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Abstract

This report discusses 3 distinct, but overlapping topics. Firstly, it recommends the tools and best practices
for research software engineering and data science that are most relevant to the researchers working on the
Wales Multimorbidity Machine Learning (WMML) project. Secondly, it expands upon these recommendations
for the specific use case of Trusted Research Environments (TREs), with development workflows for computa-
tional research in TREs offered that respect and complement existing best practices. Finally, it discusses the
considerations around publishing research code that is developed to run within a TRE on sensitive data, offering
practical advice that researchers using TREs can follow.

1 Introduction

Trusted Research Environments (TREs) are becoming
commonly used for the analysis of data from a range of
sources, particularly electronic health records (EHRs).
Data within TREs are kept secure and are only acces-
sible following appropriate approvals and access being
granted, to comply with the legal requirements of data
providers like the National Health Service (NHS), al-
lowing research to be carried out safely (Arenas et al.,
2019). The volume of collaborative TRE-based research
is growing, a trend that began before, but has been ac-
celerated by, the COVID-19 pandemic.

This report summarizes a collaborative project between
Swansea University, The University of Manchester and
The Alan Turing Institute. The objectives of this part-
nership project were: (i) to develop a strategy for
the Swansea and Manchester based researchers partic-
ipating in the Wales Multimorbidity Machine Learning
(WMML) project to follow, to implement best practices
for research software engineering and data science in
the context of the SAIL (Secure Anonymised Informa-
tion Linkage) Databank TRE at Swansea, and (ii) to
develop a strategy to move the researcher’s code to a
form that is citation and publication ready, outside of
the TRE. This report describes the resulting recommen-
dations from The Alan Turing Institute, which can be
used as a template for making the transition from script-
based (and notebook-based) research code that works
on sensitive data in a TRE, to a format that is publicly
accessible and can be cited by future research.

The WMML researchers are working on various novel
analytical techniques and machine learning methods for
clustering diseases in the Wales Multimorbidity e-Cohort
(WMC) within the SAIL databank, with the aim of un-
covering the multimorbidities that lead to the largest
problems for both the NHS and individuals. One exam-
ple of this research is Rafferty et al. (2021b). Following
recommendations made in section 4 of this report, re-
search code associated with this paper is also published
to Zenodo; see Rafferty et al. (2021a). The WMC is an
anonymised population-scale healthcare dataset, devel-
oped within SAIL from other source data by Lyons et al.
(2021).

The recommendations discussed in this report include al-
ternative workflows for the development of research code
to be used for analysis within TREs on sensitive data, as
well as best practices for working collaboratively within
a TRE. In addition, recommendations are made on how
to publish the work done in a TRE, including the re-
search code. For the WMML project, this code includes
the novel methods for multimorbidity clustering, as well
as any scripts used for data preparation and manipula-
tion. This report discusses how (and why) to publish
this code alongside the results of the research, which
include any analyses, statistics, data visualizations and
other outputs relevant for publication.

This report focuses on adapting existing best practices in
research software engineering and data science for the
specific use case of the SAIL Databank TRE and the
WMML project. However, much of the guidance devel-
oped here, in the context of a live research project, will
be of broader relevance. The target audience includes
any researcher or data scientist looking to work with, or
publish research from a TRE. The reader is assumed to
have programming skills in a language commonly used
for data science such as Python or R and some famil-
iarity with GitHub or GitLab for version controlled code
projects. Resources that can help with these prerequi-
sites are offered in section 6.

It is also hoped that this report evidences the need for
computational research projects in the healthcare field to
spend time and resources on implementing these recom-
mendations. Though an operational product in the form
of published research code may seem like a secondary ob-
jective, with healthcare research outputs focused more
on the clinical and policy implications of results, ensur-
ing that such code is developed to a high standard and
published will increase the odds that any important re-
sults can be reproduced. This is of direct relevance to
clinicians, policymakers and other researchers who are
making decisions based on those results and need to
understand how reliable the findings are.
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1.1 Project Scoping

The project that has culminated in this report was con-
ducted by (and report authored by) Ed Chalstrey on be-
half of The Alan Turing Institute, in collaboration with
WMML researchers and principal investigators (PIs), see
7 (Acknowledgements). Scoping for the report involved
individual and group discussions between the author and
WMML team members, carried out over the duration of
the project via conference call and email. Initial discus-
sions revolved around defining the project output, sug-
gestions for which included code contributions to (Raf-
ferty et al., 2021a) and other WMML code repositories
within SAIL.

Upon further discussion, it became apparent that much
of the advice presented in The Turing Way (Community
et al., 2019), an open source handbook for reproducible,
ethical and collaborative data science, developed in large
part by members of The Alan Turing Institute, would
be of direct relevance to WMML researchers. How-
ever, recommendations of this nature that cater to TRE-
based research specifically are not something currently
included in the handbook or comparable resources else-
where. This gap was identified as something valuable to
address, both for the WMML project, for future SAIL
projects and for TRE-based research in general.

The author and collaborators coalesced around the idea
of addressing the gap in the literature with this report,
which combines ways of working suggestions of direct
relevance to the WMML project with more generally
applicable guidance for the publishing of research con-
ducted with TREs. This output was suggested by the
author and independently agreed upon each of the col-
laborators. Useful revisions to this report have been
suggested by the collaborators listed in 7 (Acknowledge-
ments) and implemented by the author.

Turing-WMML Collaboration Objectives:

• Offer best practices for research software
development in the TRE context

• Provide a template for publishing code from
research carried out with TREs

• Ensure WMML project team can realise the
first two objectives

• Report summarising collaboration and re-
sulting recommendations for TRE research

2 The Turing Way for TREs

This section of the report, discusses some of the most
pertinent best practices for reproducible data science
and scientific software development in the context of
TRE-based research. Much of this section is directly
adapted from The Turing Way handbook (Community
et al., 2019). A variety of topics applicable to TRE-
based research are covered including: 2.1) using note-
books (such as Jupyter or RMarkdown), 2.2) how to
ensure that code meets the quality requirements neces-
sary for publishing research code (via testing, formatting
and use of continuous integration) and 2.3) controlling
the computational environment to aid reproducibility.
Advice on how to best utilise each of these are offered
alongside commentary on the pitfalls and tradeoffs of
various approaches.

This report assumes a basic degree of familiarity with
the core concepts of version control with Git. For an
overview of this topic in the context of reproducible sci-
entific research code, see the "Version Control" subsec-
tion of the "Guide for Reproducible Research" within
The Turing Way online handbook (Community et al.,
2019). See also section 6 of this report for additional
resources and relevant training.

2.1 Using Notebooks Effectively

It’s common for researchers to use digital notebooks
such as Jupyter or RMarkdown for carrying out data sci-
ence tasks, especially when this involves visualisation,
and this is no different when these tools are available
within TREs. When publishing research nowadays, it’s
not unusual to include figures than began life as the
output of a data analysis task in a notebook. Indeed
notebooks themselves have in some cases become the
primary output of computational research in the form of
executable papers, published in open repositories and
hosted with online solutions such as Binder (Lasser,
2020). The applicability of such tools to the publishing
of TRE-based research outputs will be discussed later
in this report (see section 3.4), but here several sug-
gestions are made about how best to utilise notebooks
themselves in both the context of TRE research and the
desire to publish code as a research output.

It’s important to recognise that whilst notebooks are
invaluable resources for experimentation and reporting,
they do not fulfil the same purpose as afforded by scripts
in version-controlled repositories. Notebooks make con-
flict resolution for version control difficult and each time
they are opened, cells can be run in different orders,
meaning that it can be easy to lose track of what code
has already been run. Whilst it is possible to keep
notebooks in version-controlled repositories (hosted on
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GitLab for example), the code cells of Jupyter note-
books in particular are not ideal places to store impor-
tant methods code for machine learning projects such as
the WMML. The main reason for this is that the Jupyter
notebook files (.ipynb extension) are JSON documents
that include metadata. RMarkdown notebooks by con-
trast are based on markdown documents, which are bet-
ter for tracking changes. Nonetheless, both options are
suboptimal for the purpose of developing publishable re-
search code of a high quality (unless the aim is to publish
the notebook itself as an executable paper, which will
be discussed later on in this report). This is because
they lack the functionality to test and format methods
code (a topic covered in section 2.2).

In addition, inclusion of methods code will quickly ren-
der notebooks unreadable, defeating a key purpose for
the usage of notebooks in the first place. Core research
methods code should be developed separately and im-
ported into notebooks if and when needed for analysis.

In the context of TRE-based research, notebooks can
be used as a tool to explore and report on sensitive
data, rather than as a research output themselves for
export from the TRE (though exceptions to this will be
discussed in section 3). Notebooks could for instance
contain sensitive data in the commit history of their
GitHub/GitLab repository, even if the data is not present
in the code cells at the time of export.

Having said this, the combination of code cells that can
generate plots for figures and markdown cells for text
can make notebooks a useful starting point for the struc-
turing of a research paper. Using tools readily available
within the SAIL TRE, it is relatively simple to convert an
interactive notebook to a static research paper PDF. In-
deed, several members of the WMML team have found
this approach fruitful already. In order to do this, pan-
doc (available at pandoc.org) must be installed (as is
the case in SAIL).

To convert a Jupyter notebook to PDF, simply use
nbconvert as follows:

jupyter nbconvert --to pdf notebook.ipynb

Converting an R markdown notebook to PDF, is even
easier when using the RStudio application; simply
choose the "Knit to PDF" option.

In both cases, there are options to embed LaTeX and
include useful features such as a table of contents when
doing this conversion (documentation for this is readily
available online). If notebooks are the method that re-
searchers working in a TRE wish to use to draft their
papers, converting to a static format such as PDF makes
the checks required for exporting from the TRE far sim-
pler than would be the case if exporting notebooks them-
selves. Documentation for nbconvert can be found at

nbconvert.readthedocs.io, including how use cell tags to
hide input (or both input and output) in generated doc-
uments, something that could be useful if generating a
research paper from a notebook.

However, members of the WMML team have found that
converting to PDF with nbconvert can result in errors
for complex Jupyter notebooks that are hard to debug.
Therefore it would be prudent to test conversion works
as expected at regular intervals if generating a research
paper from a notebook. A suggested approach when
such errors do occur, is to generate a LaTeX source file
with nbconvert, which enables easier debugging.

It’s also possible to use nbconvert to convert a Jupyter
notebook into a code script, which includes the content
of markdown cells as comments. This can be useful
if development that has been initiated in a notebook
reaches a point where it would be better to continue in
a script, for example if any functions have been created
in code cells that need to be tested (see section 2.2 for
more information on code testing).

Conversion of a Jupyter notebook to a script can be
done like so:

jupyter nbconvert --to script notebook.ipynb

For the development of research methods code used in
TREs, it makes sense to use scripts or modules that are
independent of any notebook, especially if such code
is destined for export from the TRE. Any code being
developed in the context of a notebook cell that can-
not be quickly re-written should be moved to a separate
file that is tracked within the Git repository (e.g. a
Python module or R script). Developing research meth-
ods within a Git repository offers more advantages than
just version control. It also increases the ease with which
the code can be developed to a standard of quality ap-
propriate for both publishability and reproducibility, via
the use of tests and formatting amongst other things
(see 2.2).

(2.1) Key Points:

• Core research code should be developed in
version controlled repositories

• Jupyter/Rmd notebooks should not be ex-
ported from the TRE

• Notebooks containing draft papers and fig-
ures can be converted to static PDFs
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2.2 Code Testing and Quality

Test-driven development is a software engineering phi-
losophy that prioritises the writing of unit tests, which
test individual elements of code rather than entire appli-
cations, before the writing of the application code itself
(Community et al., 2019). In the context of research
software, unit testing (and by extension, test-driven de-
velopment) has several benefits. Testing makes devel-
opment faster because bugs are far easier to isolate and
can be spotted early. By encouraging the modularisa-
tion of the research code into functions and groups of
functions, researchers are better able to focus on the
lines of code relevant to the part of their analysis being
worked on (Community et al., 2019). Researchers who
set up tests for their functions can be confident those
functions work as expected when the tests pass. This
means functions can be easily reused whenever needed.
When working on analyses in notebooks, these functions
can be imported from the local script or module where
development is taking place (or from the package if the
code has already been packaged).

The recommended testing framework for Python is
"pytest" and for R, there are several good choices such
as "testthat", "tinytest" and "svUnit". Each of these
are available on PyPI and CRAN respectively (meaning
they are installable in SAIL via pip or install.packages).

In the context that this report seeks to address (that of
publishing TRE-based research code), having well tested
(and documented) code will ensure that researchers can
prioritise the minimal amount of code for export from
the environment (assuming development takes place
within the TRE, see section 3 for more on development
options). This reduces the burden on the export pro-
cess and should save time. Furthermore, writing re-
search code that is modularised, well documented and
appropriately tested, ensures that results generated with
that code can be reproduced. It also adds to the clar-
ity of the code when published, better enabling paper
reviewers and other scientists that access, run or wish
to further develop the code, to understand what it does
and how it works.

Testing of software can be automated with continuous
integration (CI). In software development, CI is typically
used when multiple people are working on the same
codebase and want to push changes regularly without
breaking anything. It can however also be a valuable
tool for individual researchers looking to produce well
structured and well tested code for publication. In ad-
dition, by forcing the researcher to specify the require-
ments for their code to run (e.g. the packages/libraries
and their versions), CI can help to keep track of the com-
putational environment. The computational enviroment
is discussed further in section 2.3.

CI can be added to both GitLab and GitHub repositories
and be set up so that unit tests (and other checks) are
run each time a feature or bug-fix branch is merged
into the main code. The advantage of this approach
is that breaking changes in the code should be found
early, because they cause (well-written) tests to fail. CI
can be set up such that merging into the main code
branch is not possible without tests and other checks
passing on the new code branch. This makes bugs easier
to spot and prevents stable code branches becoming
compromised (Community et al., 2019).

To make effective use of CI, a good fundamental un-
derstanding of version control is required. Researchers
that don’t have this experience, can read the subsection
titled "Version Control" in the "Guide for Reproducible
Research" section of The Turing Way online handbook.
There is also a subsection of the handbook on CI, which
details how to get set up with GitHub actions. Doc-
umentation on how to use CI in GitLab is available at
docs.gitlab.com/ee/ci/, however it is worth noting that
at the time of writing, CI tools are not included for Git-
Lab in SAIL. In order to make use of CI as part of the
internal TRE development workflow described later on
in section 3.2 of this report, GitLab CI will need available
in the TRE.

One other way of improving the quality of research code
destined for publication is to adopt a consistent code
style. A code style is a set of conventions on how to
format code, for example standardising things like in-
dentation and the placement of comments. Conforming
to a particular code style can make code easier to under-
stand for collaborators and reviewers. Code style checks
can also be set up to run alongside tests with CI in
an automated fashion, enabling consistency throughout
the development process. Once again, The Turing Way
contains additional information on this topic, including
recommended formatter tools for Python, R and other
languages.

(2.2) Key Points:

• Testing research code speeds up develop-
ment because bugs are easier to spot

• Automatically run tests when changes are
made via Continuous Integration (CI)

• Consistent code styling can keep code easy
to understand
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2.3 Reproducible Environments

Every computer or virtual machine has a unique compu-
tational environment consisting of its operating system
and the installed software (including language and pack-
age versions) and TREs are no different. When publish-
ing research code, or indeed any scientific output, being
able to reproduce results is of paramount importance to
enable other researchers to check the claims made by
the research. An additional consideration for computer
science research is the computational environment in
which published research results were generated. Cap-
turing important aspects of this environment can ensure
that others can run the code and reproduce the results
(Community et al., 2019).

When considering to what extent a computational envi-
ronment needs to be captured, a key decision to make
is whether managing the software and versions via a
package management system is sufficient, or whether
it is worth controlling the entire operating system, via
containerisation. Containers are essentially lightweight
virtual machines, which can contain their own files, soft-
ware and settings and are particularly useful if projects
need to run on high-performance computing (HPC) en-
vironments (Community et al., 2019).

There are a variety of package management solutions for
both Python and R, but this report focuses on "Conda".
Conda is an open source package and environment man-
agement system that installs, runs and updates pack-
ages and their dependencies. Though Conda was origi-
nally created for Python programs, it can be used with
most commonly used data science languages, including
R (Anaconda, 2016). In SAIL, Conda is installed by
default.

Conda can be used to create a virtual environment for
a project, which keeps track of the packages (and pack-
age versions) being used by the code under develop-
ment. This is possible via the "environment.yml" file,
which can be used to quickly re-create the virtual en-
vironment from scratch. By including this file in their
GitHub/GitLab repository, researchers can ensure that
when others wish to use their project code, installing all
the packages and dependencies required for the code to
work is simple.

A Conda virtual environment can be created from the
"environment.yml" and activated by running the follow-
ing shell commands:

> conda env create -f environment.yml
> conda activate projectvenv

For a Python project, the "environment.yml" file should
look something like this example (which will create a
virtual environment called "projectvenv"):

1 name: projectvenv
2 channels:
3 - defaults
4 dependencies:
5 - numpy>=1.18
6 - scipy
7 - pandas
8 - pip=21.2.4
9 - pytest
10 - python=3.9.7

If a researcher is already using a conda virtual environ-
ment for package management, but hasn’t yet created
an "environment.yml", it can be created from the exist-
ing virtual environment:

> conda env export > environment.yml

New packages can also be added to the environment
with a single command. For example, a researcher work-
ing in R could use the following command to add the
"ggplot2" package to the environment:

> conda install r-ggplot2

Adding packages this way could be useful when exper-
imenting with new software dependencies for research
code, in advance of deciding they are essential and
should be added to the "environment.yml".

For more information on how to use conda for pack-
age management, consult the online documentation (see
also R specific information). There are of course other
package management solutions for both languages, and
researchers should feel free to use those that duplicate
(or exceed) the functionality of Conda. For R in partic-
ular, package/environment managers such as "packrat"
and "renv" may be more commonly used. However this
report recommends Conda, on the basis of its simplic-
ity to get started with, its ability to build environments
from a single file and to re-build them on other machines
with that file.

When it comes to the question of whether to make
use of containerisation, this likely falls outside the re-
quirements of the WMML project. Containers are best
placed for distributing software that needs to be run
on a variety of different computers, where those com-
puters only have to have the container software itself
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(e.g. Docker) installed as a pre-requisite. Containers
not only include the operating system, but often also
the project files (including data), neither of which seem
necessary or appropriate for the WMML project’s goal
of publishing machine learning methods code for R and
Python. For interested readers, the most popular con-
tainerisation software is Docker, however there is also
Singularity which specialises in containers for HPC.

(2.3) Key Points:

• Controlling the computational environment
of a project aids reproducibility

• Packages and versions for Python/R code
can be managed with Conda

• Containers can reproduce the entire com-
putational environment if needed

2.4 Reproducible Workflows

In scientific research, and computer science in particular,
we often want to ensure that the results of our analyses
are reproducible. Reproducibility in scientific research
can be differentiated from replicability, whereby consis-
tent results and similar conclusions are reached across
different studies and methodologies answering the same
research question.

A fully reproducible workflow for computational research
would include the option to use the same input data,
computational environment and code (research meth-
ods) in order to reproduce the results exactly.

Achieving a fully reproducible workflow is difficult in
practice and working in a TRE on a dataset that isn’t
publicly available adds additional challenges. Most ob-
viously, there is the question of how a paper reviewer (or
other researcher) might gain access to the input data,
given that the researchers themselves required a login to
the TRE system for access. There is already a process
in place to enable journal reviewers access to the SAIL
databank, should they require it and SAIL is open to all
researchers, subject to approval and adequate qualifica-
tion.

However, when it comes to reproducibility from the per-
spective of the broader scientific community, access to
data available within a TRE (such as the WMC dataset
used by the WMML project in SAIL) is not immediately
available. In section 3 of this report, possible work-
flows for developing and publishing code from research
with TREs are discussed and section 3.3 specifically ad-
dresses the possibility of sharing synthetic data as a sub-
stitute for sensitive datasets that cannot be exported
from TREs.

(2.4) Key Point: Changes in any of the fol-
lowing can lead to differences in the results of
scientific research:

• Data

• Code

• The computational environment

3 TRE Development Workflows

When it comes to the question of how to publish re-
search conducted with sensitive data in a TRE, and
in particular how to publish code, there is little in the
way of best practice suggestions or guidance that has
been previously written up in a comprehensive manner.
Importantly, thinking about this problem forces us to
tackle the question of how best to develop code for TRE
research in the first place, given the appropriate con-
straints when it comes to accessing data within TREs.

The development of research code for use on sensitive
data within a TRE could involve the development of
novel methods and models, or it could merely involve
the application of existing models, methods or libraries
to the research question at hand. In the case of the
WMML project, researchers are working in novel meth-
ods, which necessitates some of the considerations al-
ready discussed in this report, such as testing. Even were
this not the case, computational research will generally
involve some code scripts that can be published along-
side the results of the research, to clearly demonstrate
the methodology and improve reproducibility.

When deciding which parts of the research code are rele-
vant for publication, a decision should be made to omit
any code that is specific to the particular TRE. How-
ever, it is recommended that where possible, such code
is at least made available to others using the same TRE.
For example, a script written by a WMML researcher
that could have value to other SAIL databank users,
but isn’t useful outside the TRE, could be stored in a
shared folder, to which users are granted access by de-
fault. This will ensure that such code is available to
researchers on other projects, even if not relevant to the
wider research community who lack access to the TRE.

This report presents two alternative workflows for the
development and publication of code from TRE-based
research. The first, described in section 3.1 and shown
in figure 1, takes the approach of developing the primary
research code (that which is destined for publication) ex-
ternally from a TRE, whereas section 3.2 and figure 2
document a workflow based on developing code within a
TRE. In each workflow, researchers export their results
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(which could include analyses, statistics, data visualiza-
tions and reports) from the TRE for publication, but
where they differ is whether the code used to generate
those results also needs to be exported.

The benefits and tradeoffs of these development work-
flows are discussed and some light suggestions are made
as to which approaches are most appropriate for the
WMML project and SAIL. Regardless of the chosen de-
velopment workflow, researchers on the project are as-
sumed to have access to the TRE (including the con-
tained sensitive data) as well as any code or results they
produce.

Also highlighted are several optional extras that can fur-
ther enhance the reproducibility and find-ability of the
research, such as making use of synthetic data (3.3) and
executable papers (3.4).

3.1 External Development

One problem that arises from the desire to publish re-
search code developed in a TRE, is that the burden of
checking the code for inappropriate content by disclo-
sure control reviewers (during releases from a TRE), in-
creases with the scale and complexity of the code base.
Such content could include data-disclosive comments in
the code or extracts of data embedded within the code.

In addition, researchers are limited by the software tools
available in the TRE for development. As an example,
a limitation highlighted by discussions with the WMML
team was the lack of CI tools available for GitLab within
SAIL. As such, some members of the team have taken
the approach to develop much of their primary research
code in an external GitHub repository, in order to make
use of GitHub Actions CI. Developing in this way, re-
searchers can import snapshots of their code into the
environment whenever changes have been made and an
analysis needs to be re-run.

Another issue is that as virtual machines, TRE systems
have the potential for slow responsiveness that is anath-
ema to software development.

Based upon discussions between colleagues at The Alan
Turing Institute, it appears that problems of the nature
faced by the WMML team are common in TRE-based
research. Given these issues, this report further devel-
ops the idea of working on primary research code in an
external repository as a workflow for TRE research (fig-
ure 1) and offers a comparable alternative workflow that
involves developing within a TRE (figure 2).

The external development workflow begins with the re-
searcher creating a publicly hosted code repository (e.g.
with GitHub). This repository houses the primary re-
search methods code and can optionally be set up to

include tests and CI (see section 2.3 of this report). De-
velopment of the code is carried out here and each time
a new feature is added that will affect the researcher’s
analysis, the researcher can import a snapshot of the
code (e.g. the most recent commit) to the TRE and
re-run that analysis. This process iterates until the re-
searcher has completed their work in the TRE and has a
final analysis that is ready for publication. In this work-
flow, export from the TRE will only include the results
of the analysis (e.g. plots generated or a draft paper);
the code repository is already publicly available (section
4.1 will outline additional steps to make the repository
citation/publication ready).

A disadvantage of external development could be that
writing the code (e.g. machine learning methods for
the WMML project) is difficult without access to the
data it is designed to run on. It could be possible to
overcome this obstacle by including dummy data, which
replicates the structure of the original data from the
TRE (but contains randomly generated data), in the ex-
ternal repository. Section 3.3, describes in more detail
how algorithmicly generated synthetic data (that is sta-
tistically representative of the original data) could also
be used.

(3.1) External Development Advantages:

• Make use of development tools unavailable
in the TRE such as GitHub Actions

• Fewer steps required to publish code devel-
oped on a public website than from a TRE

(3.1) External Development Disadvantages:

• Progress may be slowed if data access is
critical for development

3.2 Internal Development

Downsides of developing research code inside the TRE
that have been discussed include being limited by the
TRE’s available software tools and the potential for a
high burden on disclosure control reviewers. However,
some researchers may find the convenience of developing
their research code in the same environment they are
running it, outweighs these downsides. For this case,
figure 2 shows a modified version of the workflow where
the primary research code development occurs within
the TRE.

In the internal development workflow, researchers set
up their repository in much the same way as the exter-
nal workflow, but make use of the TREs version control
system (GitLab in the case of SAIL) instead of an ex-
ternal repository. When the researcher has completed
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Fig. 1: Workflow for external development of TRE research code.
Snapshots of externally developed code are imported into the TRE
whenever new features are added that can be used for the analysis
of sensitive data. Only the results of the analysis need be exported
from the TRE, since externally developed code is ready for pub-
lication. The blue backdrop and arrows show steps involving and
moving into a public code repository, whereas orange represents
the TRE. Steps indicated by darker arrows occur later in the work-
flow. Smaller arrows link to optional steps that can be taken to
further improve the reproducibility and availability of the research.

their work, export from the TRE will include both the
research results and the code used to generate them.

An important recommendation here is to only export the
final version of the code, rather than the entire reposi-
tory, as this will simplify the audit process for export.
Checking an entire commit history for sensitive data
leaks will be far more time consuming than doing so
for just the code itself.

Figures 1 and 2 also highlight several optional steps
aimed at improving the reproducibility of the research
including making use of synthetic data and executable
research papers, which are discussed in sections 3.3 and
3.4 respectively.

(3.2) Internal Development Advantages:

• Code can be developed in the same envi-
ronment it is run

(3.2) Internal Development Disadvantages:

• Useful development tools maybe unavail-
able in the TRE e.g. GitLab CI in SAIL

• Exporting code from a TRE can run the risk
of accidental data disclosure

Fig. 2: Workflow for internal development of TRE research code.
A snapshot of the research code (e.g. the final GitLab commit)
is exported alongside the results of the analysis, after passing any
security processes required to export from the TRE. The blue
backdrop and arrows show steps involving and moving into a public
code repository (or other online location to which the code will be
uploaded for publishing purposes), whereas orange represents the
TRE. Steps indicated by darker arrows occur later in the workflow.
Smaller arrows link to optional steps that can be taken to further
improve the reproducibility and availability of the research.

3.3 Synthetic Data

As previously stated, one of the problems with repro-
ducibility of research conducted with data stored se-
curely in a TRE, is that since that data is not publicly
available, other researchers wishing to reproduce the re-
sults of the research are unable to do so without first
gaining access. There is however a partial substitute for
this in the form of creating publicly available synthetic
data resembling the original data, which the published
research code can also be run on.

Synthetic data can be described as data generated by a
statistical model which replaces identifying or sensitive
values from an original confidential dataset with draws
from the model (Drechsler and Reiter, 2011). Synthetic
data should retain some of the statistical properties of
the original data, without leaking the sensitive original
data itself. There are a variety of methods and soft-
ware packages that have been developed for this task.
Indeed, synthetic data research is an active field in of
itself. A key challenge these methods face is balancing
the utility of the synthetic data as a substitute for the
original dataset, against the risk of accidental disclosure
of sensitive data (Drechsler and Reiter, 2011).

In the context of TRE-based research, it will often be
the case that the very reason for working in a TRE is to
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analyse datasets that are inherently too sensitive to pub-
lish publicly, as is the case with the WMC in SAIL being
analysed by the WMML project team. In cases such
as this, the question then is: can a synthetic version of
the dataset be produced that can be published along-
side the code and analysis results? Doing this would
enable reviewers and other researchers to try out the
published methods (the code) for themselves on the syn-
thetic dataset, with the caveat that they will not be able
to reproduce the exact results of the code being run on
the original data.

Figures 1 (e) and 2 (e) show how synthetic data could be
incorporated into a TRE development workflow. In addi-
tion to its application in improving research reproducibil-
ity from the perspective of external researchers, syn-
thetic data could also be utilised by researchers who are
waiting for access to a TRE when beginning a project.
This would enable them to make a start on their research
before gaining access.

For the purposes of the WMML project, it’s unlikely
that creating a synthetic version of the WMC would
prove a worthwhile endeavour, given the maturity of the
project and the challenges associated with creating non-
disclosive synthetic data. This may however be a route
work looking into for future SAIL TRE research projects
that aim to publish research carried out in the TRE. A
good starting point would be to investigate how existing
software packages for synthetic data generation (such as
synthpop) perform on the healthcare data being anal-
ysed in SAIL. Researchers should also investigate any
existing synthetic data projects already in progress in
the SAIL databank.

A more lightweight approach that could be of value to
the WMML project and others where synthetic data re-
search falls out of scope, is to produce a small dummy
dataset that has the same data structure (e.g. ta-
ble columns and data types) as the original sensi-
tive dataset, but randomly generated data. A dummy
dataset of this nature could be small enough to be in-
cluded as part of the published code repository and
would give an example of the kind of data that the
methods code could be run on, thereby reducing at least
some of the friction to reproducibility. Where working
in notebooks, a duplicate version of the notebook that
loads the dummy data instead of the original dataset
could be included (see figures 1 e and 2 e).

(3.3) Key Points:

• Project researchers could develop code on
synthetic data prior to TRE access

• Dummy data replicating the original data
structure can be published with code

• Synthetic data that retain original data size
and properties are a larger challenge

• External researchers lacking TRE access
could further develop published code that
has accompanying dummy/synthetic data

3.4 Executable Research Papers

In section 2.1, this report cautioned against the export-
ing of notebooks from TREs. However, one exception
could be if a duplicate of a notebook used for the re-
searchers analysis is created that loads a synthetic or
dummy dataset, suitable for export (see figures 1 and 2
e). If a researcher has reached the point where they’re
publishing notebooks and code to online repositories,
they’re just one step away from publishing an interac-
tive online executable research notebook. These online
notebooks demonstrate research methods as clearly as
is possible, by actually running them, something that is
fast becoming the gold standard of reproducible compu-
tational research. By extension, notebooks that contain
an entire research paper can be hosted as executable
papers (Lasser, 2020).

Pairing executable papers with a published synthetic
dataset could be a good option for achieving the highest
degree of scientific reproducibility possible for sensitive
data research (including TRE-based research). Figures
1 (f) and 2 (f) show how executable papers could fit in
to the TRE research development workflow.

A key software tool used for creating executable papers
from Jupyter notebooks is Binder. Binder uses a tool
called "repo2docker" to create a Docker image (the in-
structions to build a Docker container) for a GitHub
repository, based on included configuration files (such
as Conda’s "environment.yml" file). The resulting im-
age can be accessed via a cloud-based BinderHub, which
allows anyone with the url to view, edit and run the
Jupyter notebook from their web browser (Community
et al., 2019). Check out this example of a Python
Jupyter notebook hosted with Binder which uses pack-
ages specified by a Conda "environment.yml" file.

Hosting a research notebook online in this way gives
people the ability to see the results of analyses in the
notebook reproduced in real time, as well as the ability
to edit the notebook code to try out different parame-
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ters or variations of the analysis. Binder can also be used
with R, but at the time of writing, lacks the capability to
create a url that loads an RMarkdown notebook in the
same way as for Jupyter (note: Binder is an open source
community project that is constantly evolving and read-
ers should investigate current options for R notebooks
online). To learn more about Binder, review the relevant
section in The Turing Way handbook.

Executable papers can be used to demonstrate that
choices made when carrying out the research only had
a minor impact on the outcome. This approach both
strengthens the conclusions from the readers perspec-
tive and allows author to feel more confident about the
decisions made during their analysis (Lasser, 2020).

It’s likely that producing online executable versions of
the research notebooks being developed by WMML re-
searchers falls outside the achievable goals within the
time frame of the project. However, researchers work-
ing on TRE-based projects should not feel discouraged
from pursuing this option in future, in tandem with the
publishing of a synthetic dataset (or dummy dataset -
see section 3.3) that can be loaded by the executable
paper.

A potential blocker to this approach of interactive re-
search communication, is that some analyses carried out
in notebooks may require large or specific compute re-
sources that aren’t feasible in the context of a Binder
notebook. That being said, if such a notebook was set
up to run on a small synthetic dataset, this could reduce
the barrier presented by lesser compute resources.

(3.4) Key Points:

• Binder can be used to create online note-
books anyone with the url can access

• For sensitive data research, executable pa-
pers could be paired with synthetic data

4 Publishing Research Outputs

At the outset of this collaboration project with The Alan
Turing Institute, the WMML project team expressed
the desire to investigate best practices for conducting
and publishing reproducible research, in particular the
research code, in the specific context of working with
a TRE. In this report, workflows for TRE research and
development are described which include a final step of
publishing the research (see the final stage of figures 1
and 2). This final step in both example workflows in-
volves making the code publicly available alongside the
paper, to enhance the reproducibility of the research.

This section includes recommendations on how the pub-
licly available research code can be made easily citable
and findable, as well as how to choose an appropriate
software license.

4.1 Citation Ready Software

There are various reasons why people don’t cite the re-
search software they use, but one of the biggest ones is
that it’s not clear how. Following the suggestions out-
lined here will maximise the chance of the WMML re-
searchers published code being cited correctly, allowing
others to build on the work in a way that acknowledges
their contribution. In addition, it will increase the odds
of researchers working on machine learning methods or
multimorbidity from discovering their work.

A key suggestion here is to create a Digital Object Iden-
tifier (DOI) for the code. DOIs are unique identifiers
or persistent links for digital objects (including data as
well as code) that make it much easier for researchers
to cite each other’s work. DOIs reduce the risk of link
rot and mean researchers can track how their work is
being used and cited (Community et al., 2019). A DOI
for the research code can be generated by uploading it
to Zenodo.

In addition, researchers can sign up for an ORCID ac-
count. An ORCID (Open Researcher and Contributor
ID) allows a researcher to provide a unique identity for
their body of work independent of their name. It en-
ables them to collect together (and others to find) all
their research papers and related outputs so they can be
easily cited (Community et al., 2019).

Another useful option is to inlcude a CITATION.cff file
in the published code’s GitHub repository, containing a
message explaining how someone can refer to different
outputs from the research. This file can include the DOI,
as well as a link to the researcher’s ORCID account and
other relevant metadata.

(4.1) Key Suggestions:

• Upload code to Zenodo to get a unique Dig-
ital Object Identifier (DOI)

• Sign up for an Open Researcher and Con-
tributor ID (ORCID)

• Include a citation file alongside the code
when published in a GitHub repo
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4.2 Packaging Software

As an optional extra step, researchers may wish to con-
vert their software into a package. This allows for the
option of publishing the code to online repositories such
as PyPI for Python and CRAN for R, increasing the ease
with which this code can be re-used in future projects.
This could be of value in TREs such as SAIL, which has
open ports to PyPI and CRAN servers, enabling easy in-
stall of research code developed in past projects to new
work-spaces or environments.

Explaining the process of turning a code repository into,
for example, a "pip" installable Python package on PyPI
falls outside the scope of this report. However, research
projects following the TRE development workflows de-
scribed in section 3 of this report should be able to create
packages from their software, by modifying these exam-
ple workflows to include the setting up of their code
repositiories with any required files and publishing the
code to the chosen package repository as a final step.

(4.2) Key Point: Packaging research code in-
creases ease of re-use in future projects

4.3 Software Licenses

When publishing software, its common practice to in-
clude a license which governs the extent of use or redis-
tribution of the software. The easiest way to choose the
license most appropriate for a piece of research software
is to visit choosealicense.com, which offers a straightfor-
ward mechanism to help pick one. To learn more about
software licenses before making a choice, consult the li-
censing section in The Turing Way which covers this in
more detail (Community et al., 2019).

For maximal engagement with published code, it is rec-
ommended to use a permissive open source software li-
cence. However, some projects may find it necessary to
opt for a less permissive license if their research code
requires propriety software tools. It is recommended to
check out the software licence suggestions of the fun-
der(s) of research, but in general, charitable or altru-
istic funders are more likely to encourage open source
licenses.

Once a licence has been chosen, it can be saved to a file
within a public code repository (e.g. GitHub) alongside
the research code. This file can be named appropriately
(e.g. License.txt or License.md) and stored it in the top
level of the repository directory structure so it’s easy for
people to find.

(4.3) Key Suggestion: Choose an appropriate
software licence for published research code and
include it in any public repositories that contain
the code

5 Conclusion

The volume of TRE-based research is likely to grow in
the coming years and decades, so the establishment of
a set of best practices and norms for developing and
publishing research code for these projects should be of
broad appeal to the research community. This applies
in particular at the intersection of healthcare and data
science. As such, this report should be viewed as an
initial step towards formalising these processes and not
the final word on the topic.

By developing code to a common workflow such as de-
scribed in this report, the WMML project (as well as
other SAIL projects and projects in other TREs) will be
able to increase the efficiency of collaboration within a
project, maximise the visibility of the research once pub-
lished and the improve the reproducibility of the results.

Report Summary:

• Develop methods code as scripts/modules
in a GitLab/GitHub repository

• Developing code in a public repository ex-
ternal from the TRE should be considered

• Test code to ensure it works as expected

• Where possible, automate tests and code
quality checks with Continuous Integration

• Jupyter/Rmd notebooks should be used for
data analysis, but not code development

• Adopt a consistent development workflow
and coding style for the project duration

• Publish research code with a DOI, citation
file and software licence

• Optionally, explore synthetic data and exe-
cutable papers to enhance reproducibility

6 Resources and Training

To make the most of the recommendations in this re-
port, researchers will need to have gained some expe-
rience programming in a commonly used data science
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language such as Python or R, and have some famil-
iarity with the basics of version control with Git. This
section lists some useful online resources, reading mate-
rial and links to organisations that run training courses.
These resources will be useful to researchers who wish
to learn the basics of research software engineering and
data science skills, but also to more experienced re-
searchers looking to expand their knowledge of these
topics and practices.

6.1 Turing Courses

The Alan Turing Institute’s Research Software Engineer-
ing course with Python:

• Online resource enabling learning via Jupyter note-
book tutorials

• Version Control section is language agnostic

• Topics include testing and advanced Python pro-
gramming

The Alan Turing Institute’s Introduction to Research
Data Science is also in development (work in progress
at the time of writing).

6.2 Software Carpentry

Visit software-carpentry.org to find out about the wide
range of lessons and workshops available.

• Run by The Carpentries in the United States

• Relevant lessons include Version Control with Git
and best practices for reproducible scientific analy-
sis with R

6.3 The Turing Way

Online handbook developed by an open source commu-
nity (Community et al., 2019). Many of the topics in
the Guide for Reproducible Research have been adapted
to the TRE context for this report.

Additional topics covered by this resource not featured
in this report include:

• Code reviewing processes

• Research data management

• Risk assessment

• Project design

• Working collaboratively with GitHub

• Guidance for science communication

• Introduction to research ethics
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