
Python in Astronomy 2016 - (un)Proceedings

Python in Astronomy 2016
(un)Proceedings

Tom Robitaille, Kelle Cruz, Perry Greenfield, Eric Jeschke, Mario Juric, Stuart Mumford, Chanda Prescod-Weinstein,
Megan Sosey, Erik Tollerud, Jake VanderPlas, Jes Ford, Dan Foreman-Mackey, Tim Jenness, Tom Aldcroft, Mike
Alexandersen, Michele Bannister, Kyle Barbary, Geert Barentsen, Samuel Bennett, Médéric Boquien, Jose Ivan
Campos Rozo, Steven Christe, Lia Corrales, Matthew Craig, Christoph Deil, Nadia Dencheva, Axel Donath, Stephanie
Douglas, Leonardo Ferreira, Adam Ginsburg, Nathan Goldbaum, Karl Gordon, Andrew Hearin, Cameron Hummels,
Daniela Huppenkothen, Elise Jennings, Johannes King, Samantha Lawler, Andrew Leonard, Pey Lian Lim, Lisa
McBride, Brett Morris, Carolina Nunez, Russell Owen, John Parejko, Ekta Patel, Adrian Price-Whelan, Rafael Ruggiero,
Brigitta Sipocz, Abigail Stevens, James Turner, Sarah Tuttle, Petia Yanchulova Merica-Jones, Peter Yoachim

 
The Python in Astronomy 2016 workshop took place from March 21st to 25th 2016 at the University of Washington
eScience Institute in Seattle. This aim was to bring together Python developers, users, and educators to share
information about state-of-the art Python Astronomy packages, as well as focus on improving interoperability
between astronomical Python packages, providing training for new contributors, and developing a common set
of educational materials for Python in Astronomy.

In total, 54 participants attended the meeting. The format of the meeting was designed to include presentations
as well as free-form unconference sessions, and two days dedicated to tutorials, sprints, and hacks. The idea of
the unconference time was to allow participants to propose and vote for sessions during the workshop itself.
Individual unconference sessions were typically one hour long, and there were usually at least three parallel
sessions.

The talks given in the morning sessions have been collected on Zenodo, and the videos have been posted to the
Python in Astronomy 2016 YouTube channel. The purpose of the present document is to complement these
resources by providing proceedings for the various unconference sessions as well as summarize the different
hacks. The tone is deliberately informal, and we have tried to include information that will be useful for future
such events. The main categories of unconference sessions were tutorials and demos, discussions about future
plans for development of packages, discussions on educational resources, discussions on community aspects,
and finally coding sprints/hacks.

We hope that you find this document useful – please don’t hesitate to get in touch with the organizers if any
information is missing or unclear, or if you are interested in getting involved in some of the efforts described
here!

Many thanks to the University of Washington eScience Institute for hosting this meeting, and our sponsors (the
Large Synoptic Survey Telescope, NumFOCUS, and the Python Software Foundation) for providing generous travel
support.

 1

https://zenodo.org/collection/user-pyastro?ln=en
https://www.youtube.com/playlist?list=PL7P5HEbvYRSYdEp8i28NoVd7GeKvrBHXm

Python in Astronomy 2016 - (un)Proceedings

Unconference Discussions

How to switch to Python 3 (led by Tom Robitaille)

We started off by discussing the main changes in Python 3 that will affect the typical user. These include:
changes to the print statement which is now a function, division which now returns a floating point value when
dividing two integers (rather than rounding to the nearest integer), strings which are now unicode by default
(which allows non-English-centric characters and importantly emoji), and for some users, the fact that some
functions now return generators instead of lists (e.g., zip, range, and map). While there was a lot of work for
package developers (especially with C extensions) to support Python 3 due to other changes, the transition
should be relatively straightforward for the typical user. At the very least, Python 2 users should already always
include:

from __future__ import print_function, division

at the top of scripts which will allow the print function to already be used, making the transition a lot easier in
future.

We then also discussed ways of transitioning to Python 3. For users that rely on Anaconda/conda to manage
their Python distribution, it is possible to create a Python 3 environment and switch to it then switch back. In
this way, the transition can be done progressively – new scripts can be written in Python 3, and users can switch
back to Python 2 for older scripts. Alternatively, users can use the environments to make sure that scripts work
in both Python 2 and 3. To translate Python 2 code into Python 3 code, users can make use of the 2to3 tool
(installed by default with Python) – however this produces Python 3-only code. We also discussed the six and
python-future packages, which can be used to make sure that functions behave the same in Python 2 and 3, and
the modernize tool, which can be used to convert Python 2 code to Python 2 and 3-compatible code.

Later in the week, we decided to work on a page summarizing the nice new and useful features in Python 3 and
providing a migration guide for users (see the Hacks/Sprints section)

Analyzing simulated LSST surveys (led by Peter Yoachim)
We looked at MAF, the tool developed by LSST to analyze the scientific performance of simulated and real
surveys. There is a public repository where members of the scientific community can contribute new metrics to
help ensure LSST can be optimized for their specific science case. We discussed the difficult problem of how well
LSST can perform on Solar System science, and fielded general questions about the LSST and its data
management pipeline.

Funding for community software development (led by Kelle Cruz)
This discussion was about identifying funding avenues for community software development. We specifically
discussed strategies for obtaining grants from US government agencies such as NASA and NSF (e.g., SSI, SSE)
and private sources such as the Sloan Foundation, the Moore Foundation, and the Simons Foundation.
Participants shared their experiences and relevant information gathered from program officers and grant panels.
The organizational needs for accepting grants and the role NumFOCUS plays for Astropy was also discussed

 2

https://docs.python.org/3.5/library/2to3.html
https://pythonhosted.org/six/
http://python-future.org/
http://python-modernize.readthedocs.org/en/latest/
https://github.com/lsst/sims_maf
https://github.com/LSST-nonproject/sims_maf_contrib

Python in Astronomy 2016 - (un)Proceedings

(they currently have an agreement to hold the finances for the Astropy project in trust). A specific action item
that came out of this discussion is to form an OpenAstronomy committee to seek out funding sources for
community software development.

Image regions (led by Adam Ginsburg)

We discussed the need for a new regions / shapes library within the Astropy project. We came up with a plan to
replace pyregion as the region library for Astropy. While pyregion has some useful features, it has an API very
different from the rest of Astropy packages and a code structure inconsistent with other python packages. We
therefore began development of the new regions package, which will go through a development and beta
testing phase as an affiliated package before being incorporated into the core Astropy package.

During the week, we implemented a basic API for region objects within Astropy and built a Ds9 region file parser
that is more complete than pyregion. Thanks to help from the Ds9 development team (Bill Joye & Eric Mandel),
we have a reasonably complete library of Ds9 regions against which we can test the parser. The hack team
involved Adam Ginsburg, Tom Robitaille, and Johannes King. Meanwhile, Eric Jeschke, Tom Robitaille, and Pey
Lian Lim.

PythonTex: Python inside LaTeX (led by Stuart Mumford)

Tools for embedding Python code inside LaTeX documents, primarily PythonTex, were discussed. The
advantages of such software, such as the ability to have code which generates plots inside the document, and
the ability to have parameters from the analysis automatically update in the text were presented. Some of the
drawbacks such as long compile times, exporting plain LaTeX for journal submissions, and interoperability with
other tools were put forward and ways to mitigate these were discussed.

The texfigure package was demoed, features that enable easier embedding of plots from various Python
libraries such as Matplotlib, Mayavi and yt as well as integration with Astropy quantities and Table were
highlighted. The need for more documentation for texfigure and PythonTeX was brought up and work on this is
ongoing.

The future of astropy.modeling (led by Tom Robitaille and others)

We started off by discussing features that are missing in astropy.modeling, but then moved into a more general
discussion about whether astropy.modeling is currently following the correct development direction. In
particular, concerns were raised about the existing fitters being too restrictive and making too many
assumptions about the particular type of fitting. While other parts of Astropy have generally tried to do things
the ‘right’ way, astropy.modeling only implements the simplest kind of fitting and doesn’t encourage good
statistical practices.

We decided that it would make sense to better separate the Astropy models (which are useful in any case) from
the fitting part, and there were some suggestions to deprecate the fitting entirely and instead rely for example
on sherpa and other packages to carry out the fitting. At the same time, the existing fitters provide an easy way
to interface to the SciPy fitters, so there may be value in keeping them, but refactoring the fitting documentation
so that the models and fitting documentation are separate, and that the fitting documentation shows both ways
to interface with the SciPy fitters and ways of interfacing with sherpa and other packages (such as emcee).

 3

https://github.com/astropy/pyregion
https://github.com/astropy/regions
https://github.com/gpoore/pythontex
http://texfigure.readthedocs.io
http://docs.astropy.org/en/stable/modeling/index.html
http://cxc.harvard.edu/contrib/sherpa/
http://dan.iel.fm/emcee/current/

Python in Astronomy 2016 - (un)Proceedings

Specific action items to come out of this were to investigate how easy it would be to interface Astropy models
with sherpa and emcee (which was done later during the week), and that we should prepare an Astropy Proposal
for Enhancements (APE) that discusses which path to follow moving forward. In addition, a Google Summer of
Code student will be working on the Astropy/Sherpa bridge.

What is your software development workflow? (led by Adrian Price-Whelan)

We had a organic discussion of software tools that we use to facilitate our daily work flow. Several text editors
(Sublime Text, TextMate) were demoed including of linters and git integration. Below are links to software that
was demoed as part of this session:

● Collaborative manuscript preparation: Overleaf, Sharelatex, GitHub, and Authorea
● Reference management: Zotero and Papers
● Improved terminals: Iterm2 and Z shell
● Remote session persistence: Tmux
● Text editors: Sublime Text, TextMate, Atom, and emacs

The session was recognized as “surprisingly informative” and it reminded all of us of the value of learning about
new tools from our colleagues. Specific action items was for everyone to ask colleagues about their software
tools and better share innovations and new tools with colleagues.

Current state and future of NDData in Astropy (led by Matt Craig)

Discussion began with a description of what “NDData” currently is in Astropy, specifically:

● NDDataBase, an abstract class that defines the interface only, i.e. a minimal set of properties that every
NDData-like object must have and what the meaning is. The point is to allow software to be written that
can assume for example that the data can always be accessed by a “data” property, that metadata is
stored as “meta”, and so on. This is essentially an agreement about what we will call the things needed
to work with pixel data.

● NDData, an example implementation of a concrete class that implements the NDDataBase interface. Its
implementation is minimal, providing setters for properties like mask without putting any restrictions
on what those properties are (for example an array or a function).

● NDDataArray, an example implementation of an NDData object that has mixin classes for slicing/
indexing, arithmetic, and uncertainty propagation for a simple case.

There was some discussion of metadata and how to combine it; some work on that has been done in
astropy.utils.metadata. Much of the discussion focused on the “mask” property and on flags. Projects like JWST
and LSST need a way to provide information about mask planes and allow the user to select mask planes to
apply in a particular situation. In the current framework that requires some interplay between mask (currently a
boolean property) and flags (not included in the NDDataBase interface but are present in NDDataArray). Several
options were discussed, and the preferred one was to allow the mask to be an object. In simple use cases the
mask could simply be a boolean numpy array. In more complex cases mask could be an object so that one could
do ndd.mask.apply_flags(...) and then ndd.mask returns an appropriate mask based on the user choices, and
application code can assume that .mask is a boolean that says indicates whether a pixel should be ignored.

 4

https://www.overleaf.com/
https://www.sharelatex.com/
https://github.com/
https://www.authorea.com/
https://www.zotero.org/
http://www.papersapp.com/
https://www.iterm2.com/
http://www.zsh.org/
https://tmux.github.io/
https://www.sublimetext.com/
https://macromates.com/
https://atom.io/
https://www.gnu.org/software/emacs/

Python in Astronomy 2016 - (un)Proceedings

Astroplan: observation scheduling discussion (led by Brett Morris)

Observation scheduling with astroplan is the subject of an upcoming Google Summer of Code 2016 project, and
the first attempt at building a scheduler with astroplan was made by Erik Tollerud in astropy/astroplan#137.
Stephanie Douglas contributed an update to #137 in astropy/astroplan#151, which spawned a number of
questions about terminology that needed to be resolved.

We held a discussion with two main purposes: (1) to propose a common lexicon for the constraints+scheduling
API that astroplan will use during GSoC 2016, and (2) to assess the degree of compatibility between Erik and
Stephanie’s proposed API and the glossary of scheduling terms that we all understand. The notes linked above
start to outline those terms.

Should Astropy become the new IRAF? (led by Michele Bannister)
This discussion started off since as times goes on, there was a feeling that Astropy risks becoming too large and
functionality starts not becoming discoverable. In particular, participants felt that it is not always easy to know
where to look (e.g., in the core package or in affiliated packages) for specific functionality. One idea that came
out of the discussion would be for all Astropy core and affiliated packages to have a way to declare what
functionality they support, then combine all this into a single index of functionality. It would also be nice to have
a more up-to-date community driven table of correspondence between IRAF, IDL, and Python, optionally
starting from the guide on AstroBetter.

We discussed some of the motivation behind the current model of having the core package and separate
affiliated packages, and discussed the pros and cons of having a single monolithic package, many small
packages, and something in between. In particular, we talked about the difficulty of installing IRAF, and that
Astropy will want to avoid that in future. At the moment, Astropy is very much easier to install than IRAF, and we
should make sure it stays that way.

Extending Python (ctypes, f2py, cython, numba, etc.) (led by Jake VanderPlas)
Python is useful for many computational applications, but tends to be slower than other options when it comes
to looping over many similar operations. Vectorization through NumPy is a suitable solution in many cases, but
has some disadvantages: namely vectorization often leads to a tradeoff between memory use and
computational speed.

This discussion was driven by Jake VanderPlas sharing a notebook he developed for a lecture within a Python
class. It covered some of the options for interfacing NumPy with compiled languages like C and Fortran, as well
as incorporating compilable code within Python itself. In brief, the discussion covered:

● ctypes: Python’s low-level interface to C objects. This works for quick-and-dirty applications, but is not
easy to make work cross-platform.

● f2py: Python’s Fortran interface generator. This can create powerful interfaces to Fortran or C libraries.
Much of SciPy was originally built on F2Py.

● Cython: this is a superset of Python, which can be translated directly to C code and compiled. This lets
one write “Pythonic” code that can still run very quickly.

● Numba: this is a package that can transparently just-in-time (JIT) compile Python functions into LLVM
bytecode, which can target the CPU or GPU.

 5

https://github.com/astropy/astroplan/pull/137
https://github.com/astropy/astroplan/issues/151
http://www.astrobetter.com/wiki/tiki-index.php?page=Python+Switchers+Guide
https://docs.python.org/3/library/ctypes.html
http://docs.scipy.org/doc/numpy-dev/f2py/
http://cython.org/
http://numba.pydata.org/

Python in Astronomy 2016 - (un)Proceedings

● cffi: The C Foreign Function Interface is a more recent option, developed in part to make more of a
separation between wrapping of compiled code and the CPython implementation.

We had a lively discussion of the advantages and disadvantages of each. In particular, Cython seems to be a
standardly-used tool in the community (see AstroPy in particular), and while people share some excitement on
the prospects of Numba, most agreed that it’s still somewhat brittle and not yet ready for use in production
code.

A general time series/lightcurve class for Astropy (led by Stuart Mumford)

This discussion focused on the question: What would a universal time series class in Astropy look like? In
particular, we discussed what kind of functionality would be general to include in such a class and that would
satisfy all the participants’ use cases. We also discussed details about the implementation, and whether such a
class should for example be based on the Astropy Table class. There were some requests for making sure that
the implementation has good performance with large datasets. The primary action item of this discussion was
to write an Astropy Proposal for Enhancements, which was started here during the week.

Try out your data in Glue and discuss improvements (led by Tom Robitaille)

We started off by getting Glue up and running on participants’ laptops. We then tried out some of the basic
functionality with some canned test data, and then proceeded to use our own data. We tested out various 2D
and 3D visualization methods. Overall response was positive, and some bug reports were filed as issues on
GitHub.

What is yt? (led by Nathan Goldbaum and Cameron Hummels)
We provided a basic introduction to yt. This included covering some of the introductory material, with a focus on
basic visualization and how to load data in a variety of formats.

Astropy docs enhancements (led by Adrian Price-Whelan and Adam Ginsburg)

The astropy-tutorials effort was started to create more immersive examples of inter-package functionality of the
Astropy project and simultaneously teach fundamental Python concepts. Two key issues with the tutorials are
that (1) the tutorials are written as IPython notebooks and stored in a separate GitHub repository so that they
are not automatically tested with the core Astropy repository and (2) community contribution to the project has
been slower than expected. We discussed whether, given this, it is worth spending more developer effort on
creating new content or considering developing a new way to demonstrate and highlight Astropy functionality.

We decided to create a new “examples gallery” in the core Astropy documentation that contains shorter
snippets or examples of features that are tested alongside the documentation. (See scikit-learn for
implementation example.) During the sprints, we implemented this idea via sphinx-gallery and added content to
an example gallery.

Specific action items are to: cultivate contributors to write tutorials and add examples to the gallery, identify
examples already in documentation which could be migrated to the gallery, and advertise the existence of these
resources to broader astronomy community.

 6

http://cffi.readthedocs.io/
https://github.com/astropy/astropy-APEs/pull/12
http://glueviz.org/en/stable/
http://yt-project.org/
https://github.com/astropy/astropy-tutorials
http://scikit-learn.org/stable/auto_examples/
http://github.com/sphinx-gallery/sphinx-gallery
http://adrian.pw/astropy

Python in Astronomy 2016 - (un)Proceedings

[Note that since the workshop, the gallery of tutorials above has now been included in the Astropy
documentation.]

Extreme openness: a debate (led by Jake Vanderplas and Sarah Tuttle)

We discussed the idea of doing open research from start to end – that is, all the data and code would be public
from the start, and the paper would be written in the open. While participants in the discussion generally agreed
that this was a noble goal, there were concerns by some that this is simply not possible for junior participants,
since it greatly increases the chances of getting scooped. We therefore then discussed what intermediate steps
could be taken towards open research.

The most obvious place where we could become more open would be to make sure that at publication time, we
also provide all the data and code needed to reproduce a paper. This then provides the benefits of openness
without the downsides of getting scooped (nevertheless, there were concerns that for PhD students who may be
working on a series of related papers, this could still be an issue). One of the main barriers to full reproducibility
is the investment of time needed to tidy up the code and data to make sure they are understandable by others –
although arguably it would benefit the scientists who did the work themselves if they look back at the work in
10-20 years. We noted that there is very little reward in the current system for publishing reproducible science,
and some ideas were put forward, including for example having journals provide incentives (e.g., free open
access, reduced page charges, ‘badges’ on papers, featured articles) for reproducible papers. We also noted that
full reproducibility may also be very difficult, short of providing an entire virtual machine which would contain
everything.

Ginga sprint/refactoring (led by Eric Jeschke)
Eric Jeschke and Pey-Lian Lim sat down and attempted to resolve some outstanding issues. For instance, re-
organization of plugin manual into sub-pages and improving Jupyter notebook functionality, among other
things. There were discussions and coding. By the end, Eric merged two pull requests. Pey Lian opened a few
issues based on the sprint findings. Stuart Mumford also made some improvements to Cuts plugin. Megan Sosey
worked on improving Ginga backend for “imexam”. While, Matt Craig tested Ginga on Jupyter notebook. Several
others also tested Ginga and provided feedback and/or bug reports.

Astropy Roles (led by Kelle Cruz, Erik Tollerud, and Tom Robitaille)

We discussed officially assigning roles for tasks like maintaining sub-packages, documentation, release, and
distribution. Each role would have at least one main person and at least one deputy. Some concerns were raised
in assigning unpaid roles to an open-source project that depends on volunteer contributors. Jake Vanderplas
provided an example from SciPy, where he is assigned to maintain the stats package but he only chimes in when
no one else does after a while (e.g., when a pull request sitting there too long without review). In addition, he
mentioned that he has a backup available when he is not. The key outcome is that the Astropy Project will create
and maintain a web page on http://astropy.org which defines project roles and lists the lead and deputy for each
role.

 7

http://docs.astropy.org/en/latest/auto_examples/index.html
http://astropy.org

Python in Astronomy 2016 - (un)Proceedings

Plan for Python in Astronomy 2017 (led by Stuart Mumford and Kelle Cruz)

There was general agreement that Python in Astronomy 2017 (and beyond) should happen. There was general
agreement that a size around 55-75 was best. We brainstormed a list of features that would be important for any
location to have to be suitable for this conference series:

● Lecture room that can fit all participants
● Small meeting rooms (for groups of 3-20) each with projectors
● All rooms in same building and if possible same floor
● Tables, not just chairs
● Good internet
● Whiteboards/blackboards
● Central area for planning
● Ease of travel (financially and travel wise internationally)
● Accessibility
● Enough people to populate LOC

We also brainstormed on a list of possible locations and contact people, and it will be the responsibility of the
next SOC to decide on a venue. We decided that the SOC chair should first be appointed, and then the SOC chair
should appoint the SOC (with an ideal size of ~6 or so SOC members in total). Stuart Mumford has been named
the SOC chair for the 2017 meeting.

We made a list of all the things that a SOC/LOC need to do, and an action item will be to tidy these up and make
them into a formal document that future SOCs/LOCs can use.

Astropy paper v2.0 (led by Erik Tollerud)
All participants agreed that a second Astropy paper is now needed, to make sure that we continue to give credit
to new contributors. We discussed what the content of the paper should be – it should include a description of
all the significant new additions since the last paper, and could also include:

● An overview of astropy-helpers
● An overview of the package-template
● The long term support (LTS) releases

We proposed submitting the paper at the 1.3 feature freeze so that it is hopefully published shortly after the
actual final 1.3 release. We also discussed the issue of author order. Since it’s very difficult to find metrics
everyone would agree on, we floated the idea of making sure ‘The Astropy Collaboration’ is the cited ‘author’,
and that we then just list authors alphabetically, with an optional footnote saying that the relative contributions
of people to the package can be seen for example on GitHub. Erik Tollerud and Kelle Cruz have volunteered to
oversee this paper.

 8

Python in Astronomy 2016 - (un)Proceedings

Hacks/Sprints

Fast Lomb-Scargle periodograms

People: Jake Vanderplas

The aim was to take four separate implementations of Lomb-Scargle periodograms and gave them a consistent
API, with the intent to include this in Astropy. This was then merged into the core Astropy package following the
workshop, and is now available in Astropy 1.2.

Demo link

Astropy examples gallery

People: Adrian Price-Whelan and Kelle Cruz

The aim was to add a gallery of Astropy examples to http://docs.astropy.org using sphinx-gallery. This was the
outcome of an earlier unconference session. This was merged into the astropy documentation following the
workshop, and is available in Astropy 1.2.

Source Code - Demo link

Distribution class for Astropy

People: Erik Tollerud

Continued to work on developing a Quantity + Monte-Carlo samples class for Astropy that allow easy
distribution/error propagation.

Demo link

Reading large ASCII tables in smaller chunks

People: Tom Aldcroft

There is an outstanding feature request in Astropy to provide the ability to read very large ASCII tables in more
manageable chunks. One might then filter or otherwise process each chunk individually and maintain only the
desired outputs instead of the entire table. I developed a solution to this which leverages the existing
functionality in the fast C-based reader to use memory mapping of the file to split the input into smaller chunks.

This appeared to be ready for a formal pull request, but then a nasty issue surfaced for input files greater than
2GB. Even though everything about the development system was 64-bits, for files bigger than 2**32 bytes the
new routine starts gobbling all available memory until crashing out. In the process of this hack I learned a bit
about the perils of mmap and will likely consider a more outside-in implementation. This will require a larger
change footprint but should be generalizable to more formats.

Source code - Diff from master

 9

http://docs.astropy.org/en/latest/stats/lombscargle.html
http://docs.astropy.org
http://sphinx-gallery.readthedocs.io/en/latest/
https://github.com/astropy/astropy/pull/4734
http://docs.astropy.org/en/latest/auto_examples/index.html
https://gist.github.com/eteq/574287382632c206a230
https://github.com/astropy/astropy/compare/master...taldcroft:ascii-fast-chunk
https://github.com/taldcroft/astropy/tree/ascii-fast-chunk

Python in Astronomy 2016 - (un)Proceedings

Inquiry lesson Plan

People: Stephanie Douglas, Drew Leonard, Sam Lawler, Sam Bennett, Jes Ford, and Mike Alexandersen

We set out to create an inquiry activity where learners investigate the relationship between multi-band
photometry and a star’s visible color as well as good programming practices. We sketched out the astronomy
and programming learning goals, as well as rubrics for both, and a very rough investigation prompt (“here’s
photometry - what can you learn”). We also tested some sample investigation paths; one is linked below. The
future development plans are unclear; we likely need a test class before we invest too much more time in it.

Source Code (planning doc; includes brainstorming and discussion of teaching testing)

Demo Link (sample investigation path)

Astroplan scheduler
People: Stephanie Douglas, Brett Morris, Erik Tollerud, Eric Jeschke, and Geert Barentsen

We spent two unconference sessions on this, one coding and one on future development. Erik had previously
coded the scheduler class and related classes. Stephanie added a scheduler that schedules targets at the best
time in order of priority. We also had a planning meeting where we mostly defined various scheduling terms
(notes here). Stephanie will take over the initial scheduler development from Erik; there may be a Google
Summer of Code student working on it this summer.

Source code - Demo Link

Glue + pyspeckit

People: Adam Ginsburg and Tom Robitaille

We worked on making a data viewer in Glue based on pyspeckit, which allows users to show 1D spectra, as well
as collapse 3D spectral cubes and subsets of 3D spectral cubes. Users can then select points from the spectrum
to use for the fitting, and fit line profiles or polynomials.

Source Code - Demo Link

@astrofrog GitHub bot
People: Dan Foreman-Mackey

The goal was to try and use machine learning to generate GitHub comments, by learning from existing Astropy
contributors. An example of a generated comment is: If can still see you forther and because some real up in pos I
want to do: systecls. the instrotative numbying to ````setup.py`` of an error is the user as *1.0 at the docs of but at
help t-end of the people equinorm in any of the name of developming links rows cos.

Background information on Recurrent Neural Networks:

● http://karpathy.github.io/2015/05/21/rnn-effectiveness/
● http://colah.github.io/posts/2015-08-Understanding-LSTMs/
● https://github.com/dfm/pyastro16

 10

https://docs.google.com/document/d/1vqgHUiUrkPQl22Jor0fIF_DHUu38u0C4MRMXBsqknt4/edit
https://github.com/stephtdouglas/colors-and-coding/blob/master/investigation_path.ipynb
https://docs.google.com/document/d/1zKo9km8i-lo9TrNDeb6KFkNWWAhXswa2I_41E5RdDd0/edit
https://github.com/astropy/astroplan/pull/151
https://github.com/stephtdouglas/astroplan/blob/staging/schedule.ipynb
https://github.com/glue-viz/glue-pyspeckit-plugin
https://www.youtube.com/watch?v=SXcI5GCg7uw
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/dfm/pyastro16

Python in Astronomy 2016 - (un)Proceedings

Eblur/dust

People: Lia Corrales, Karl Gordon, and Médéric Boquien

We discussed the essential properties of a dust model and ways to organize the code to make it useful for the
astrophysical community. During the code sprints, Lia reorganized and packaged the code using the Astropy
package template.

Source Code - Demo Link

Astroplan web app
People: Geert Barentsen and Brett Morris

Exposing astroplan’s functionality to the web!

Source code - Demo Link

Python imexam

People: Megan Sosey

I worked on adding ginga’s new HTML5 widget to imexam as the primary viewer for ginga and removed the
matplotlib and qt widgets which were slower to interact with and more cumbersome for users. Basic
communication was enabled during the sprint and fully flushed out later. This will be part of the next stable
imexam release.

Source Code

Time series object

People: Stuart Mumford

Following an excellent discussion about what features a time series object in Astropy would have, we put
together the start of an APE proposing adding such an object to Astropy core.

Source Code - Demo Link

Open Astronomy conda channel
People: Matt Craig

The goal was to create a conda channel for any astronomy package.

Source Code - Conda channel

Astropy modeling and Sherpa

People: Daniela Huppenkothen

We developed a proof of concept of how to use astropy.modeling with the emcee package.

Notebook

 11

https://github.com/eblur/dust
https://github.com/eblur/dust/blob/master/examples/distlib_example.ipynb
https://github.com/barentsen/astroplan-webapp
http://astroplan.herokuapp.com
https://github.com/spacetelescope/imexam
https://github.com/Cadair/astropy-APEs/blob/master/APE9.rst
https://github.com/Cadair/astropy-APEs/blob/master/APE9.rst
https://github.com/Cadair/astropy-APEs/blob/master/APE9.rst
https://github.com/OpenAstronomy/conda-channel
https://anaconda.org/openastronomy
http://docs.astropy.org/en/stable/modeling/index.html
http://dan.iel.fm/emcee/current/
https://github.com/astropy/astropy-model-ideas/blob/master/MCMCWithAstropyModels.ipynb

Python in Astronomy 2016 - (un)Proceedings

stginga

People: Pey Lian Lim, Eric Jeschke, and Russell Owen

stginga is probably the first ever “affiliated package” of Ginga, in the sense that it provides additional Ginga
plugins and functionality that are specific to STScI data analysis needs. When a feature (usually a plugin) in
stginga is deemed appropriate for the “core” (Ginga), it is absorbed into Ginga via a pull request on GitHub.

At this unconference, Pey Lian Lim presented a demo of TVMark and TVMask plugins to Eric Jeschke and Russell
Owen. The TVMark plugin was modeled after “tvmark” task in IRAF, while TVMask is like TVMark but for mask
images instead of X-Y coordinates. Later, during a sprint, Pey Lian improved TVMark plugin based on feedback
mainly from Russell. The improved plugin was presented to all participants as a lightning talk, which also
covered additional stginga features as time permitted.

Ginga
People: Eric Jeschke, Pey Lian Lim, Stuart Mumford, Megan Sosey, Russell Owen, Erik Tollerud, Adam Ginsburg,
Matt Craig, and others

This sprint included collaborations with several projects that are (or are interested in) using Ginga, several bug
fixes and documentation enhancements, and feedback from users and troubleshooting opening problem image
files. We implemented some requested features.

Generalized WCS examples

People: Nadia Dencheva

I wrote a function that takes pixel and world coordinates and creates a WCS.

Source Code

Cube reprojection

People: Adam Ginsburg and Axel Donath

We generalized cube reprojection in the reproject package to work on all 3 dimensions (including spectral
resampling). We also opened a pull request to incorporate it into spectral-cube.

Python 3 for scientists

People: Stephanie Douglas, Adrian Price-Whelan, Stuart Mumford, Nathan Goldbaum, Tom Robitaille, and Erik
Tollerud

We decided to work on a website that focuses on demonstrating new Python 3 features that would be useful for
the average scientist, and does not include any negatives/shaming/etc of Python 2 :)

Souce code - Demo Link

 12

https://zenodo.org/record/48276#.VxZoEZSAO01
https://github.com/spacetelescope/gwcs/pull/42
http://reproject.rtfd.org/
https://github.com/radio-astro-tools/spectral-cube/pull/289
https://github.com/OpenAstronomy/python-3-for-scientists
http://python-3-for-scientists.readthedocs.org/en/latest/

Python in Astronomy 2016 - (un)Proceedings

Astrohackweek planning application form

People: Kyle Barbary and Daniela Huppenkothen (with consulting from Kelle Cruz)

We designed the application form for the next awesome week-long workshop: AstroHackWeek. One interesting
outcome from discussions was the phrasing of application questions about gender and racial/ethnic
background. Rather than enumerating all possible gender and racial/ethnic backgrounds in a multiple choice
question which would inevitably be incomplete, we simply ask if the applicant self-identifies as an
underrepresented minority in each category. This gives us just the information we plan to use in selection and
avoids the enumeration problem. Meanwhile, having separate questions for gender and race/ethnicity preserves
some information on intersectionality.

Source Code - Demo Link

Morphometry in photutils

People: Leonardo Ferreira

After a brief discussion with Erik Tollerud, I started to implement non-parametric morphology measurements
into photutils based on those available in Morfometryka. As there many of these measurements available in the
literature, I made an example case using Gini Coefficient with a plan for extending photutils.morphometry as a
hub for this kind of measurements in the future.

Python 3 for packages

People: Brigitta Sipocz

The goal was to make more packages from the OpenAstronomy ecosystem be compatible with Python 3. The
result is that the new releases, v0.2 of Halotools and v0.7 of SunPy, are now Python 3 compatible.

 13

http://github.com/AstroHackWeek/astrohackweek.github.io
http://astrohackweek.github.io/2016
http://www.ferrari.pro.br/home/research/morfometryka/
https://github.com/astropy/photutils/pull/343
http://halotools.readthedocs.io/en/latest/
http://sunpy.org

