNMESLQNNTUTAADTATYY (L ARV AR]" GQGVMVTVSS

experimental

result [RveroescPeLvRPsoTLSLTCTVS I RERRARd" N VROPPGRGLEWLG FIA A ARAME Y N PSVKGRVIMLVDTSKNQFSLRLSSVIAADTAVY Y (IR R A" GQGSLVTIVSS

[ = same as experimentally-derived sequence B = similar to experimentally-derived sequence B = different to experimentally-derived sequence

Tested Hu-Mab on 25 humanized sequences that demonstrated low
immunogenicity and for which the precursor sequences were available.

* Precursors were of murine, rat or rabbit origin



Evaluation of Humanization by Hu-mADb

25 therapeutic
antibodlies erimé

Precursor (Non-Human)

Sequence N
“mag

Humanized Sequence

" Humanness threshold set to Hu-mAb humanness
score of the experimentally humanized sequence

77/85% VH/VL 59/58%
of mutations suggested are as many suggested
similar to those made by Hu-mADb, as
experimentally experimentally

Comparison of Hu-mAb results with experimental
humanization demonstrates good agreement but greater
efficiency -

Hu-mAb proposes fewer mutations to the VH-VL interface
making the orientation and therefore binding properties
more likely to be preserved.

-> greater likelihood of preserving antibody structure &
function



* Accurately evaluate whether an antibody is ‘human’ or not (humanness)
* Predict whether an antibody is immunogenic

* Be used to improve the humanness of a sequence

Available as a webserver at: opig.stats.ox.ac.uk/webapps/humab

Marks, C., Hummer, A.M., Chin, M. and Deane, C.M., Bioinformatics, 2021



Structurally annotating Immune
repertoire data



Similar structure/similar sequence

A o % g B
." RMSD = 1.03AR '+
Pair | PDB V gene J gene CDRH3 Sequence | pyropy
identity

| NZU [ IGHV3-30°11 | IGHJ4%01 | ARAPDCADADCHKGAFGY | .~ | |
4S1S | IGHV1-2*04 | IGHJ1*01 | VRTADCERDPCKGWVFPH % | L

o | 3U7W [ IGHVI-2%02 | IGHJI*01 | TRGKYCTARDYYNWDFEH | oo |
4DV | IGHV1-2*02 | IGHJ1*01 | ARGKYCTARDYYNWDFQH ' :

Kovaltsuk et al. (2017). Front. Immunol.



Structural information on BCR repertoire antigen
specificity

H3 sequences from the FLU dataset 4m5z — antibody bound to

LVRGSYPDPLYYFDY SAAB
HASVTAVDTFNWIDP seructurat ) Yorn

mapping l‘ NS
LSASSYGRAQYYTDF | | Y,
LVRGSYPDPLYYFDS | :
GIRGRQPDRTYHFDF ] Vs

W, Influenza-
...... i:‘b recognizing
H3

Example: Post FLU challenge Ig-seq
Many H3 sequences (>7000) are structurally the same as those in 4m5z — complex of

an antibody with influenza hemagglutinin

The similarity of these H3s could not be identified by sequence alone

Krawczyk et al (2018) Front. Immunol



The Therapeutic Antibody Profiler (TAP)
Five Computational Developability Guidelines

* Therapeutic antibodies must not only bind to their target but must also be free from
‘developability issues’ such as poor stability or high levels of aggregation.

* TAP is an in-silico antibody design analog of the Lipinski’s rule of five for small molecules
* to guide the selection of antibodies with appropriate biophysical properties

* Derive distributions of metrics for clinical stage therapeutics and assume that these
indicate the allowed values of these properties.

* Calculate these metrics on models so can run against potential therapeutics where crystal
structures are unavailable

* These metrics don’t have to correlate with a particular experiment that tests for
developability rather they indicate that a potential therapeutic has outlying values.

Raybould et al (2019) PNAS



Datasets — structural models

* Models of the variable domain
structures of 137 post-Phase |
clinical-stage antibody
therapeutics (CSTs)*

* Models are accurate enough for
our metrics (tested with the 56
CSTs with known structure)

* Average RMSD of framework < 1A

* Less than 4% of residues are
wrongly annotated
exposed/buried

*Jain et al (2017) PNAS



Five properties:

1. CDRH3 or Total CDR length [aggregation, flexibility, topology]

2. Patches of Surface Hydrophobicity (PSH) across the CDR Vicinity [aggregation, viscosity]

3. Patches of Surface Positive Charge (PPC) across the CDR Vicinity [poor expression, aggregation, viscosity, polyspecificity]
4. Patches of Surface Negative Charge (PNC) across the CDR Vicinity [poor expression, aggregation, viscosity, polyspecificity]
5. Structural Fv Charge Symmetry Parameter [aggregation, viscosity]

Datasets:

137 Post-Phase |

14k Representative 2 Datasets of Medimmune

Therapeutic Models Human Antibody Models?3 Developability Failures

Sets the acceptable bounds Provides a Used to validate that we can
of the five properties “natural antibody comparison” selectively highlight mAbs with
developability issues

2Vander Heiden JA, et al. (2017) Dysregulation of B cell repertoire formation in myasthenia gravis patients revealed through deep sequencing. J. Immunol. 198:1460-1473.
3Raybould, MlJ et al. (2019) Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 116(10):4025-4030.



Comparisons: Therapeutics vs. Human Antibodies

Proportion

CDRH3 Length Patches of Surface Hydrophobicity (PSH)
0.201
Therapeutic Abs 0.081 — Therapeutic Ab Models
0.15 - Hydrophobic
= 2.00
S 0.06; —— Human Ab
0.10 — Human Ab o Models 1.66
S 0.04/
o 1.33
0.05 0.021
1.00
0.00- Hydrophilic
80 100 120 140 160 180 200 220

0.00-

8 10 12 14 16 18 20 22 24 26 28
Length

4 ©

CDR Vicinity PSH Score (Kyte & Doolittle)

H(R1,S) H(R2,S)
z 2
R1R2 12

- Therapeutics tend to have shorter CDRH3s and smaller patches of surface hydrophobicity than human antibodies



Proportion

Comparisons: Therapeutics vs. Human Antibodies

4.0

Patches of Surface Positive Charge (PPC) Patches of Surface Negative Charge (PNC)
0.7 0.5
0.6
0.4
0.5 -
é 0.3
EU.2
0.1
°%0 0.5 10 15 2.0 25 3.0 3.5 4.0 990 0.5 1.0 1.5 20 2.5 30 35
CDR Vicinity PPC Score CDR Vicinity PNC Score
z |Q(RD)| |Q(R2)| Blue: Therapeutic Antibody Models
2 Red: Human Antibody Models

T
R1R2 12

- Therapeutics and human Abs have similar sizes of positive charge and negative charge patches



Comparisons: Therapeutics vs. Human Antibodies

Structural Fv Charge Symmetry Parameter (SFvCSP)

0.25-
— 0.20-
9O
£ 0.15
Q
O
L 0.10-
0.05-
0.00+ . =
-40 -20 0 20 40
Structural FVCSP Score
z Q(Ry) z Q(Ry) Blue: Therapeutic Antibody Models
Ry RL Red: Human Antibody Models

- Both therapeutic and human antibodies have an aversion to strongly oppositely-charged VH and VL chains



Validation: Things TAP shouldn’t flag

e Tested against 105 extra post-Phase | therapeutics

Metric 137 CST Amber Flag Region  Number Amber Flagged 137 CST Red Flag Region  Number Red Flagged
Total CDR Length (L) 54 < L < 59 6 L > 59 2"
PSH, CDR Vicinity (Kyte) 85.65 < PSH < 98.74 2 PSH < 85.65 1

155.76 < PSH < 171.91 5 PSH < 171.91 1*
PPC, CDR Vicinity 1.23 < PPC < 1.51 1 (> 1.51) 5*
PNC, CDR Vicinity 1.90 < PNC < 3.50 4 (> 3.50) 0
SFvCSP -39.00 < SFvCSP < -18.00 1 (< -39.00) 1

*Erenumab flagged for each of these properties

* Low red-flagging rate (8 of 105), implies won’t pick out genuine therapeutics as having
issues very often.



Validation

M-1912 aggregated uncontrollably during
development, and exhibited extremely high
values in our CDR Vicinity PSH metric.
M-1912STT resolved the issue.

A001 had prohibitively poor expression levels,
and exhibited extremely high values in our CDR
Vicinity PNC metric.

fixed the issue (backbone engineering)
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TAP guidelines auto-updating

New ..
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(2 CoV-AbDab

® The Coronavirus Antibody Database
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The (Dept, of Statistics, Univelsify of Oxford) is coHabora’[ing in efforts to understand the immune response to

SARS-CoV2 infection and vaccination. As part of our investigations, we are releasing and maintaining this pubhc database to document all

pubhshe&/pa’[en’[ecl binding_antibodies and nanobodies to coronaviruses, including SARS-CoV2, SARS-CoV1, and MERS-CoV.

Explanations and a preliminary analysis of the database contents can be found in our in Bioinformatics. Please consider citing it

if you are making use of our database in your research.

If you have 1‘ecenﬂy released a preprint, paper, or pubhcahon with SARS-CoV-2 ]oinding antibodies, please let us know by emaihng opig [at]

stats.ox.ac.uk.

> Downloads

> Search Database by Attribute

To view all entries, leave all search fields as 'All' and click 'Search'.

Raybould et al. (2020). Bioinformatics.



Epitope profiling: it’s really important to know
where pathogen response antibodies bind...

. N501Y a neutralising antibody that binds wildtype SARS-CoV-2
' here is much more likely to be SARS-CoV-2 variant-specific

SARS-CoV-2 Spike RBD

/Better epitope profiling allows us to gain \
E484K improved understanding of which binding
modes give each individual B-cell immunity

_ -> evaluate susceptibility to new variants
@ -> possibility of targeting “sub-dominant”

\iites through monoclonal antibody design /

L, | a neutralising antibody that binds wildtype SARS-CoV-2

T here would be more likely to neutralise the variants



Computational Epitope Profiling using solved
structures

CDRH3 Sequences

AREAYGMDV
ARSPYGGNS
AREVAGTYDY
ARDVADAFDI
ARDFYEGSFDI
ARDLGPYGMDV
ARDFGDFYFDY
ARDYGDYYFDY
ARDYGDYYFDY
ARDLDVYGLDV Antibody response to SARS-CoV-2 can be
ARDLMVYGIDV functionally public even if the
ARDLGSGDMDV sequences are dissimilar

ARDLVVYGMDV

ARDLERAGGMDV
ARDLGEAGGMDV We can use the structures of the

ARDLDVSGGMDV antibodies as another way to

ARDLQELGSLDY functionally group them as binding the
ARVLPMYGDYLDY same epitope

ARGDVSGYRYGLDY
ARGDVSGYRYGLDY

ARGDVSGYRYGLDY But most antibodies don’t have
ARGDVSGYRYGLDY solved structures...

solved structures of 22
antibodies from
different individuals

SARS-CoV-2
Spike RBD




Epitope profiling of coronavirus-binding antibodies
using computational structural modelling

* Antibodies from markedly different lineages but with similar
structures can engage the same epitope with near-identical binding

modes.

* |dentify sequence-dissimilar antibodies that engage the same epitope

* Input a large dataset of antibodies known to bind to a single antigen some
with known epitopes

* Use a novel computational method to epitope profile the dataset based on
structural modelling and clustering

e Show this on CovAbDab

Robinson et al. (2021). bioRxiv.
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Full sequences Solved structures

As of 11 March, just ~5% (113/2,304) of the antibodies in CoV-AbDab had at least one solved X-ray or cryo-EM
structure, while ~90% (2,063/2,304) of the antibodies had full Fv amino acid sequences



Computational Epitope Profiling using predicted
structures

unmodelable antibodies [tunable]

Structural

2,063 Coronavirus-Binding

— Clustering Module
(template-based)

Antibody Sequences! [Mar '21]

ABodyBuilder / S\

* Led to 200 multiple-occupancy distinct structures

. thf'fese clléster;, thia:tﬁzg d;malnsdnf 92% were entirely domain- distinct distinct
consistent based on CoV- ab metadata structure 1 structure 2

*  5Some that were inconsistent could be linked to experimental uncertainty
QvQ../DIQ.. EVQ../SYV.

EVQ../DIV..

1Raybould ML), Kovaltsuk A, Marks C, Deane Ch (2021) CoV-AbDab: the Coronavirus Antibody Database. Bioinfaormaotics. 37[5):734-735.



Predicting structure to predict epitopes

* Use Abodybuilder to model the 2063 sequences
e “accurate models for 1500”

 Structurally cluster the models
e 1,159 clusters
* 541 sequences belonged to the 200 clusters that had > 1 sequence in

* For 184 of the 200 clusters the antibodies engage the same epitope based
on available data.= 92% accuracy

* The 16 false positives
e poor expt labelling
e poor modelling

e Structural clusters frequently span multiple clonal lineages.



Predicting structure to predict epitopes

* The functional properties of the
less well-characterised antibodies
can be inferred from other
antibodies predicted to adopt the
same structure.

* One experiment could reveal the
binding side of whole un-
annotated clusters

),
#" CDRHS3 Sequences

CDRL3 Sequences

AAPYCSGGSCSDAFDI QQYGR-SPWT
ASPYCSGGSCSDGFDI QQYGS-SPWT
AAPRCSGGSCYDGFDI QQYGS-SPYT
AAPHCSGGSCLDAFDI QQYDN-SPWT
AAPHCNSTSCYDAFDI QQYNN-WWRT
AAPHCNSTSCYDAFDI QQYVGLTGWT
AAPHCNRTSCFDGFDI QHYGSSRGWT
AAPHCSSTICYDGFDI

AAPYCSSISCNDGFDI Separated
AAPYCSSTSCRDGFDI lenient clonotypes

AAPNCNSTTCHDGFDI




Clustering by predicted structure functionally links
coronavirus-binding antibodies across the species

barrier * Mice (maroon and green) and humans
(cyan) create sequence dissimilar since

they have distinct germlines

* Example of a human and two murine
RBD binders with very high structural
similarity

* Allows us to understand which
coronavirus binding sites are targetable
by different gene loci

 Compare immune functions of
different organisms



Structural Profiling of Antibodies to Cluster by
Epitope, “SPACE”

* 92% prediction accuracy

* Functionally links antibodies with distinct genetic lineages, species origins,
and coronavirus specificities

* Greater convergence exists in the immune responses to coronaviruses than
would be suggested by sequence-based approaches.

* Applying structural analytics to large class-specific antibody databases will
enable high confidence structure-function relationships to be drawn

* Will not only be useful for early-stage drug discovery but also for
understanding epitope immunodominance, and therefore vaccine design.

Robinson et al. (2021). bioRxiv.



ABlooper

Improving the speed and quality of structural models of antibodies

Abanades et al. (2021)



ABlooper pipeline

INPUT DATA OUTPUT LOOP
4 ARDWERGDFFDYWG
POSITION OF ANCHORS LOOP SEQUENCE ITERATIVELY UPDATES NODE POSITION OF BACKBONE

COORDINATES AND FEATURES ATOMS

e Use 5 E(n)-Equivariant Graph Neural Networks (E(n)-EGNN) to give 5 predictions
of all of the CDRs

* Average the 5 to create the final prediction
* End to end predictor — small energy minimisation useful.

* Gives an estimate of the acuraccy of prediction.
Abanades et al. (2021)



Predicting CDR-H3 on modelled structures

Rosetta Antibody Benchmark

SABDab Latest Structures

AlphaFold2 2.87*

ABodyBuilder 2.77 3.25
DeepAb 2.44 2.49*
ABlooper 2.49 2.72
Ablooper Unrelaxed 2.45 2.66

RMSD across backbone atoms to the correct structure

*potentially these structures were contained in the training of these methods

Abanades et al. (2021)



e Crystal
* Decoys

* Prediction

RMSD to crystal structure [A]

o))

N

[\

Prediction diversity reveals prediction quality

3
R
Sid Yy

¢
¢ .
¢
o o . i
*» %
Q a
‘0‘0 2 4 o‘

¢ Rosetta Antibody Benchmark

SAbDab Latest Structures
| [ |

2 3 4

Average RMSD between predictions [A]

Abanades et al. (2021)



ABlooper — rapid accurate structure prediction

for antibodies.

Overall similar levels of accuracy to other deep learning methods

ABlooper is faster
- Can predict the CDRs for one hundred structures in under five seconds.

ABlooper contains an accuracy estimate

e Crystal

* ABodyBuilder
* ABlooper

* AlphaFold
 DeepAb

Abanades et al. (2021)
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http://opig.stats.ox.ac.uk/
http://opig.stats.ox.ac.uk/

Software Availability

* Free OPIG Web
a;edeGitHub. SOREEr http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/

—

L= ' ]

€2 OAS /-AbDab () Girrub

If data is IP-sensitive or as an academic you want to run large batches

e Vagrant VirtualBox

* Singularity Virtual Machine S/ \b

enquiries: opig@stats.ox.ac.uk



