
   

 

   

 

 
 

D2.2 

The COLLABS Level-3 Security Package for 

Secure Digital Supply Networks: 1st complete 

version 

Project number: 871518 

Project acronym: COLLABS 

Project title: 
A COmprehensive cyber-intelligence framework for 

resilient coLLABorative manufacturing Systems 

Start date of the project: 1st January 2020 

Duration:  36 months 

Programme:  ICT-08-2019 

 

Deliverable type: Other 

Deliverable reference number: DS-01-871518/ D2.2 / v1.0 

Work package contributing to the 

deliverable: 
WP 2 

Due date:  JUN 2021 – M18 

Actual submission date: JUN 2021 

 

Responsible organisation: HUA 

Editors: 

Dr. Panagiotis Rizomiliotis 

Dr. Konstantinos Tserpes 

Mrs. Aikaterini Triakosia 

Dissemination level: PUBLIC 

Revision: FINAL 

 

 



   

 

   

 

  

 

The project COLLABS has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 871518. 

 

 

Editors 

Dr. Panagiotis Rizomiliotis (HUA) 

Dr. Konstantinos Tserpes (HUA) 

Mrs. Aikaterini Triakosia (HUA) 

 

Contributors (ordered according to beneficiary numbers) 

Idryma Technologias Kai Erevnas, FORTH 

Advanced Laboratory on Embedded Systems SRL, ALES 

University of Novi Sad Faculty of Sciences, UNSPMF 

Sphynx Technology Solutions AG, STS 

Thales Six GTS France SAS, TSG 

Information Technology for Market Leadership, ITML 

Universita Degli Studi Di Padova, UNIPD 

Siemens AG, SAG 

Renault SAS, REN 

Harokopio University, HUA 

 

Document Revisions & Quality Assurance 

Internal Reviewers  

1. Ernesto Gomez Marin, IFAG  
2. Alzahraa Alhaddad, ITML 

Abstract: 

This the second deliverable of Work Package 2 tasks 

T2.1 (Tools and methods for secure data sharing), 

T2.2 (Trustworthiness of data flows), T2.3 (Machine 

learning-based cognitive security framework), T2.4 

(Statistical Analytics and Machine- / Deep-Learning on 

shared data), T2.5 (Distributed anomaly detection for 

Industrial IoT) and T2.6 (Workflow-driven security for 

supply chain and compliance in manufacturing) related 

to the 1st version of integrated platform of the 

project. It describes and demonstrates the various 

technologies that form the COLLABS Level-3 security 

package for secure digital supply networks. 

Keywords: 

Secure data sharing, secure data flow, anomaly 

detection, statistical analytics, IIoT, digital supply 

chain 



D2.2 - The COLLABS Level-3 Security Package for Secure Digital Supply Networks: 1st version    

COLLABS D2.2 Page II 

 
 

Revisions 

Version Date By Overview 

1.0 15/6/2021 HUA Final version 

0.5 11/6/2021 Internal 

Reviewers 

Internal Review 

0.4 31/5/2021 HUA Editing 

0.3 25/5/2021 Partners Second round of inputs 

0.2 15/5/2021 Partners First round of inputs 

0.1 12/03/2021 Editors  ToC 

 

 

 

 

Disclaimer 

The information in this document is provided “as is,” and no guarantee or warranty is given that the 

information is fit for any particular purpose. The content of this document reflects only the author`s 

view – the European Commission is not responsible for any use that may be made of the information it 

contains. The users use the information at their sole risk and liability. 

  



D2.2 - The COLLABS Level-3 Security Package for Secure Digital Supply Networks: 1st version     

COLLABS D2.2 Page III 

Executive Summary 

The COLLABS project aims at developing, demonstrating, and supporting a comprehensive cyber-

intelligence framework for collaborative manufacturing. This enables the secure data exchange across 

the digital supply chain while providing high degrees of resilience, reliability, accountability, and 

trustworthiness. It addresses threat prevention, detection, mitigation, and real-time response. 

This deliverable provides a specification of the components and supporting tools and technologies in 

the 1st version of integrated platform of the COLLABS Level-3 security package for secure digital supply 

networks. These components are implemented through activities within the six tasks of work package 

2. This third level of security mechanisms (1) comprises tools for secure data sharing, ensuring 

trustworthiness of data flows in collaborative manufacturing environments, (2) delivers a machine 

learning-based cognitive security framework applied to shared data, and (3) deploys a workflow-driven 

security framework for supply chain and compliance in manufacturing based on distributed ledgers. 

After the introduction, in Section 2 we give an overview of the aspects of the COLLABS architecture 

addressed by Level-3 security, and we report the differences between the MPV and the 1st version of 

integrated platform. Then, in Section 3, we describe the components of the COLLABS framework that 

implement Level-3 security for the 1st version of integrated platform. In Section 4, we give an overview 

of the architectural framework for trustworthiness assurance. Section 5 concludes the deliverable. 

Finally, in the Appendix, we present supporting methods that have been used in the design and 

development of COLLABS components. 
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1. Introduction 

Security within the COLLABS framework is organized into three levels, namely: Level 1 – hardware-

enabled and device-level security, Level 2 – Inter-device level security based on distributed ledger 

technologies, and Level 3 – Machine learning-based cognitive security level. The aim of this deliverable 

is to provide an overview and description of components and supporting tools and technologies relevant 

to the 1st version of integrated platform implementation of the COLLABS Level-3 security package for 

secure digital supply networks. 

The identified objectives that the COLLABS Level-3 security package needs to achieve are providing tools 

for secure data sharing, ensuring trustworthiness of data flows in collaborative manufacturing 

environments, delivering a machine learning-based cognitive security framework applied to shared data, 

and deploying a workflow-driven security framework for supply chain and compliance in manufacturing 

based on distributed ledgers. For more details about the objectives of COLLABS Level-3 security please 

see deliverable D1.3. 

Work on the COLLABS Level-3 security package permeates all tasks of Work Package 2: 

T2.1, Tools and methods for secure data sharing, deals with the required hardware and software 

architectures. It introduces the notion of trusted execution environment (TEE) and explains the concepts 

relevant to TEE functional availability in a device. The task addresses methods to remotely and 

dynamically manage TEEs, safe means to facilitate multiparty analytics of sensitive data, as well as 

security of the data from unauthorised access, and the anonymisation of the data. More details about 

the work done within this task are given in Section 3.2. 

T2.2, Trustworthiness of data flows, addresses the detailed design and development of the building 

blocks composing the trust infrastructure. To achieve this, the components and results developed in 

multiple other tasks are leveraged and combined, including machine learning, deep learning, and 

anomaly detection, with more details given in Section 4 of this deliverable. 

T2.3, Machine learning-based cognitive security framework is concerned with developing the core of the 

Level-3 security mechanism. This includes behavioural models that will enable the analysis of the 

network flows among multiple IoT devices which is supported by methods for device identification and 

wireless fingerprinting based on features derived from packet headers as opposed to packet payloads, 

thus, facilitating use on both encrypted and non-encrypted network traffic. More details about the work 

done on this framework are given in Section 3.1. 

T2.4, Statistical analytics and machine- / deep-learning on shared data, will offer privacy-preserving 

storage and analytics to end-users and enterprises by allowing seamless integration and injection of 

heterogeneous data, and facilitate the adoption of collaborative analytics to enterprises, without 

exposing private or sensitive information. More details about the work done within this task is given in 

Section 3.2. 

T2.5, Distributed anomaly detection for industrial IoT, advocates the introduction of intrusion detection 

systems (IDS) which are not limited to the local view of the device or a group of devices they are installed 

on, but rather employ a lightweight and distributed approach that leverages innovative machine-learning 

techniques to detect specific security threats and to identify malicious behaviours. The work on this task 

is addressed in Section 3.4 of this deliverable. 

T2.6, Workflow-driven security for supply chain and compliance in manufacturing, provides a workflow 

framework for security and resilience in collaborative manufacturing, allowing users to organise 
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production processes across companies in a secure manner. To achieve this objective, the task 

implements the formalisation of contractual obligations and of security and compliance requirements. It 

integrates data streams from trustworthy sensors and provides concepts for enforcing the workflows in 

the secured collaborative manufacturing supply chain, leveraging technologies such as distributed 

ledgers, blockchain, and distributed databases. Section 3.3 of this deliverable is relevant to this task. 

Within the COLLABS trust infrastructure, the components and tools that facilitate data protection, 

developed in WP2, will consider both, data in transit and data at rest. An important part of the 

infrastructure is the definition of an encrypted data flow model that specifies the use of cryptographic 

primitives, enabling data from IoT devices to be securely transferred to and processed by trusted 

execution devices or end cloud-services.  

The rest of the deliverable is structured as follows. 

 Section 2 gives an overview of the aspects of the overall COLLABS architecture that are addressed 

by Level-3 security for the 1st version of the integrated platform. Also, it presents the differences 

between this version and the MVP. 

 Section 3 describes the components of the COLLABS framework that facilitate Level-3 security, 

relevant to the 1st version of the integrated platform, which encompasses the machine learning-

based cognitive security framework, statistical analytics and machine- / deep-learning on shared 

data, computations on outsourced data, workflow-driven security for supply chain and 

compliance in manufacturing and network traffic monitoring. 

 Section 4 describes the architectural framework for trustworthiness assurance and its main 

building blocks: Secure elements, data protection, and encrypted traffic analysis. Within the 

topic of data protection, details are provided on the data flow model specification, as well as 

specific associated scenarios provided by three project partners (initially described in deliverable 

D1.3), namely by ALES (S1 - controlled and secure remote maintenance, S2 - controlled share of 

compliance data, S3 - trusted compliance data share across the supply chain, S4 - analysis of 

manufacturing performance on a global scale), PCL (S1 - shop floor threat detection and 

prevention, S2 - remote data sharing), and REN (S1 - controlled and secured remote maintenance, 

S2 - cloud-based architecture for industrial processes, S4 - security of connected devices). 

 Section 5 concludes the deliverable summarizing the work that has been done and presenting 

the next steps. 

The Appendix presents the supporting methods used for screening and improving the security of the 

COLLABS solutions. It includes methods and guidelines for oblivious machine learning, distributed 

anomaly detection for industrial IoT, and the formal specs verifier (FSV). This section aims to make this 

document as self-contained as possible. 

 

2. Level-3 Security Components Relevant to the 1st Version of the Integrated 

Platform of the COLLABS Architecture for Secure Digital Supply Networks 

 

The third level of security of the COLLABS Architecture for Secure Digital Supply Networks (explained in 

more detail in Section 1 and deliverable D1.3) includes the components that have the ability to supervise 

information exchange between the devices either within the boundaries of the smart factory, or with 

external partners within the digital supply network. By monitoring various data flows from the connected 
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devices and creation of situational awareness they will be capable of anticipating security risk situations 

and activating prevention mechanisms. According to technology and mechanisms, the Level-3 security 

components could be divided into four main functional groups: 

1. Group 1: Machine Learning-Based Cognitive Security Framework - aims to develop behavioural 

models that will enable the analysis of the network flows among multiple IoT devices. It 

amalgamates the components: IoT Secure Wireless Fingerprinting and Machine Learning 

Structured (Non) Convex (ML S(N)C) Optimization, and GMS Tools. The first one is based on 

scanning fingerprint information of multiple IoT devices, while the second one uses Machine 

Learning (ML) / Deep Learning (DL) models that enable the analysis of their behaviour. 

2. Group 2: Statistical Analytics and Machine- / Deep-Learning on Shared Data - will offer 

integration of heterogeneous data of the end-users and enterprises and facilitate the adoption 

of collaborative analytics to enterprises without exposing private or sensitive information. 

Homomorphic Encryption will be the main cryptographic technology used for the secure 

computation outsourcing. It, also, presents the synergy of the components named Security 

Infusion and 3ACEs.  

3. Group 3: Workflow-Driven Security for Supply Chain and Compliance in Manufacturing - will 

provide a workflow framework based on distributed ledger technology for security and resilience 

in collaborative manufacturing.  

4. Group 4: Network Traffic Monitoring – will provide tools for monitoring the behaviour of a 

network. The first tool will monitor encrypted traffic, while the second will detect anomaly 

behaviour using a decentralized approach.   

What is new in the 1st version of the platform 

All the components have been developed, integrated into the COLLABS Architectural Framework and 

made ready for presentation. In order facilitate the monitoring of each component’s progress in the 

project, the new subsection “Component Evolution” has been added in Section 3 per component. 

Some of the components that appear in this 1st version of COLLABS platform were initially integrated into 

the first minimum viable product of the project. More precisely, two components in Group 2, Security 

Infusion and 3ACEs, and the component in Group 3, the Workflow-Driven Security Framework, have been 

already presented as part of the MVP. Of course, the new versions of all these components offer further 

functionalities, as it is analysed in the corresponding “Component evolution” subsection in each 

component.  

The two components in Group 1 were initially created during the first year of the project, but only initial 

functionalities were initialized. The enhanced version of the two components is now integrated into the 

1st version of the platform.   

Finally, we have three new components. Namely, the two components in the 4th group, the Network 

Traffic Monitoring group, and the Homomorphic Encryption component in the 2nd group.  All three 

components were designed during the first year. The methodology used for these designs was analysed 

in deliverable D2.1 and it appears in the appendix of the current document.   
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3. Security Component Descriptions 

 

3.1    Machine Learning-Based Cognitive Security Framework 

The Machine learning-based cognitive security framework consists of two subcomponents, IoT secure 

wireless fingerprinting (Section 3.1.1) and ML S(N)C optimization and GMS tools (Section 3.1.2). The two 

components work together by the former component providing data (device fingerprints), and the latter 

producing machine-learning models capable of identifying devices and detecting anomalies. The 

envisioned interaction between the two subcomponents within the COLLABS framework is illustrated in 

Figure 1. 

3.1.1 IoT Secure Wireless Fingerprinting  

This component will provide inputs to the Machine learning-based cognitive security framework in the 

form of auxiliary information referred to as fingerprints, which are collected from wireless Industrial IoT 

devices and delivered along with the sensor data to the network server. Fingerprints represent all 

information that can be acquired from an IIoT device which provides information about that device and 

its usual behaviour. Examples of fingerprint information include radio channel condition parameters, 

hardware-related imperfections attributable to a particular IIoT device, detailed energy consumption 

information, or similar. Based on the fingerprinting inputs, ML algorithms will be trained to differentiate 

between normal and abnormal identities of IIoT devices and initiate appropriate actions. 

Functional Description 

Depending on the wireless interface used by the IIoT device, this component will collect information 

about the radio-channel fingerprints from the device communication module and process this information 

into a useful stream of fingerprinting data. Use cases considered in the project will start with most 

common wireless IoT technologies such as IEEE 802.11ah or similar (Wi-Fi IoT) and 3GPP NB-IoT (Cellular 

IoT). For the emerging IEEE 802.11ah Wi-Fi IoT standard, we will use experimental platforms based on 

software-defined radios to generate and collect fingerprinting data. For IEEE 802.11ac standard, which 

is one of the commonly used broadband Wi-Fi interface used today, we will collect channel state 

information from commercial 802.11ac devices or access points. This imposes certain requirements, for 

example, in terms of the 802.11 chipset the device or access point is based on, as it is not possible to 

extract Channel State Information (CSI) as fingerprints for any available 802.11ac device1. For 802.11ac, 

we will also collect CSI fingerprints from Raspberry Pi devices, which are now commonly used as sensor 

platforms in industrial IoT. Finally, we will also collect fingerprinting data in the form of radio channel 

parameters (RSSI, RSRP, SNR) from 4G Cellular IoT devices based on 3GPP NB-IoT technology which is the 

main standard for 4G/5G cellular IoT connectivity. Initial phase of fingerprinting collection will be done 

in lab environment (UNSPMF). Such data sets will be used as a proof of concept for training relevant 

machine learning models. Further experiments will be done based on the data available at the use case 

                                                 

1 CSI is estimated at the lowermost physical layer of IEEE 802.11ac and this information is used to 

perform received signal equalization and correctly decode received data packets. However, this 

information is not forwarded to higher layers and standard commercial Wi-Fi device has no access to 

this information from Wi-Fi chipset. However, certain Wi-Fi chipsets (e.g., some Intel and some 

Atheros/Qualcomm chipsets) allow extraction of this information using appropriate drivers. 
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providers. For example, radio channel conditions collected from LoRa devices and Wi-Fi nodes (provided 

by REN) will be considered as suitable fingerprints. 

 

Figure 1 IoT wireless fingerprinting setup. 

Preconditions and Input 

Most of the commercially available IIoT devices are currently not suitable for the extraction of 

appropriate fingerprints from the device itself. Although most of the devices currently deployed at the 

use-case provider premises will not be useful for demonstration purposes, some possibilities for 

extracting channel state information from existing devices have been identified. For example, specific 

LoRa devices for outdoor smart logistics applications, as well as indoor Wi-Fi based IoT devices, provide 

possibilities for logging and using specific channel state information and device information data as 

fingerprints.  Another possibility of using UNSPMF devices developed under lab conditions at UNSPMF 

premises and transferred to a real-world deployment at use case providers, will remain open. 

Postconditions and Output 

There are no specific postconditions. Once the IIoT device is capable of collecting fingerprints, it will 

send fingerprints formatted as other usually transmitted data from other onboard sensors, along this 

same data, in order to efficiently use communication opportunities. Thus, fingerprinting data can be 

considered as data coming from additional sensors. 

Output of the component will be formatted in a way which is appropriate for interpretation by ML- based 

cognitive security framework. For example, fingerprinting data may be delivered to the ML-based 

cognitive security framework as a feature vector representing average CSI values measured from the 

signals arriving at each of the Wi-Fi device/access point antennas and averaged across a sequence of a 

given number of last received Wi-Fi packets.  

Component Design 

Depending on the wireless interface, fingerprinting data can be collected in different ways. For Wi-Fi-

based technologies, specific software tools are developed that need to be integrated within Wi-Fi access 
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points and/or Wi-Fi IoT devices in order to gain access to fingerprinting information2. This will be first 

tested for the most common IEEE 802.11ac devices and access points for which there exists a solution 

for the extraction of CSI-based fingerprinting information (although not for every 802.11ac chipset). 

Besides open source tools for extracting fingerprints for IEEE 802.11ac devices, it is also possible to use 

proprietary tools used for management and control of Wi-Fi devices already available at the use case 

provider for collection of fingerprints. 

For 3GPP Cellular IoT devices, the device is already exchanging a lot of radio-interface parameters with 

the network, many of which could be captured at the IoT device and transmitted as auxiliary data back 

to the network servers and the ML S(N)C optimization and GMS tools component. We are also capable of 

designing and fabricating NB-IoT devices which could be customized for specific types of fingerprinting 

data collection. Our current NB-IoT testbed already possesses about 100 custom-designed NB-IoT devices 

which will be readily available for large-scale data collection purposes. In addition, it is possible to use 

proprietary tools available at use case provider for LoRa low-power wide area network devices, that 

offers logging various channel quality and device status parameters that can be used as fingerprints for 

further machine learning based processing. 

Addressed COLLABS Common Security Requirements 

List of security requirements addressed by this component: 

 CSR_01 - Identification and Authentication: This requirement is partially addressed by wireless 

fingerprinting component as it represents a crucial input for fingerprinting-based authentication 

and device identification. 

 CSR_08 - Monitoring: This requirement is partially addressed by wireless fingerprinting as the 

input from wireless fingerprinting will serve as a data for IIoT device monitoring and anomaly 

detection. 

Beyond the state of art 

Wireless fingerprinting is a recent and popular research area in wireless signal processing. In COLLABS, 

we expanded the investigation of extracting wireless fingerprints to two novel communication standards 

that has not been addressed in the literature, namely, IEEE 802.11ah Halow (emerging low-power Wi-Fi 

for IoT) and 3GPP NB-IoT. For the latter, in-house designed nodes are used that are specifically designed 

for efficient fingerprinting acquisition. Initial usage of extracted wireless fingerprints in COLLABS is for 

the problem of device identification. Device identification using wireless fingerprints has been addressed 

recently, but only in limited studies and with limited signals. In COLLABS, we extend device identification 

to IEEE 802.11 and 3GPP NB-IoT technologies and use a variety of machine learning methods to address 

this problem. 

Component Evolution 

Wireless fingerprinting component extracts additional information about wireless IoT devices that is used 

by machine learning methods to learn a new knowledge about the device. The work on the component 

was started within the COLLABS project. Up to D2.1 and the MVP, two data sets based on IEEE 802.11ah 

Wi-Fi IoT and IEEE 802.11ac technology were generated. Since then, extraction of wireless fingerprints 

from 3GPP NB-IoT devices was conducted and third data set was generated. Now, we are in the process 

                                                 

2 Currently, there are several tools available for integration with Wi-Fi devices. For example, Atheros 
CSI Tool (https://wands.sg/research/wifi/AtherosCSI/) can be used to extract this information from 
Atheros/Qualcomm-based chipsets. 

https://wands.sg/research/wifi/AtherosCSI/
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of extracting wireless fingerprints from IEEE 802.11ac based Raspberry Pi devices which are wide-spread 

platform for industrial IoT. Currently, efforts are underway to integrate the wireless fingerprinting 

component into LoRa devices in wide area LoRa network and IEEE 802.11ac devices in industrial setup in 

collaboration with REN. 

Outlook 

The initial version of the component will involve developing appropriate Wi-Fi and Cellular IIoT devices 

and collecting the corresponding data sets for training the ML-based cognitive security framework. The 

deployment and testing will be done exclusively at UNSPMF premises. In the further stages, the solutions 

for integration of both the IIoT devices and the ML S(N)C optimization and GMS tools component will be 

investigated in collaboration with the use case providers. 

3.1.2 ML S(N)C Optimization and GMS Tools 

The component is organized around a framework consisting of Machine Learning (ML) and Deep Learning 

(DL) models that enable the analysis of the behaviour of multiple IoT devices, as well as application to 

other COLLABS-related problems. For instance, data collected from the IoT secure wireless fingerprinting 

component will be fed into this component. The way input data (device signals) interact with parts of 

the component to produce the desired output and the evaluation reports is illustrated in Figure 2. 

 

Figure 2 IoT wireless fingerprinting setup. 

 

Models can be built in a supervised or unsupervised way depending on the application domain and 

available data. If class labels are present (e.g., device IDs), supervised ML and DL methods can be trained 

to solve a classification problem (e.g., device identification based on various fingerprint features) or 

outlier detection problem (e.g., detecting faulty or compromised devices). If the data consists only of 

normal instances, then ML models based on a semi-supervised anomaly detection approach also known 

as novelty detection can be applied. On the other hand, if class labels are not present, unsupervised 

methods for outlier detection can be applied. 
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Functional Description 

Modules of this component implement models for classification and anomaly detection (AD) that can be 

applied to fingerprint data, which include supervised methods based on support vector machines (SVMs), 

random forests, naive Bayes, and different architectures of deep neural networks, as well as semi-

supervised (novelty detection) and unsupervised outlier detection methods. Models can be trained in a 

supervised, semi-supervised or unsupervised way (depending on the availability of labels in collected 

data) to identify individual devices and/or detect anomalous device behaviour based on their 

fingerprints. 

The functionality of the component is not limited to device fingerprinting, identification, and behaviour 

analysis; it can be adapted to any problem domain. 

Preconditions and Input 

 Preconditions: environment (native OS or VM) able to execute Python and associated libraries 

(scikit-learn, PyTorch, PyOD, LightGBM, Sktime, Pandas, SciPy, Seaborn, NumPy, Matplotlib, 

Missingno). 

 Sufficient processing power and RAM for model training and deployment, depending on the 

problem at hand and employed data. GPU acceleration is recommended for training DL models. 

All models can be executed on a CPU, while DL models are far more efficient if executed on a 

GPU. Parallelization is supported by some methods, which means that more CPU cores can 

contribute to efficient model prediction. There are various types of models that can fit in 

different memory resources in compromise with the accuracy of the model. Current trained DL 

models can run on a GPU that has at least 4GB of memory. 

 The component currently supports input of data in the form of .csv files; other means of input 

(e.g., direct network read) will be added as dictated by the project’s needs. 

Postconditions and Output 

 There are no specific postconditions. 

 The component currently supports output in the form of plain text and .csv files; other means of 

output will be added as dictated by the project’s needs. 

Component Design 

The component consists of modules for: 

 Data input and processing. 

 Supervised machine learning (classification) by classical (non-DL) methods, including: 

o Support vector machines (SVM), 

o Naive Bayes (NB), 

o Decision trees (DT), 

o Random forest (RF), 

o Gradient boosting machines (GBM). 

 Supervised deep learning, including: 

o Fully connected neural networks (FNN), 

o Convolutional neural networks (CNN), 

o Recurrent neural networks (RNN), with different variants, including: 

 Long short-term memory networks (LSTM), 

 Gated recurrent unit (GRU). 

 Unsupervised and semi-supervised outlier/anomaly detection including methods based on: 
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o One-class support vector machines (OCSVM), 

o Isolation forests, 

o Local outlier factor (LOF), 

o Angle-based outlier detection (ABOD), 

o k-nearest neighbours (kNN), 

o Elliptic envelope, 

o Histogram-based outlier score, 

o Copula-based outlier detection, 

o Autoencoders. 

 Model evaluation: 

o Training/validation/test accuracy, 

o Training/test speed. 

The component is written in Python and depends on external libraries scikit-learn, PyTorch, PyOD, 

LightGBM, Sktime, Pandas, SciPy, Seaborn, NumPy, Matplotlib, Missingno. Parallelization is supported by 

many methods. 

Addressed COLLABS Common Security Requirements 

 CSR_01 - Identification and Authentication: partially because the component introduces one of 

the means for device identification that can support classical methods for authentication and 

identification. 

 CSR_08 – Monitoring: partially because the component provides one of the means for 

determining possible security breaches by detecting anomalous behaviour. 

Beyond the state of art 

The advances with respect to the state-of-the-art are expected through innovative applications of ML 

and OD techniques in the domains of device identification and anomaly detection using novel to obtain 

and extract wireless fingerprinting data from IoT devices. Coupled with the novel approaches to wireless 

fingerprinting introduced by the IoT Secure Wireless Fingerprinting component, we expect the ML S(N)C 

Optimization and GMS Tools component to provide extended security functionality compared to standard 

approaches to device authentication and threat detection. 

Component Evolution 

The development of the component was started within the COLLABS project. Up to D2.1 and the MVP, 

multiple techniques for classification and outlier detection were implemented and evaluated on two 

data sets generated at the UNSPMF lab premises by the IoT Secure Wireless Fingerprinting component, 

and the results presented as an MVP demonstrator. Since then, the component was extended with: 

 New machine learning methods related to time-series (such as different variants of LSTMs), 

 New deep learning methods for outlier detection (different types of autoencoders), 

 New semi-supervised outlier detection methods (such as copula-based outlier detection) 

In addition, experiments with existing methods were repeated on the third data set produced by the 

UNSPMF Wireless Fingerprinting component (NB-IoT), and new methods were included in the experiments 

on all three UNSPMF data sets. Currently, efforts are underway to integrate the component into at least 

two COLLABS use-case scenarios. 

Outlook 
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The initial version of the component was applied to the problems of device identification and threat 

detection in conjunction with the IoT Secure Wireless fingerprinting component. The deployment and 

testing in this phase were done exclusively at UNSPMF premises. Currently and in the further stages, the 

solutions for integration of both the IIoT devices and the ML S(N)C optimization and GMS tools component 

are being investigated in collaboration with the use case providers. In addition, the component will be 

used to address the task of Confidential Data Discovery. 

3.2    Statistical Analytics and Machine- / Deep-Learning on Shared Data 

3.2.1 Security Infusion 

This component is agent-based software which is used to monitor and secure any network’s 

infrastructure. Security Infusion offers real-time and historical data access related to the collected, 

analysed, and visualised data concerning the security posture of a company. Security Infusion was 

designed based on ITML’s experience of managing IT resources, and operational risk. The service’s main 

aim is to do the job in a simple and efficient manner, without compromising the performance of the 

protected resource or accuracy of the data and information it collects regarding event and processes. 

Functional Description 

Security Infusion is a cloud-based, online service, mainly used for information security and event 

management of a network, which contains IDS functionalities as well. In the framework of the COLLABS 

pilots, the cloud might not be a valid option for some use cases, therefore edge deployment will be used 

as a substitute. In industrial environments, the component can be used to detect and mitigate threats 

on a multitude of vulnerable IoT Devices, by detecting unprecedented anomalies in an OT environment. 

Consequently, the platform creates alerts when a threat/anomaly is detected. It employs forensic 

analysis features which store information related to past logs and events, which administrators can access 

when needed. Security Infusion also delivers thorough vulnerability assessments and port scans to assess 

certain future issues and prepare administrators to avoid and/or resolve them. 

Preconditions and Input 

 The Infusion edge manager differs in preconditions depending on the number of agents: 

o For up to 20 agents, an AMD64 processor is needed, along with 2 CPUs and a 4G memory, 

where 75KB are needed per snapshot of the system.  

o For up to 100 agents, an AMD64 processor is needed, along with 2 CPUs and a 6G memory, 

where 75KB are needed per snapshot of the system.  

 Consequently, the requirements differ depending on the OS type: 

o For the windows agent, a minimum of windows 7 OS, a 32/64bit, an intel i3-i5, and a 3G-

4G memory are required.  

o For the Linux agent, a CentOS, or Ubuntu 18.04 OS, a 32/64bit, a JRE 1.8, an intel i3-i5, 

and a 3G-4G memory are required.  

 Security infusion processes the following data: 

o Inputs system data, OS data and network data and syslog events, 

o Internet access to send data to the cloud is needed. 

Postconditions and Output 

 The output is mainly visual and can be saved in a Json format. 

 Data processing occurs on minified / filtered data and events that the agents provide when 

installed. 
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Component Design 

The service consists of three sub-tools; the Infusion Agents, the Infusion Manager (Field gateway or Cloud 

based), and the Infusion Web Interface. The technologies comprising the submodules of Security Infusion 

are delivered via Kubernetes and Docker and are comprised by a plethora of toolsets/ frameworks like 

Laravel3 as the existing admin panel and dashboard, Java SDK4 for linux-based systems’ agents, Nginx5 as 

a front end web layer delivering the cloud manager, and modules from the Elastic stack6 in order to 

persist data and be able to perform analysis on them. 

The Infusion agents are basically responsible for data collection; therefore, they are deployed in the 

network. The agents can be deployed o Windows and Linux operating systems, which gives users the 

flexibility to use them wherever necessary. Consequently, there are two types of agents, the master 

agent is the one responsible for data streams, port scans, vulnerability assessments, and containing log 

servers, whereas the data agents explicitly collect data. 

The Infusion manager is responsible for a multitude of operations including data reduction, threat 

management, and anomaly detection reasoner. Finally, security infusion contains a friendly UI, which 

contains the following features: 

 Dashboard, 

 Event Analyzer, 

 Monitoring, 

 Vulnerability and Port Scan, 

 Reporting, 

 Admin panel. 

The aforementioned features, as well as the high-level functional diagram, are shown in the following 

image. 

 

Figure 3 The high-level functional diagram 

                                                 

3 Laravel PHP MVC framework, https://laravel.com/, accessed on December 2020 
4 Java SE/EE SDK, Oracle, https://www.oracle.com/java/technologies/javase-downloads.html 
accessed on December 2020 
5 NGinx web server, https://www.nginx.com/, accessed on December 2020 
6 Elastic stack, https://www.elastic.co/elastic-stack , accessed on December 2020 

https://laravel.com/
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.nginx.com/
https://www.elastic.co/elastic-stack


D2.2 - The COLLABS Level-3 Security Package for Secure Digital Supply Networks: 1st version    

COLLABS D2.2 Page 21 of 66 

Addressed COLLABS Common Security Requirements 

 CSR-08 (Monitoring) fully because the agents collect and minimize this data and send it to the 

cloud manager. 

 CSR-09 (Accountability and non-repudiation) Fully because the forensic analysis is covered by the 

module by storing data for a pre-defined period in order to allow post-event forensic analysis. 

 CSR-15 (Availability) as long as it includes the cloud installation of the Security Infusion cloud 

manager. 

Beyond the state of art 

Security Infusion aims to advance the state-of-the-art by providing a package of security services that 

efficiently safeguard devices, spanning from edge to cloud infrastructure. This aim will be achieved mainly 

through the following functionalities: a) provision of configurable alerts of various severity levels, through 

different channels to the end user, and  b) mitigation of preliminary automated actions that reduce 

response time to intrusions. Compared to standard approaches, Security Infusion, integrated into an IIoT 

infrastructure, aims to significantly reduce threat detection time as well as increase responsiveness 

efficacy upon intrusion events. 

Component Evolution 

Within COLLABS, Security Infusion has already been successfully integrated and installed on small scale, 

testing environments. For the next stages of COLLABS, the component is planned to evolve in two steps; 

first, by implementing the creation and management of configurable alerts and then, by implementing 

threat mitigation to edge devices. The latter case may include any preliminary action that can be 

automatically (or semi-automatically) employed in a case of a detected intrusion, for example disabling 

temporarily a device, until a more sophisticated action is executed by a human operator. 

Outlook 

For the 1st integrated version, Security Infusion builds upon the version executed and evaluated in the 

context of the MVP, expanding its functionality to further engage human operators for detecting 

imminent threats. More specifically, all data collected by Security Infusion agents at this level are 

presented to the user with more sophisticated, dedicated UI, through which users are able to promptly 

detect abnormal behaviours and apply aggregate functions for presenting on collected data. Additionally, 

customised alerts notify users for high severity threats. This functionality will be further extended to 

include preliminary threat mitigation action.  

 

3.2.2 3ACEs – Analytics as a Service 

With the widespread use of big data analytics and its applications and the variety of data regarding size, 

type, and sources, industries are in a growing need of customisable tools which coincide with their 

changing requirements. Module Analytics as a Service (3ACES) is a tool which offers ideal decision support 

attributes for business through running big data analytics on whole datasets, regardless of the status 

which the datasets are delivered to the tool (structured, unstructured, or noisy). The data analytics 

features which 3ACES utilize depend heavily on machine learning algorithms which can serve in the 

clustering, classification, regression, and anomaly detection of the data presented. 

Functional Description 
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The interface’s flexibility along with the tool’s applicability in a multitude of domains, makes it ideal to 

work in any business / industrial environment with the help of its machine learning algorithms. The 

algorithms built in the system analyses the data in 4 main steps, as shown in the figure below: 

 

Figure 4 3ACES data analytics process. 

The Data Fusion Bus (DFB) sub-module of 3ACEs can integrate several data sources related to a specified 

problem / use case. This data can then be analysed in a preliminary analysis using ML algorithms and 

assess the produced results (as defined/expected for each use case). Then several iterations with more 

data can enhance the accuracy of the results by further training the selected algorithm(s). 

Preconditions and Input 

 Onboard, the data steams as plain CSV files and/or as an Apache Kafka integration. 

 MQTT events to be added within the scope of the project. 

Postconditions and Output 

 Provide output and respective feedback towards the end user or within the scope of the COLLABS 

framework to Security Infusion 

Component Design 

The analytics software applications created under the 3ACES framework are developed mostly as docker 

containers orchestrated by Kubernetes. This offers cloud optimization capabilities, allowing products 

based on the 3ACES framework to be deployed over public, private or hybrid cloud arrangements and 

enabling Software as a Service (SaaS), and/or Platform as a Service (PaaS) delivery models.  

The tool also incorporates a set of ready-made open technologies, along with ITML’s data fusion bus to 

produce a custom-made pervasive tool which both facilitates and supports businesses’ decision-making 

processes. The open technology software includes: 

 Apache Kafka data stream-processing software platform, 

 KSQL streaming engine, 

 Elasticsearch search engine and its stack (i.e., Logstash data streaming tool, Kibana visualization 

dashboard), 

 Apache Spark – for programming data processing patterns, mostly using Python, 

 Apache zookeeper coordination service, 

 Grafana metric analytics & visualization suite, 

 Laravel web programming environment. 

The data fusion bus (DFB) enables the system to synchronize data from heterogeneous sources, while 

also providing data distribution and common data sharing interfaces to third-party services.  
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Addressed COLLABS Common Security Requirements 

 CSR_08 (Monitoring) fully because providing the service containerized allows for OOTB 

monitoring tools targeted to cloud-based installations. 

 CSR_14 (Availability) fully due to the backup of the cloud-native nature of the tool that allows 

for regular backups that ensure the protection against data loss. 

 CSR_04 (Authorization), CSR_10(Integrity), and CSR_11(Integrity) all fully because all logs and 

data are maintained in an environment such that access is granted to specific users on a least 

privilege principle. 

Beyond the state of art 

3ACEs stands out in comparison to state-of-the-art approaches by combining efficient integration, 

analysis, presentation and monitoring of different data sources, in a trustworthy and scalable way. 3ACEs 

along with its sub-components offer various options of security including control over the KAFKA 

infrastructure, which is important in a big data environment by offering higher fault tolerance in 

comparison to traditional message brokers, supporting significantly higher throughput. Furthermore, 

both authentication and authorization are added through certificates which ensure that data transfer 

between the producers and consumers of data and the Apache Kafka is encrypted, while preventing 

unauthorized modules from sending on or receiving data within an IIoT framework. Finally, the 

component provides an easy way to manage authorized and authenticated producers and consumers of 

data through its API which can be used to allow or block access of modules to the data stream. 

Component Evolution 

Within COLLABS, 3ACEs aims to advance from TRL5 to TRL6 at the 1st integrated version of the platform, 

and finally to TRL7 at the final release. The added value to this component will be the result of the 

implementation of advanced monitoring functionalities on collected security events and related data, and 

its utilization in demanding real-world use cases. 

Outlook 

3ACES’ main role will be realized following the deployment of the first MVP in most use cases to 

accommodate data integration between modules (per use case or for the whole COLLABS framework), 

giving the chance to the tool to be further developed employing the data it collects through the first 

pilot. Succinctly, the overall customization of 3ACES which were used in the MVP will also be realized as 

the requirements become more apparent post-deployment and testing. 

 

3.2.3 Homomorphic Encryption 

The HE component is used for securely outsourcing computations to the cloud. In the context of COLLABS, 

we aim to protect a product compliance analysis algorithm in the Scenario 2 of ALES. HE, as a 

cryptographic tool, aims to protect the confidentiality of the input data and/or of the computations. An 

algorithm is transformed into a HE algorithm by replacing the operations with HE operations. 

Unfortunately, this is still not an easy process and the proposed compilers are performing poorly  

compared to the transformation hand-crafted by a human expert. The COLLABS component was created 

by COLLABS experts following the guidelines that appear in the Appendix 6.1. 

Functional Description 

The HE component is used to: 
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 Encrypt client’s data and protect their confidentiality. The data can stay always encrypted during 

their life cycle. 

 Outsource these data to the cloud and perform computations on the encrypted data 

More precisely, it implements an algorithm that computes the distance between a point cloud and a 

model, represented by a triangular mesh. It is also possible to define distance between two meshes, that 

it is a generalization of this use case. Practically we compute Euclidean type distances. The client, i.e. 

the data owner, encrypts all the points (cloud and triangle mesh) and sends them to the cloud. The cloud 

service provider performs the computations on the encrypted data and returns the encrypted outcome. 

During the whole processing, the outsourced data are always encrypted. 

In more details, let C be a “point cloud” formed of NC points in the 3-dimensional space: C = {Pi | 0< i ≤ 

NC} and let M be a triangle mesh formed of NM triangles M = {Ti | 0<i≤ NM }. C can be represented as a 

NC x 3 matrix which values are real numbers and each triangle is described 3 points in the 3-dimensional 

space. 

The HE process appears in the following Figure 5. 

 

Figure 5 HE-based computation outsourcing 

The data owner generates the necessary keys and parameters. More precisely as secret key is needed for 

the description of the ciphertexts, a public key is used for the encryption and several evaluation keys for 

the management of the HE operations. These keys are needed for noise reduction and ciphertext re-

sizing and they are used only by the Cloud Service Provider (CSP). 

The data owner encrypts all data and sends the ciphertexts to the CSP. Then, the CSP performs the 

operations using the evaluation keys. As described in the Appendix 6.1, some operations are very 

expensive to be performed by the CSP. Thus, we have decided to adapt a hybrid model in which these 
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operations are performed on plaintext data by the client. When necessary, the CSP interacts with the 

client to receive the output of these operations HE encrypted. 

Preconditions and Input 

 The client has text files of “point clouds” and triangle mesh (three floating point numbers for 

each point are used). This input will be provided by ALES. In particular, the file representing the 

point cloud is a text file with NC rows and 3 columns, where NC is the number of points forming 

the point cloud. The file representing the mesh is a text file having NM rows and 9 columns, 

where NM is the number of triangles forming the mesh and the columns are 3*3 floating points 

representing the 3D coordinates of the 3 vertices of each triangle. 

Postconditions and Output 

 The output is one floating point for each point, representing the distance between the point and 

the Mesh. In particular, it is the minimum of all the point/triangles distances. 

 

Component Design 

The component is written in C++ and builds on the MS SEAL library. Following the analysis that appears 

in the Appendix, the CKKS HE scheme has been selected to implement the basic HE operations. The CKKS 

scheme operates nicely to arithmetic circuits on complex and real approximate numbers.  

The HE component consists mainly of the following modules: 

1. Setup: this module receives as input the desired characteristics, like the security parameter λ 

and the input number scale and produces the various parameters Params of the scheme, defining 

mainly the size of the ciphertext, the noise and the key spaces. Also, it runs the key generation 

algorithm that generates the secret key, the public keys and the evaluation keys.  

2. Encryption/Decryption: this module encrypts a plaintext and decrypts a ciphertext. For the 

encryption it uses as input the public key and for the decryption it needs the secret key. In both 

cases, the HE parameters Params are also input. 

3. CSP computations: the CSP performs only HE additions and multiplications. For the noise and 

ciphertext size management, after each multiplication, the refresh and re-linearization 

operations are also performed using the evaluation keys. This module is not general. It is designed 

tailored to the needs of our algorithm. 

4. Client computations: the client performs only number comparisons, divisions and computes the 

square root function. All these operations are applied on unencrypted data and they can be 

implemented very efficiently on the client’s machine. However, they are very expensive for HE 

that it is implemented on p-ary circuits.  This module is not general. It is designed tailored to 

the needs of our algorithm. 

 The HE component will have a few more auxiliary modules.  

1. Client/CSP communication: this module is responsible for the interaction between client and 

the CSP during the computations. 

2. HE assessment: this module evaluates the performance of the component. It mainly measures 

the accuracy of the computations. 

3. TEE computations: we will investigate a trade-off between communication overhead, 

computation cost and security. More precisely, the intermediate operations performed by the 
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client will be run locally by a TEE. The TEE will have the secret and the public key and it will 

perform all the operations on unencrypted data.  

Addressed COLLABS Common Security Requirements 

Using the requirements definitions as identified in D1.2, the integration of the HE component in the 

COLLABS’ use cases will address the following requirement: 

 CSR_08:  Confidentiality.  

o FHE encryption protects confidentiality of data in transit and at rest is supported. In 

particular, confidentiality of data transferred to and managed in the Cloud should be 

protected. As FHE schemes are based on the Learning with Errors problem (LWE), they 

also offer postquantum protection. 

Beyond the state of art 

The state-of-the-art security model for cloud based computation assumes that the cloud service provider 

is part of the trusted base. This is a very weak assumption that strongly depends on the type of data. A 

risk analysis will exclude the adaption of the cloud paradigm when the data at stake are critical for the 

data owner (financial data, health). In COLLABS, we solve this problem by using homomorphic encryption, 

a very powerful cryptographic tool.  

The HE schemes are still rapidly evolving and a lot of problems are still not solved. In COLLABS we aim 

to advance the knowledge in the field and solve some of these problems. HE is notoriously weak to deal 

with non-linear functions, like square root functions, and with data flow controls like comparisons and 

loops. However, all these computations are very common and they appear in our use case algorithm. We 

introduce new practical approaches for loops and comparison computation by presenting a trade-off 

between security and communication overhead. We implement and evaluate all our solutions. In 

COLLABS, we are using the state-of-the-art HE schemes implementations, like the MS SEAL library7. 

Component Evolution 

This is the first version of the component. We used the first year to identify the use case and the most 

adequate HE schemes, as well as the optimal parameters, in terms of security and efficiency. The whole 

procedure was performed manually by the COLLABS team of experts. The analysis of our design 

philosophy and our approach in general, appears in the Appendix 6.1 of this document. 

The identified use case is part of the ALES scenario S2. We have implemented HE version of an algorithm 

the computes Euclidean-like distances to compare products with the corresponding prototypes using 3D-

model representation. It is written in C++ and it is using the CKKS HE scheme as it is implemented in the 

Microsoft SEAL library. 

At this stage, the component’s implementation will serve as a proof-of-concept for our design. 

Outlook 

HE encryption component will be used for securely outsourcing computations to the cloud as part of the 

ALES scenario S2 “Controlled share of compliance data” (see D1.3). At month 18, the proof of concept is 

demonstrated.   

                                                 

7 https://github.com/microsoft/SEAL/tree/main/native/src/seal  

https://github.com/microsoft/SEAL/tree/main/native/src/seal
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In the next iteration, the design will evolve in two directions. We will revisit the security model and we 

will introduce hardware security in the trusted base by using the INTEL SGX technology. At the same 

time, we will improve the implemented algorithm to optimise parallel execution in order to evaluate 

more accurately the practically of the proposed solution. 

 

3.3    Workflow-Driven Security for Supply Chain and Compliance in Manufacturing 

 

3.3.1 Workflow-Driven Security Framework (WDSF) 

The workflow-driven security framework (abbrev. WDSF) (Kasinathan & Cuellar, 2019) is used to model, 

implement, and enforce complex cross-organizational business processes by making use of a distributed 

ledger architecture. WDSF can enable workflow-aware access control across organizational boundaries 

and allows digitising distributed business processes and enforcing their compliant execution. In COLLABS, 

WDSF is used to model collaborative manufacturing and remote maintenance use cases. In such scenarios, 

stakeholders of different organizations – such as manufacturers, suppliers, or service providers – 

collaborate and, thus, must establish and manage trust across organizations. WDSF addresses these 

requirements by providing transparency and accountability (non-repudiation) of workflow step execution 

through a shared (distributed) immutable ledger. 

Functional Description 

WDSF is a security framework that is used to: 

 Model, specify, simulate, validate, and verify the digital representation of business processes 

(i.e., modelled as one or more workflows). 

 Enforce correct executions of distributed business processes, denoting the adherence to the 

defined steps of processes and compliance with pre- and post-conditions. 

 Guarantee workflow integrity, traceability, and accountability of actions. 

WDSF includes a manual modelling phase and a semi-automated deployment and execution phase as 

illustrated in Figure 6, below. First, via a sequence of 4 interactive modelling steps, the workflow is 

designed and implemented using Petri Nets – these 4 steps are done manually: 

(1) In the first step, the business process needs to be defined and the interaction between the 

stakeholders needs to be clarified. In the example of a remote maintenance scenario, this phase 

involves representatives of the manufacturing company (such as shop floor manager and 

enterprise IT manger) as well as service providers (e.g., key account manager of the maintenance 

company). 

(2) Based on the initial stakeholder’s input, the process activity is modelled via user friendly activity 

diagrams. Usually, one of the stakeholders involved creates the activity diagram. 

(3) The activity diagrams get reviewed by all the stakeholders involved in the first step and 

approved. 

(4) Next, a Petri Nets based workflow is modelled representing the business process activity 

diagram. This step also includes simulation, validation, and verification of Petri Nets workflow 

properties such as deadlock freeness and soundness. After successful validation, the Petri Nets 

can be directly executed via the workflow application.  

The deployment and workflow execution are shown in the second half of Figure 5 where the workflow 

gets implemented via the following steps. 
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(5) Based on the Petri Nets workflow, smart contracts8 are created. Thereby, the basic structure of 

smart contracts can be automatically generated (Zupan, 2020). This approach reduces both the 

effort for smart contract development and interpretation errors while implementing the business 

process specified in the first step. Specific semantics, like the evaluation of preconditions 

represented in custom data structures are use case specific and cannot be automatically 

generated so that this step is performed semi-automatically. Note: The Petri Nets workflow may 

contain additional workflow steps that need not be represented in the deployment of the smart 

contracts. This feature is used to preserve confidentiality aspects of individual organizational 

workflows that need not be shared with other parties. 

(6) In the next step, the smart contracts are deployed on the distributed ledger, e.g., in Hyperledger 

Fabric each organization (stakeholders) should accept the smart contract before it becomes 

functional. The architectural layers, including the blockchain, are described in more detail in 

the next sub-section. 

(7) Finally, the workflow can be executed. Based on the Petri Nets based workflow model and 

implementation, compliance with the business process is enforced. Parallel workflow execution 

is supported via the eventual consistency provided by the underlying blockchain for synchronizing 

the workflow events across multiple actors in different organizations. 

Steps (5) to (7) are executed semi-automatically using WDSF. Please note that all steps are shown in 

consecutive order. In case of changes in the business process or if any rectifications are needed, previous 

steps will be re-executed. These iterations have been omitted in the figure for the sake of brevity. 

(1) Process Negotiation (2) Activity modeling (3) Process approval
(4) Petri Nets workflow 

definition

(5) Smart contracts 
generation

(6) Smart contract 
deployment

(7) Workflow execution
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Figure 6 WDSF process steps. 

After having performed the steps as illustrated in Figure 6, a digital implementation of a business process 

is provided. The business process’ workflow is specified and implemented via a Petri Nets.  WDSF expects 

workflow definitions using PNML (Petri Nets Markup Language, which is specified via ISO/IEC15909-29) as 

standardized import/export format. The business logic – i.e., the validation of preconditions and the 

implementation of postconditions of a step in the process – is realized via the Petri Nets workflow engine 

embedded within the workflow application. The Petri nets workflow engine may interact with other 

services via REST APIs such as an IIoT device for triggering actions on the device or smart contracts when 

a workflow step’s action and the corresponding information (i.e., input and output data that needs to 

be maintained as part of an audit log) gets stored in the underlying blockchain for auditability purposes. 

                                                 

8 Smart contracts are executable programs. These are used to control, document or automatically 
execute actions (can also be legally relevant events), according to the terms of a contract that 
stakeholders have agreed upon. See, for instance, https://en.wikipedia.org/wiki/Smart_contract and 
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html#  
9 https://www.iso.org/obp/ui/#iso:std:iso-iec:15909:-2:ed-1:v1:en  

https://en.wikipedia.org/wiki/Smart_contract
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:15909:-2:ed-1:v1:en
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The blockchain can be set up as a distributed network with different stakeholders (such as manufacturers 

and maintenance companies) having access to it. 

Preconditions and Input 

WDSF exposes a Web application interface (GUI) for workflow execution. For a workflow to be executed 

via the Petri Nets workflow engine, WDSF uses an upload interface. Workflow steps and their validations 

are use-case specific. Hence, input parameters and metadata must be evaluated as preconditions of 

transitions. In the context of COLLABS these input parameters could be access tokens (e.g., JSON Web 

Tokens, JWTs) representing access permissions to perform a certain step in the process. Input tokens can 

be evaluated by two different components in the WDSF architecture:  

a.  via the Petri Nets workflow engine;  

b.  via smart contracts deployed in the blockchain.  

Depending on the use case specific conditions, validation can be done by either one or by both 

components. 

Postconditions and Output 

The Petri Nets-based workflow engine transforms states of the workflow based on input provided by 

actors into new states with workflow-specific post-conditions. That is, after executing a transition in the 

workflow, well-defined states in the Petri Nets are reached. In addition, the transition can also generate 

tokens as output that represent postconditions. WDSF uses REST APIs for interacting with external 

applications, such as IIoT devices or IoT services and Web-based applications. In the context of COLLABS, 

output tokens can be simple assertions of a state, or access tokens to access next resources (e.g., JSON 

Web Tokens, JWTs). Generation of output tokens can be implemented in two different components of 

the WDSF architecture:  

a. as part of the Petri Nets workflow engine; 

b. via an external authorization or IAM component deployed together with WDSF.  

It depends on the trust of the workflow execution application. That is, if the workflow execution engine 

and its application are trusted and they run in a tamper-proof environment, then the workflow execution 

application can itself generate access tokens; otherwise, it is recommended to use a state-of-the-art 

authorization server to generate access tokens. In this case the workflow application needs to establish 

a secure connection to the authorization server. 

Component Design 

Figure 7 provides a high-level overview of the system architecture of the Workflow-driven Security 

Framework (WDSF). 
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User Interface

Workflow Application
REST APIs

Smart Contracts

Blockchain Platform

users/
actors

Presentation Layer / Service Layer
 Use-case specific user interfaces (such as Web/http based 

frontends), e.g., supporting approval processes, data 
upload

 Integration of external systems like IAM

 Interaction with external services or components like 
(I)IoT devices

Business Logic Layer
 Business processes are modeled and specified via Petri Nets
 Workflow executions are controlled by the Petri Nets 

workflow engine
 Business logic (pre-conditions and post-conditions) is 

implemented via smart contracts that are mapped one-to-

one to transitions of the Petri Nets model

Distributed Ledger Layer
 The Blockchain porvides an immutable data ledger where 

information (data assets and metadata of transactions) is 
stored and can be used to evaluate audit trails

Ext. Services and 
(I)IoT Devices

 

Figure 7 WDSF system architecture. 

The system components are: 

User Interface (UI) We assume that web portals (e.g., for an approval process in the context of 

a remote maintenance access process) are provided for human users to 

interact with the business process, e.g., to pick up tasks and approve certain 

steps. The UI is designed to be user friendly and responsive to different media 

devices by presenting necessary information for novice users and advanced 

options are hidden by default. The users can visually validate the workflow 

state, query workflow history, and find which places and transitions they are 

authorized to interact.  

Web UI developments that are addressing specific use case requirements are 

not in scope of the WDSF development. Instead (e.g., in the context of ALES 

use case Scenario 1), we are focussing on providing a UI to illustrate the 

interaction of the workflow execution layer with the underlying distributed 

ledger layer. 

Workflow 

Execution 

Application 

The core-components of workflow execution that is implementing and 

enforcing the application logic are as follows: Petri Nets Execution Engine, 

Workflow APIs designed and developed for specific use cases, and 

authorization components developed for validating Petri Nets tokens or 

access tokens. The Petri Nets specification and the conditions written are 

enforced in this layer. (Petri Nets-based) WDSF workflow application is thus 

enforcing the workflow execution and workflow compliance. 

Smart Contracts Smart contracts represent the second layer in the WDSF architecture where 

the application logic is implemented. Smart contracts for instance perform 

semantics checks, like validation of tokens and signatures to check that the 

approval of a request has been performed by an authorised user. 

Furthermore, the smart contracts layer also acts as a policy enforcement 

point (PEP), evaluating whether a requestor/user can perform a certain step 
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in the workflow. Such checks are implemented via so-called smart contracts 

on top of the blockchain layer. 

Blockchain 

Platform 

A blockchain infrastructure is used to store any transaction, i.e., any activity 

in the workflow. The benefits of using blockchain technology are: 

 Immutability of information stored in the blockchain.  
That is, the blockchain infrastructure is used as a reliable, 
distributed audit log that ensures non-repudiation of actions. 

 Authenticity of actions, meaning that the originator of an action can 
be identified and authenticated. 
Please note: the main requirement is to be able to identify the origin 
of actions. That applies to many industrial use cases. Therefore, 
anonymity – which represents another key feature of a blockchain 
infrastructure – is not used, by intent. 

 Decentralization denotes the possibility to distribute information 
across the nodes of different stakeholders. This depends on the 
deployment scheme used for the blockchain infrastructure.  

 Transparency, meaning the possibility to distribute information 
across participating nodes so that all authorised parties can get 
access to shared information. 

 

Via the API provided (e.g., in form of REST interfaces) by the Workflow Execution Application, also 

external services and components can interact with WDSF. For instance, in the context of ALES use case 

scenario S1, the control plane of the SDN (software defined network) of the ALES laboratory will query 

access control status information from WDSF for configuring network access for external users. 

The overall system architecture (as illustrated in Figure 7) follows a three-tier architecture design with 

the UI being realised in form of web portals, the application layer being realised through (a) the Petri 

Nets-backed WDSF workflow application and (b) smart contracts, and the data layer in form of the 

distributed ledger/blockchain. 

The benefit of separating the application layer into (a) and (b) is that we can use the best out of both 

technology stacks, meaning that the Petri Nets-based WDSF workflow application focuses on enforcing 

the workflow/business process (i.e., execution paths) while additional conditions are checked (=pre-

conditions) and created (=post-conditions) by smart contracts that have direct access to information 

stored in the blockchain or off-chain. 

The implementation of WDSF is based on the following technology stacks/3rd party libraries: 

 For the web portals (for demonstration purposes) we make use of use case specific web 

applications that were developed using the FLASK10 framework. 

 The WDSF workflow engine is realized using SNAKES11 which is a Python library used to define 

and execute Petri Nets-based workflows. 

 As underlying distributed ledger architecture, we make use of Hyperledger Fabric12 with smart 

contracts implemented in JavaScript. 

                                                 

10 FLASK - https://palletsprojects.com/p/flask/  
11 SNAKES - https://snakes.ibisc.univ-evry.fr/  
12 Hyperledger Fabric - https://www.hyperledger.org/  

https://palletsprojects.com/p/flask/
https://snakes.ibisc.univ-evry.fr/
https://www.hyperledger.org/
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Addressed COLLABS Common Security Requirements 

Via the integration of WDSF in COLLABS’ use cases, the following requirements as identified in D1.2 will 

be addressed: 

 CSR-03 Authorization (timed access) 

o WDSF will evaluate the context of requests (e.g., via checking access control tokens 

including expiration dates), thus granting access for the least required time, only 

 CSR-04 Authorization (least privilege) 

o WDSF is used to implement the business process of remote maintenance in a controlled 

and restrictive way, denoting that the least-required access path for a remote service 

engineer will be realized, only. 

 CSR-07 Logging 

o WDSF’s architecture includes a distributed ledger technology (e.g., Hyperledger Fabric) 

which is used to log each important interaction of the workflow participant (e.g., 

maintenance person, devices, etc), ensuring integrity and availability of log data. 

 CSR-09 Accountability and non-repudiation 

o Accountability and non-repudiation are fulfilled by WDSF through the underlying 

blockchain architecture as each interaction is logged by ensuring authenticity (using 

digital signatures) 

 

Beyond the state of art 

So far, no existing work focuses on secure remote maintenance by applying distributed trust, workflow-

based access control and auditable records within an industrial use case scenario. Precisely, identifying 

and analysing the security requirements, improving the security by defining protection requirements, 

restricting and validating the access by using formal modelling techniques such as Petri Nets, and finally, 

improving transparency and accountability of actions performed in an industrial context. 

In this section we describe three core technologies that can be used to solve the secure remote 

maintenance use case a) Petri Nets for modelling and enforcing workflow; b) blockchain for immutability 

and accountability; c) finally, commercially available Privileged Access Management (PAM). We show 

how our approach (WDSF) goes beyond the of state of art PAM technologies by integrating and extending 

the above mentioned two core technologies (a) and (b). In terms of modelling workflows, validating and 

verifying them, some of the most prominent approaches are the following: Petri Nets, automata, process 

algebra, business process modelling notation (BPMN). The advantages and the reasons for adopting Petri 

Nets are presented in (Kasinathan & Cuellar, 2019). A review of blockchain application in next generation 

cybersecurity application in Industry 4.0 context is presented in (Fernández-Caramés & Fraga-Lamas, 

2019), and this review article shows that blockchain can enhance industrial technologies by adding 

decentralized security, trust, immutability, with a higher degree of automation through smart contracts. 

A generic blockchain enabled cyber-physical-system (CPS) architecture for Industry 4.0 manufacturing 

systems is presented by Lee et al., in (Lee, Azamfar, & Singh, 2019). Secure industrial remote 

maintenance by using software defined networking (SDN) and attributed-based access control (ABAC) is 

presented in (Kern & Anderl, 2019).   

Several commercial Privileged Access Management (PAM) solutions exist that enable secure remote 

access, and a report on their critical capabilities is presented in (Kelley, Gaehtgens, & Data, 2020). Most 

of these solutions consider centralized trust and control and focus on security aspects such as multi-

factor authentication, just-in-time (JIT) access and zero standing privileges (ZSP) realising the principle 

of least privilege. However, with WDSF we focus on having distributed trust while resource providers 
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have complete control over their resources while enforcing, compliance, traceability and auditability of 

business processes/workflows. 

Component Evolution 

Since the MVP release, the WDSF component has been steadily improved and developed further. Amongst 

others, the following key updates and extensions have been achieved: 

 Platform maintenance: the release pipeline of the used third-party components is steadily 

monitored and updates are integrated into WDSF in short time. Earlier in this section (see above) 

we provide a detailed overview about the components used by WDSF. One focus was on updating 

the underlying blockchain infrastructure. In this regard, the long-term support version 2.2 LTS of 

Hyperledger Fabric13 has been integrated into WDSF, replacing the former version 1.4. Version 

2.2 is the first long-term support (LTS) release of Hyperledger Fabric v2.x and has been chosen 

to ensure code stability and maintainability which are considered key qualities of WDSF, as well. 

In the course of this upgrade, interfaces of WDSF to the underlying HLF layer got updated and 

tested, accordingly.  

 Updates of business logic layer: Significant updates to the workflow application have been 

implemented. Amongst others, the Petri Nets workflow execution history information is now 

made available (see also UI improvements, below). Apart from providing the possibility to 

retrieve the workflow history as part of the audit log, also for cases where certain business logic 

steps are not modelled via smart contracts (and thus shared across cooperating partners in the 

blockchain network), these steps can also get logged on in the workflow log of the affected 

organization. This fine-grained log-separation (i.e., organization-specific log vs. cross-

organizational log) allows to concisely handle confidential log information on the business logic 

layer. Furthermore, access control restriction on places and transitions of the Petri Nets 

workflows have been realized. Concerning access control for places this denotes control on who 

is allowed to manage (i.e., provide) input for places. Authorization rules on transitions control 

permissions for executing them, i.e., specifying who is allowed to fire transitions.  

 User interface improvements: another focus of the ongoing development was on improving the 

user experience for WDSF. WDSF’s UI is aiming at illustrating the interaction between the 

business process layer and the underlying distributed ledger (i.e., Hyperledger Fabric). Because 

of that, the nature of the UI is more oriented for expert users rather than end users such as 

enterprise managers. For the demonstrator (i.e., the use of WDSF in the context of scenario 1 of 

ALES use case, see D5.3, Section 6.1 “ALES - Use Case Scenario 1 - Controlled and secure remote 

maintenance”), the UI shall demonstrate user and tenant separation (i.e., access control) and 

audit log functionality that is ensuring non-repudiation of actions taken. These features have 

been further developed and integrated accordingly: For instance, user roles are now visible in 

the UI and only such functionality which is allowed to be executed (enforcement is implemented 

in the underlying middleware and blockchain layer) is enabled. Figure 8 illustrates that user 

experience. In addition, as shown in Figure 9 access to the audit log is included, so that 

authorised users can retrieve history information like preceding approval steps. 

                                                 

13 https://www.hyperledger.org/blog/2020/07/20/new-release-hyperledger-fabric-2-2-lts and 
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatsnew.html 

https://www.hyperledger.org/blog/2020/07/20/new-release-hyperledger-fabric-2-2-lts
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Figure 8: WDSF’s Workflow-Application UI improvements showing username, organization and role of the 

user. 

 

Figure 9: WDSF's Workflow-App showing workflow execution history information that includes the following: 

timestamp, user performing the action and the input values used to trigger the workflow action. 

 Platform and component monitoring: to ensure the security of the underlying IT platform and 

for being able to analyse and identify atypical executions, WDSF has been connected to the 

COLLABS logging and monitoring infrastructure. In this regard an Apache Kafka client got 

integrated and JSON-formatted log messages are sent to 3ACEs. For instance, following CIS’14 

security guidelines, NGINX server’s access log is collected and analysed using COLLABS central 

monitoring platform. In addition to the central monitoring approach, the monitoring of WDSF 

services got updated via the integration of ELASTIC Application Performance Monitoring (APM) 

plugins. 

 Automated Deployment: In order to ease the deployment of the blockchain infrastructure, 

automated deployment scripts based on minifabric15 have been developed. These scripts allow 

the seamless setup of the HLF infrastructure, e.g., in cloud-based environments like AWS or 

Google Cloud. They are, amongst other things, used for setting up the distributed blockchain 

network for the demonstrator of scenario S1 “Controlled and secure remote maintenance” of the 

ALES use case. 

                                                 

14 Center for Internet Security, https://www.cisecurity.org/ 
15 https://github.com/hyperledger-labs/minifabric 
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Outlook 

WDSF will be used for designing and implementing distributed, collaborative workflows like the remote 

maintenance scenario (ALES scenario S1 “Controlled and secure remote maintenance”, see D1.2). A 

detailed development plan has been defined for the incremental setup of a demonstrator for ALES 

scenario S1. At M18 an initial demonstrator setup and integration of WDSF in the ALES laboratory 

environment will be provided. In the next iteration, the following major developments are planned: 

 Smart contracts: next to the update of the Petri Nets layer, smart contracts will be modelled 

and implemented to complete the implementation of the business logic for the remote 

maintenance scenario S1 of the ALES use case. In this regard also an appropriate data model 

must be designed and implemented which is used to represent approval context information. 

Moreover, it is also planned to apply a formal verification approach to workflow specification 

and thus the derived smart contracts security can be improved. 

 WDSF integration with factory devices and controllers in ALES scenario S1. 

 WDSF integration with log visualization component into COLLABS’ monitoring framework. 

 WDSF integration with COLLABS federated identity management system. 

 

3.4    Network Traffic Monitoring 

 

3.4.1 Distributed Anomaly Detection 

Functional Description 

The Distributed Anomaly Detection (DAD) system is installed in an industrial network with multiple 

subnetworks. In each subnetwork a local unit is installed. The system works in two phases: training and 

detection. During the training phase, each local model train on the local traffic of the devices in its 

subnet. A profile for each device type is learned. If devices of the same type exist in multiple 

subnetworks, the local units collaboratively share the learning information between them to achieve a 

more accurate model for this device type. After the training phase finishes, the DAD system switches to 

the detection phase. In this phase, each local unit analyses the local traffic and detects anomalies in the 

behaviours of the devices within its subnetwork. Anomalies are detected based on deviations from the 

collaboratively learned profile of each device type. 

Preconditions and Input 

 As mentioned in the previous section, the system runs first in the training mode. We assume that 

during the training there are no attacks performed on the network. This is an essential 

requirement to make sure that the models learn correct profiles for each device type. One option 

to achieve this requirement is to use manually analysed data for the training. During the 

detection phase, each local unit should have access to the traffic passing in the local gateway 

(eg., using a span port). Additionally, the local units should be able to communicate with each 

other over the network.  

 To demonstrate our tool, we use a public dataset16 of benign IoT traffic to train the local units. 

Additionally, we use a test dataset with benign and malicious traffic to measure the performance 

of the DAD. The datasets are composed of traffic from 10 devices. Table 1 shows the number of 

                                                 

16 IoT Security - IoT Traffic Analysis (unsw.edu.au) 

https://iotanalytics.unsw.edu.au/attack-data
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packets used in the training and testing, and the number of malicious packets in the testing 

dataset. The attacks performed are of two types: direct and reflection. Direct attacks include 

ARP spoofing, TCP SYN flooding, Fraggle (UDP flooding), and Ping of Death. Reflective attacks 

include SNMP, SSDP, TCP SYN, and Smurf. Attacks are performed with different data rates. 

  

Table 1 Statistics of the dataset used for training 

Device Training Packets  Testing Packets  Malicious Packets 

WeMo motion 14,868,367 7,721,200 841,631 

WeMo switch 532,953 646,662 271,488 

Samsung smartcam 2,202,479 1,433,943 417,167 

Tp-Link Smart Plug 55,687 367,796 273,914 

Netatmo camera 1,006,719 728,121 265,031 

Chromecast Altra 32,763,645 2,182,033 768,988 

Amazon Echo 914,080 291,004 23,522 

iHome Smart Plug 160,794 70,302 754 

LiFX Bulb 394,285 175,385 63,272 

Total 100,126,044 44,109,514 2,925,592 

 

Postconditions and Output 

After all the local models are trained, the DAD system enters in the detection phase. The local units 

analyse each packet passing through the gateway and results in a decision for each packet. The decision 

can also concern a set of packets belonging to the same connection, or a set of consecutive packets. The 

decision is a binary classification of the packet whether it belongs to an attack or not. Each packet is 

then labelled either as ‘benign’ or ‘malicious’. We assume another entity to handle these decisions and 

take actions accordingly. 

Component Design 

The design of the DAD system is split into two parts: The local detection unit and the distributed learning 

part. We rely in the design of the local detection unit on a Mixture of Experts approach. Each local unit 

is composed of multiple experts (i.e., machine learning models) that specialize in detecting certain type 

of attacks. Three types of experts are specified according to the type of features extracted from the 

packet. Experts in statistical features, experts in packets metadata, and experts in packet’s payloads. 

Each local unit has a pre-processor that extracts useful features from the analysed packet. Then, a per 

device-type expert is trained for each type of features. We first describe the type of features extracted 

and then describe the experts. 

Feature types: 

 Statistical Features: These features are extracted from a window of consecutive packets. The 

window size is a hyper parameter for the model. For each window of N packets, the following 

metrics are computed: 

o Traffic flow rate 

o Packet average size 

o Packet size standard deviation 

o Rate of TCP packets 

o Rate of UDP packets 

 Metadata Features: These features are extracted from the headers of the packets. It includes: 
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o Source Port 

o Destination Port 

o Packet Length 

o Protocol 

o TCP flags 

 Payload Features: The features are the application layer’s data of the packet. These are 

application specific. 

Expert Types: 

 Statistical Experts: Experts in statistical features specialize in detecting attacks that run for a 

significant period. These can be DoS attacks, brute forcing, network scanning…   

 Metadata Experts: Experts in packet’s metadata detects anomalies in the control flow. These 

detect more sophisticated attacks mainly TCP attacks (eg., TCP RST attacks, TCP SYN floods…)  

 Payload Experts: Experts in the payloads train models specific for each application. These models 

learn patterns in the data transmission from a device type. This allows these experts to detect 

application layer attacks such as exploits on the DNS or HTTP protocols.  

Additionally, each local unit runs a distribution agent that is responsible for sharing the training 

information. This distribution agent communicates with other agents and synchronizes with them. The 

goal is to train a global model per device type using all traffic from different local units. The distributed 

training is based on a federated learning approach. On each training step, the updates of the expert 

models are not directly applied. Instead, they are shared with the other local units which are training 

the same model. Specifically, we use a publish-subscribe paradigm to aggregate the updates. The first 

expert finishes a training step acts as a server and informs the others of this model update. The other 

local units which are training the same model subscribes to this update. When each of them finishes its 

training step, it sends its update to the server which aggregates all the updates and publishes the 

aggregated model update to all the subscribers.  

Example: Assume we have 10 sub-networks containing the same type of PLC. Each local unit is training 

a statistical expert for its local PLCs. We use an auto-encoder model as a statistical expert. Assume the 

training batch size is 64. After parsing the first 64 features from the real-time traffic generated by the 

PLCs, the local expert starts its first step of training. We use Stochastic Gradient Descent (SGD) as the 

learning function. After applying SGD, the local unit generates the first model update. It informs all the 

9 other local units about this update and waits for them to send their updates. When the other local 

units parse 64 statistical features, they apply SGD and send the model update to the first local unit. After 

all of them send their updates, the first local unit sums these updates and divide by 10 and send back 

the aggregated updates. This way all the models obtain the same global model for their statistical expert.  

One potential work for this project is to integrate privacy techniques on the aggregation of the model 

updates. This may involve differential privacy and secure aggregation. These techniques help preserving 

the privacy of the data used for the local training. The drawback of adding differential privacy is 

degrading the accuracy. Additionally, applying secure aggregation increases the communication 

overhead. It depends on the scenario of deployment and requirements to decide if these techniques are 

needed. 

Addressed COLLABS Common Security Requirements 

Using the requirements definitions from D1.2, the integration of the DAD component in the COLLABS use 

cases addresses the following common security requirement:  
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 CSR-08: Monitoring 

o CSR-08 is partially covered as the DAD provides monitoring and network traffic analysis 

capabilities, allowing detecting anomalous behaviour and thus security related events. 

Beyond the state of art 

Our study focuses on the problem of anomaly detection by means of Mixture of Experts (MoE) (Yuksel, 

Wilson, & Gader, 2012). Mixture of Experts is one of the most interesting combining methods, which has 

a great potential to improve performance in machine learning. This technique is established based on 

the divide-and-conquer principle where the problem space is divided between few neural network 

experts, supervised by a gating network. Most of the existing anomaly detection methods use a single 

low-dimensional manifold that might not be ideal for the classification of anomalies. However, modelling 

each detection unit composed of multiple experts that are able to detect certain type of attacks, is 

promising to classify anomalies. In our study, three types of experts are specified according to the type 

of features extracted from the packets: experts in statistical features, experts in packets metadata, and 

experts in packet’s payloads. To the best of our knowledge, this study is the first to provide distributed 

anomaly detection by means of MoE.  

In (Nguyen, et al., 2019), the authors propose a framework DIoT that is a self-learning system for 

detecting compromised devices. It deploys device-type specific anomaly detection. DIoT applies a 

federated learning approach for aggregating the anomaly detection profiles for the intrusion detection.  

Our proposed system does not only leverage device-type specific anomaly detection, but it also provides 

more accurate view about the overall network behaviour to be able to detect attacks at different levels. 

Compared to the DIoT, we leverage the use of Mixture of Experts in order to detect certain type of 

attacks, and then classify anomalies. 

Component Evolution 

At this point, we have tested 3 possible models for the statistical experts and 3 metadata experts. We 

trained each model on the training dataset containing only benign data, and evaluated it on the test 

dataset contained a mixture of benign and malicious data. To evaluate the performance of each model, 

we compute the F1-Score of each classifier. For each device type we create a statistical expert. The 

evaluation of each type of statistical expert for each device type is demonstrated in the following: 

Statistical Experts: 

 Local Outlier Factor: Is a machine learning model based on computing the local density of each 

input. This model supports unsupervised learning and is used for novelty detection.  

o F1-Score = 0.913 

 Isolation Forest: This model uses decision trees to classify the data. In order to isolate a data 

point, the algorithm recursively generates partitions on the sample by selecting an attribute and 

then selecting a split value for the attribute, between the minimum and maximum values allowed 

for that attribute. The data points that can be easily separated are considered anomalies.  

o F1-Score = 0.903 

 Auto-Encoders: Auto-Encoders are Artificial Neural Networks aiming at reconstructing the inputs 

they receive. Auto-Encoders are efficient at reconstructing inputs data similar to their training 

data. On the other hand, they have large errors trying to reconstruct inputs data different of the 

training data. These properties make them suitable to detect anomalies related to a training 

dataset. The Autoencoder accepts high-dimensional input data, compress it down to the latent-

space representation in the bottleneck hidden layer; the Decoder takes the latent representation 

of the data as an input to reconstruct the original input data. During the training, we try to 
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minimize the reconstruction error. Later during detection phase, anomalies are detected by 

checking the magnitude of the reconstruction loss. 

o F1-Score: 0.919 

 Auto-Encoders w/t LOF: To optimize the detection model we create an ensemble classifier based 

on the trained Auto-Encoder and the LOF models. The classifier measures the confidence of each 

model on each input and gives the result of the highest confidence model. The confidence metric 

is computed in the LOF factor based on the normalized distance of the input to the already seen 

benign inputs. Similarly, the confidence of the auto-encoder is measured based on the distance 

of the construction error to the pre-set threshold: 

o F1-Score: 0.94 

Metadata Experts:  

 Recurrent Neural Networks (RNN): RNNs are neural networks designed with an internal memory. 

Using a feedback loop on the internal neurons, the RNN can remember important things about 

the input they receive. This makes them perfect for sequential data such as the metadata 

features we extract from the packets.  

o F1-Score: 0.86 

 Long-Short-Term Memory (LSTM): LSTM are special types of RNNs. A common LSTM unit is 

composed of a cell, an input gate, an output gate and a forget gate. The cell remembers values 

over arbitrary time intervals and the three gates regulate the flow of information into and out 

of the cell. LSTM networks are well-suited to classifying, processing and making predictions based 

on time series data, since there can be lags of unknown duration between important events in a 

time series. LSTMs were developed to deal with the vanishing gradient problem that can be 

encountered when training traditional RNNs. 

o F1-Score: 0.9193 

 Gated Recurrent Units (GRU): Gated recurrent units (GRUs) are a gating mechanism in recurrent 

neural networks. The GRU is like a long short-term memory (LSTM) with a forget gate, but has 

fewer parameters than LSTM, as it lacks an output gate. 

o F1-Score: 0.9197 

In summary, according the evaluation results, we choose to use the ensembled classifier (i.e., Auto-

encoder w/t LOF) as the statistical expert and the GRU model as the metadata expert. 

Local units are deployed in Docker17 containers. Docker containers allow lightweight virtualization, which 

however uses some features of the host operating system. A publish-subscribe communication broker has 

also been set up. As a first step, an Apache Kafka18 communication broker is set up, in order to provide 

a communication solution to the different local units. The purpose of this communication broker is to 

manage the communications concerning the variables and optimized parameters of the machine learning 

models used by the local units. Topics are generated for each local unit. On these topics, the 

corresponding local unit publishes the parameterizations of its machine learning models. Other local 

units subscribe to local unit topics relevant to their models and can update their settings based on models 

trained on different sets of relevant data. At the local unit level, Federated Learning algorithms or 

aggregation of machine learning models can be implemented. 

                                                 

17 https://www.docker.com/ 
18 https://kafka.apache.org/ 
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As a second step, the study of a lighter communication broker such as mosquitto MQTT19 is underway. In 

the event that the risk of having a Single Point of Failure at the level of the communication broker is too 

important, point-to-point communications are studied for the exchange of cyber threat intelligence or 

machine learning information between the local units. 

Local units and the communication broker are managed with Docker-compose20, a tool for orchestrating 

multiple Docker containers. 

Outlook 

Various areas for improvement are underway or under study for the Distributed Anomaly Detection 

component. 

Training on the specific data of use cases is a very important point. It allows us to have the most efficient 

models possible in relation to the monitored infrastructures. 

The precise determination of the types of attacks taking place in the monitored network is also of great 

interest. Further study of packets classified as abnormal by more specific attack detection models or 

signature approaches is a possibility. It helps reduce the rate of false positives. In addition, the possibility 

of generating Cyber Threat Intelligence reports in a standard format such as STIX is under study. This 

allows the local units to make standardized reporting, usable by the other local units of the DAD, internal 

components of the COLLABS framework, as well as external components. 

One possible barrier to the adoption of Distributed Anomaly Detection using Federated Learning is the 

possible information leakage on training data. It is possible to infer training data, using differential 

privacy attacks on models computed by Federated Learning. In cases where training data is sensitive, 

has high value or has confidentiality constraints, the use of Federated Learning by traditional approaches 

may be problematic. For the Distributed Anomaly Detection component, network traces are used for 

training. In certain deployment cases where the local data units are deployed at different tenants, these 

network traces can contain sensitive information on the network topology, the attacks that have already 

targeted the infrastructure, etc. We are currently studying the use of procedures of Secure Computing 

(Secure Multi Party Computation and Homomorphic Encryption) in order to address this privacy issue 

about training data. The goal being to offer models for detecting anomalies trained by Federated 

Learning and robust against attacks by Differential Privacy. This allows models to be trained on the union 

of local units’ training data, while respecting the confidentiality of local private data. 

 

3.4.2 Encrypted Traffic Analysis 

Functional Description 

The encrypted traffic analysis module can detect malicious network traffic using signatures which have 

been created based on patterns of packet payload lengths. The signatures describe packet sequences for 

the identification of intrusion attempt events in encrypted networks using packet metadata. For the 

generation of these signatures, we use publicly available labelled datasets. We process the traffic 

collected from these datasets and only keep traffic relevant to intrusion events. Then we break it into 

flows and extract the sequences of packet payload sizes per flow. Finally, we use the VMSP algorithm 

                                                 

19 https://mosquitto.org/ 
20 https://docs.docker.com/compose/ 
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(Fournier-Viger, Wu, Gomariz, & Tseng, 2014) for frequent sequential pattern mining to generate the 

signatures based on the sequences of packet payload sizes. 

 

Figure 10 Illustration of methodology workflow 

Preconditions and Input 

• Dataset of network traffic which contains labelled malicious flows. 

• Generated database of signatures.  

• Access to traffic generator which can produce streams of malicious and benign traffic to look 

for intrusion attempt events. 

Postconditions and Output 

 Output an alert if there is a match by breaking the network traffic into flows and searching for 

these specific signatures. 

Component Design 

To enhance our database of malicious threats in encrypted traffic we used a publicly available dataset 

to produce signatures. The IoT-23 Dataset (Parmisano, Garcia, & Erquiaga) is a group of labelled datasets 

which contains flows in both unencrypted and encrypted traffic from malware which are known for recent 

attacks in IoT environments like the mustik21. Each dataset contains both benign and malicious traffic 

for a specific malware. The label of the malicious traffic describes a specific action taken by the malware 

such as ‘C&C’ or ‘attack’. ‘C&C’ action means that the malware established a connection and transferred 

information between itself and a C&C server while the ‘attack’ means that some kind of attack was 

executed. Other labels exist such as file download and network scans. 

To produce malicious signatures of malware actions based on packet sequences and payload size we 

carefully analyse each dataset containing malware traffic. We fragment all of the network traffic into 

flows and then group the flows based on their labels. Since our mechanism relies on packets with payload, 

we only keep flows which have at least 1 packet with payload. An example of the flows we group together 

can be seen in the figure below where we can see 6 flows from the 828 flows in total of the IRCbot 

malware with the label ‘attack’ on the SSH port. 

 

Figure 11 Example of grouped flows for specific label 

                                                 

21 https://unit42.paloaltonetworks.com/muhstik-botnet-attacks-tomato-routers-to-harvest-new-iot-
devices/ 
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In the figure the first two columns represent the source IP address which belongs to the malware and 

destination IP addresses which have been anonymized. Then we have the source port, destination port, 

type of IP packet and the timestamp. After the timestamp each number represents the payload length 

of each packet which belongs to that flow.  

To allow for fast signature generation we automate the procedure as much as possible. We extract the 

intrusion signatures from network packet traces using a frequent sequential pattern mining technique. 

From our sample collection, we detect frequent packet payload size sequences that correspond to 

specific intrusion attempts. Frequent sequential pattern mining techniques are used to discover frequent 

sequential patterns that occur in sequence databases. Benefiting from such techniques, in our 

methodology we choose to utilize a maximal sequential pattern mining algorithm. The maximal 

sequential pattern mining technique is used to extract the frequent longest common sequences of 

network packet payload sizes contained in the traffic. 

After gathering a list of patterns for a specific event we inspect the packets which belong to that pattern. 

We discover that in some cases as depicted in the first flow of the figure above it was retransmission of 

a single packet due to possible network issues. In some other cases as seen in the second flow, the 

communication between the malware and the client was interrupted or not complete. After removing 

these erroneous patterns from our collection, we were left with the signature ‘42 1432 48 16 44 60’ 

which describes a secure key exchange of the SSH protocol and some encrypted attack packets from the 

malicious host. We follow a similar approach for other malware and specific labelled actions and 

generated unique signatures which correlate to completed malicious actions and can be seen on the 

table below. 

Table 2 Evaluation of generated signatures 

Malware Label Signature Hosts 

with 

label 

Hosts with 

signature 

Detection 

rate 

Hosts with 

erroneous 

action 

Detection 

rate 

without 

erroneous 

actions: 

Hide&Seek 
Network 

scan 
8 8 7 4 54 28 52% 24 93% 

Hajime 
Network 

scan 
3 9 3 12 3 31 18 58% 10 86% 

IRCbot C&C 16 23 19 13 5 5 100% 
 

 

 

 

IRCbot Attack 
42 1432 48 

16 44 60 
345 172 50% 66 62% 

Muhstik C&C 78 15 31 47 3 3 100% 
 

 

 

 

Muhstik Attack 

21 152 144 

16 52 68 84 

52 

189 118 62% 71 100% 
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In Table 2 we can see the malware and the type of the action we created the signature for. For evaluation 

purposes we collected all the hosts which had flows with the label we constructed for each specific 

signature. We kept all of the flows which had at least 1 packet with payload. We then compared the pool 

of labelled hosts with the hosts which contained the signature we produced to calculate the detection 

rate of our mechanism. 

As it can be observed in the table the detection rate of certain actions is low in comparison to others, 

so we decided to investigate further. It was clear that for the majority of the hosts where we did not 

detect a match it was due to the action not being complete due to a premature ending or fragmentation 

from retransmissions. We decided to measure these hosts which contained an incomplete version of our 

signature or a fragmented version for that action to verify the accuracy of our signature. To do that we 

measured all of the hosts which flows ended prematurely and their length was smaller than the signature 

itself. We also added to that group the hosts which contained retransmission in their flows. We named 

this group ‘Hosts with erroneous action’ and as it can be seen on the table if we do not take them into 

consideration the accuracy of our signature rating improves drastically. 

Additionally, we wanted to make sure our approach will not result in high false positives. To calculate 

our false positives, we tested our signatures against the benign traffic included in the dataset and had 

zero matches. The benign traffic can be found as “Normal Captures”, part of the “Malware Capture 

Facility Project”. The signatures generated by our methodology were searched against the traffic 

captures that contain HTTPS network traffic.  

Finally, CISCO’s Joy22 is used to provide extra functionality to our traffic analysis module. By capturing 

TLS handshakes, it can extract information from packet metadata and produce information on the 

versions of the TLS used. We use this information to produce alerts if we find a deprecated version of 

TLS used which can lead to privacy leaks. 

Addressed COLLABS Common Security Requirements 

• CSR-08 (monitoring) The component partially covers this requirement by identifying security 

events in encrypted traffic and producing alerts. 

• CSR-18 (monitoring) The component partially covers this requirement by utilizing Cisco’s JOY 

module which classifies and reports on the version and strength of the crypto used. 

Beyond the state of art 

Popular network intrusion detection systems (NIDS) like Snort23 and Suricata24 utilize pattern matching 

and regular expressions matching algorithms in order to analyse network traffic. However, the majority 

of these works are based on methods that extract content from network packet payloads to match 

suspicious signatures. Traditional deep packet inspection is becoming insufficient for encrypted network 

traffic (e.g., SSL/TLS protocols). 

BlindBox (Sherry, 2015) performs deep-packet inspection directly on the encrypted traffic, utilizing a 

new protocol and new encryption schemes. (Shone, 2018) propose a system that combines deep learning 

techniques to provide intrusion detection. (Tang, 2016) present a deep learning approach for flow-based 

anomaly detection in SDN environments, while (Niyaz, 2016) utilize deep learning in order to detect DDoS 

attacks in such environments. (Anderson, 2017) compare the properties of six different machine learning 

                                                 

22 https://developer.cisco.com/codeexchange/github/repo/cisco/joy/   
23 https://www.snort.org 
24 https://suricata-ids.org 

https://developer.cisco.com/codeexchange/github/repo/cisco/joy/
https://www.snort.org/
https://suricata-ids.org/
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algorithms for encrypted malware traffic classification. Moreover, (Amoli, 2016) present a real-time 

unsupervised NIDS, able to detect new and complex attacks within encrypted and plaintext 

communications. Kitsune is a NIDS, based on neural networks, and designed for the detection of abnormal 

patterns in network traffic (Mirsky, 2018). It monitors the statistical patterns of recent network traffic 

and detects anomalous patterns. Moreover, (Nicolás Rosner, 2019) presents a black-box approach for 

detecting and quantifying side-channel information leaks in TLS-encrypted network traffic. These 

techniques identify malicious events in the network, by examining the characteristics of the underlying 

traffic, using exclusively machine learning approaches. Many research and commercial solutions focus on 

inspection of encrypted network traffic mostly for network analytics (Conti, 2016), (Lotfollahi, 2019), 

(Taylor, 2017). OTTer (Papadogiannaki, 2018) is a scalable engine that identifies fine-grained user 

actions in OTT mobile applications even in encrypted network traffic. (Orsolic, 2016) use machine 

learning for the estimation of YouTube Quality of Experience. To test their approach, authors collect 

more than 1k different YouTube video traces under different bandwidth scenarios. (Mazha, 2018) 

investigate the Quality of Service of video in HTTPS and QUIC protocols. The set of features that expose 

usable information is based on (i) network and transport layer header information for TCP flows, and (ii) 

network layer features (based on inter-arrival time, packet sizes, packet/byte counts, throughput) for 

QUIC flows. CSI (Xu, 2020) infers mobile ABR video adaptation behaviour under HTTPS and QUIC using 

packet size and timing information. Finally, (Khokhar, 2019) put YouTube under experimentation and 

perform network traffic measurements for QoE estimation using network related features, as well. 

(Ghiëtte, 2019) demonstrates that it is possible to utilize cipher suites and SSH version strings to generate 

unique fingerprints for brute-forcing tools used by an attacker. 

Network middleboxes or client-side software that aim to inspect encrypted traffic can operate by acting 

as proxies. The common procedure is to terminate and decrypt the client- initiated TLS session, analyze 

the HTTP plaintext content, and then initiate a new TLS connection to the destination. (Goh, 2010), 

Experimenting with an intrusion detection system for encrypted networks. (Goh V. T., 2010) propose 

mirroring the traffic to a central intrusion detection system, which will be able to decrypt the traffic 

and perform deep packet inspection, yet, without any privacy preserving guarantees. As Symantec states 

“most cyber threats hide in SSL/TLS encryption” (which takes up to 70% of all network traffic) 25. 

Symantec Proxies and SSL Visibility Appliance decrypt traffic to support infrastructure security and 

protect data privacy. More specifically, Symantec offers the Encrypted Traffic Management (ETM) tool26 

that provides visibility into encrypted traffic by decrypting part of it; however, this is a technique that 

could eventually cause privacy violations.  

Aiming to advance the state-of-the-art, FORTH proposes an automatic signature mining method for 

intrusion detection in encrypted network traffic. The majority of works that inspect encrypted network 

traffic exploits machine learning algorithms to examine the feasibility of identifying the nature of the 

traffic (e.g., for network analytics or network security). FORTH’s methodology builds on these feasibility 

results, but focuses on establishing a procedure to effectively generate intrusion detection signatures in 

an automated manner. 

Component Evolution 

We have used publicly available datasets to produce signatures for our mechanism to detect threats in 

encrypted traffic. Additionally, we have further increased its capabilities by utilizing open-source tools 

                                                 

25 https://docs.broadcom.com/doc/ssl-visibility-en  
26 https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management  

https://docs.broadcom.com/doc/ssl-visibility-en
https://www.broadcom.com/products/cyber-security/network/encrypted-traffic-management
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which can verify the integrity of TLS connections. Currently it is to be integrated in two different use 

case scenarios. 

Outlook 

In the future we plan to further enhance our signature database with more diverse attacks and add more 

capabilities for threat detection. 

 

4. An Architectural Framework for Trustworthiness Assurance  

4.1 Trust Infrastructure Overview 

To ensure trustworthiness of data flows in collaborative manufacturing environments, COLLABS will 

design and develop components composing the trust infrastructure, presenting an architectural 

framework for trustworthiness assurance. Said framework will encompass:  

 The provisioning of secure elements (see subsection 4.3) that will make use of built-in secure 

hardware to form a root of trust and verify the integrity of the code running in the device.  

 The security of data in transit, via:  

o An encrypted data flow model based on which data from IoT devices will be able to be 

securely transferred and processed in trusted execution devices or end cloud-services, 

covering all upstream and downstream data flows, and supporting an extensive toolkit 

of cryptographic primitives, including SMC and Homomorphic encryption.  

o A novel mechanism to analyse encrypted traffic analysis (see subsection 4.5) that will 

further strengthen the data flows trustworthiness by capturing attacks or anomalies 

inside the real network traffic of the platform and reporting them to the anomaly 

detection modules. 

 The security of data at rest, providing privacy-preserving mechanisms for the storage and 

analytics, based on Comprehensive Access Control mechanisms, supported by blockchain to 

achieve a distributed authentication scheme (see subsection Distributed Authentication & 

Authorisation). 

An overview of the above-mentioned key elements comprising the COLLABS Architectural Framework for 

Trustworthiness Assurance is presented in Figure 12 below. The figure also provides references to the 

specific Tasks (both within WP2 and within WP3 and WP4) where the individual building blocks will be 

developed. It also aims to provide a visual representation of the interplay between these activities and 

the associated components. 
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Figure 12 The COLLABS Trust Infrastructure high-level architecture 

4.2    Key Building Blocks 

The subsections that follow provide an overview of the key features of each of the framework’s key 

building blocks, including – where needed - pointers to specific deliverables where more details can be 

found. 

4.3 Secure Elements 

 

Figure 13 Secure Elements’ enablers. 

At the lower level of the trust architecture, COLLABS integrates trust enablers at the hardware level, 

leveraging the presence of trusted components on the platforms to be deployed in the manufacturing 

environment. These are detailed in the subsections that follow. 

Trusted Execution Environments 
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In order to account for the increased requirements for securing a number or primitives and computations 

in an expanding interconnected “world” of systems, modern processors of all levels and complexities 

have started to integrate Trusted Execution Environments (TEEs). In server and cloud environments 

where high-performance devices, commonly Intel x86-64 architecture-based CPUs are used, the most 

prevalent TEE technology is Intel SGX. In the embedded computing space, dominated by low-power 

devices, ARM architecture is the most widely used and the ARM TrustZone extensions are used in order 

to build a Trusted Execution Environment.  

The Intel SGX technology can be used to protect selected code and data from disclosure or modification. 

It is an ideal solution for untrusted environments, such as commodity cloud environments in which the 

user has minor control over aspects like the storage of the data. SGX can guarantee privacy even with 

an untrusted service provider.  

At its root, Intel SGX is a set of CPU instructions that can be used by applications to set aside private 

regions of code and data. They allow user-level as well as operating system code to define private regions 

of memory, called enclaves, whose contents are protected and unable to be either read or saved by any 

process outside the enclave itself, including processes running at higher privilege levels. 

SGX involves encryption by the CPU of a portion of memory. The enclave is decrypted on the fly only 

within the CPU itself, and even then, only for code and data running from within the enclave itself. The 

processor thus protects the code from being "spied on" or examined by other code. The code and data in 

the enclave utilize a threat model in which the enclave is trusted but no process outside it can be trusted 

(including the operating system itself and any hypervisor), and therefore all of these are treated as 

potentially hostile. The enclave contents are unable to be read by any code outside the enclave, other 

than in its encrypted form.  

In the context of COLLABS, SGX-protected docker images can be setup in the cloud. Inside the docker 

images, sensitive applications may be executed, and those applications can be protected by external 

entities which may share the server or datacentre infrastructure of the cloud provider that hosts them.  

On the other side, for IoT or edge devices based on ARM processors the TrustZone technology can be 

leveraged in order to secure computations and the protection of sensitive data, such as encryption keys. 

TrustZone is built on the foundation that the security of a system is achieved by partitioning all the 

system’s hardware and software resources in two worlds: The Secure World for the security subsystem 

and the Normal World for everything else. At the hardware level, TrustZone-enabled devices include 

logic that ensures that no Secure world resources can be accessed by the Normal World components 

while architecture extensions in the ARM cores allow the concurrent execution (in a time-sliced fashion) 

of Normal and Secure World applications. 

Typically, in the Normal world resides a Rich OS, like Android or Linux, along with different applications 

and services. In the Secure world, a much more restricted secure operating system that provides a 

Trusted Execution Environment is executed. In the context of COLLABS, one of the TEEs that is considered 

is Trusty, a free and open-source TEE operating system, part of the Android Open-Source Project (AOSP). 

Trusty boots as part of a chain of trust or a secure boot sequence. It creates two environments in a 

device with different security modes: A Non-Secure Environment (NSE) for running software components 

in non-secure mode (i.e., the aforementioned Normal world) and a Trusted Execution Environment (TEE) 

that provides trusted operations and runs in secure mode enforced by hardware (Secure world). Trusty 

runs in the Secure world environment. The normal world OS and Trusty software operate in a client-

server relationship, with Trusty as the server. All secure operations are initiated by a client application 
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running in the non-secure environment. A trusted application (TA), in the secure world, never initiates 

contact with the non-secure environment. 

A Trusted Application is defined as a collection of binary files (executables and resource files), a binary 

manifest, and a cryptographic signature. At runtime, Trusted applications run as isolated processes in 

unprivileged mode under the Trusty kernel. Each process runs in its own virtual memory sandbox utilizing 

the memory management unit capabilities of the TEE processor. 

Remote Attestation 

Remote attestation is one of two security mechanisms that threat protection, prevention, and monitoring 

functions in the COLLABS framework rely on. It is a security mechanism that provides evidence of device 

reliability - a protocol that allows proving software integrity to a remote verifier, which provides 

evidence that the software has not been modified. This is achieved by signing protected memory areas. 

For instance, in a situation when potential attackers have physical access to an IoT device, they may 

attempt to tamper with device firmware and try to attack it and plant some malicious code that could 

pose a threat for privacy and security of the entire COLLABS framework. Remote attestation offers a 

solution to prevent such attacks by remotely checking the integrity of the IoT device's firmware, 

comparing it to the known original and offering guarantees for its integrity. 

Challenges that need to be addressed before remote attestation can be included in the COLLABS 

framework include: 

 the question of current remote authentication schemes not considering the interaction between 

devices, and 

 the question of scalability in case of usage of many devices and applying remote authentication 

schemes without compromising system performance. 

 

4.4 Data Protection 

Data Protection enablers within the COLLABS trust infrastructure, as developed within WP2, will consider 

both data in transit and data at rest. These will be supported by the distributed authentication & 

authorisation mechanisms developed in the context of WP3. These enablers and their interplay are 

depicted in Figure 14. 
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Figure 14 Data protection enablers. 

Encrypted Data Flow Model 

An integral part of the COLLABS trust infrastructure is the definition of an encrypted data flow model 

that specifies the use of cryptographic primitives available within COLLABS, based on which data from 

IoT devices will be able to be securely transferred and processed in trusted execution devices or end 

cloud-services.  

The model encompasses standard encryption mechanisms and best practices (e.g., for end-to-end 

encryption over public networks) but also innovative primitives developed within COLLABS (e.g., SMC 

and Homomorphic encryption). 

An overarching aim of the specification of the data flow model is to consider and protect all upstream 

and downstream data flows (device to gateway, gateway to cloud, C&C channel). In this context, and in 

order to consider all such flows and the intricacies of each Use Case environment, a detailed analysis of 

the UCs, their scenarios, and the associated requirements (as defined within D1.2 and D1.3) was carried 

out, followed by consultation with UC owners (namely ALES, PCL, and REN). Through this process, the 

key flows needed to support each UC and its associated scenarios were identified and are depicted in 

Figure 15. Said figure and the derivatives that will be presented in the subsections that follow, also 

include the Purdue model layers, for reference and to maintain homogeneity with the descriptions 

provided in D1.2 and D1.3. If a scenario is omitted, it means that no data flows are specified for that 

scenario at this stage. 
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Figure 15 Overview of key data flows in Use Case scenarios 

 

The data flows are shown in terms of the Purdue Enterprise Reference Architecture levels, as well as the 

corresponding layers of each of the UC environments, classified per scenario (see label within arrows), 

and characterised in terms of the need to support standard or homomorphic cryptographic primitives. 

Following this high-level specification of the data flows, a more detailed specification must be provided 

for each of the UC environments and the corresponding scenarios. To this end, an analysis of available 

options (e.g., Information Flow diagrams, Data Flow diagrams) in the context of the COLLABS needs was 
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carried out and the use of Information Flow diagrams was selected as the most appropriate means of 

defining said model, as it provides the needed level of granularity and the means to specify cryptographic 

primitives and their settings/configuration to protect data flows, without requiring a high level of 

specificity for the applications that may be supported from the specific data flows.  

Nevertheless, it should be noted that the Data Flow Model will be a “live” component, constantly being 

updated and refined as: (a) the COLLABS solution matures from a technical perspective, and (b) the UC 

environments and associated scenarios are specified in more detail, paving the way for the onsite 

COLLABS deployment and real-life demonstration (see WP6). Therefore, as the project matures and the 

model evolves, the appropriateness and limitations of the Information Flow–based specification will be 

constantly assessed and, if the need arises, the Data Flow Model may be transferred to a different format, 

e.g., in a more application-specific or even machine-processable format, (through the definition of the 

associated grammar). 

The subsections that follow provide more details on the Data Flow Model specification for the different 

UCs and associated scenarios. 

ALES Industrial Environment 

Four scenarios are identified within the ALES industrial environment that feature data flows with strong 

security requirements. These are highlighted in the subsections that follow. 

ALES Scenario 1 - Controlled and secure remote maintenance 

This scenario focuses on remote equipment maintenance from external/third party services, with support 

from local staff. The external/third-party services access the network and equipment, with temporary 

authorisations and strong segregation with respect to existing functions and data. More details on the 

scenario are provided in D1.2 (Section 2.b.ii.1). The data flow model for this scenario is shown in Erreur ! 

Source du renvoi introuvable. where is depicted the point-to-point flow connecting the 

external/remote maintainer from outside of the corporate network (cloud app) to the shop floor target 

machinery. This entire flow will be encrypted from end-to-end exploiting state-of-the-art protocols 

supporting standard encryption schemes such as HTTPS and TLS1.3. Last but not least, in case the 

aforementioned encryption schemes do not suffice, then additional access capabilities could be provided 

by making use of symmetric algorithms based on the SSH protocol and a set of predefined cryptographic 

policies. 
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Figure 16 ALES Scenario 1 (Controlled and secure remote maintenance) data flow model.  

ALES Scenario 2 - Controlled share of compliance data 

Compliance data is collected from the manufacturing process and is used to evaluate and testify on the 

quality of manufactured goods. This compliance check may be carried out by cloud-based quality check 

services. In such instances, design data shall be granted to not be leaked to other ongoing computations 

and, whenever possible, it would be preferable to guarantee data encryption while at rest and under 

analysis to avoid loss of intellectual property or technical data. More details on the scenario are provided 

in D1.2 (Section 2.b.ii.2). The data flow model for this scenario is shown in Figure 17 and it will leverage 

a homomorphic encryption methodology during compliance checks to enable the secure access, retrieval 

and exchange of sensitive information. Moreover, if the data is shared outside of the company to exploit 

third party/cloud services homomorphic encryption is applied to guarantee confidentiality of the data 

not only while at rest but also while under analysis. Taking into consideration the aforementioned 

solution, data at rest and data under analysis remain always encrypted and are kept confidential at all 

times, while data in transit are further wrapped within a TLS-based communication protocol as an 

additional layer of protection. At this point, it is worth noticing that the different zones met in this 

scenario may include several legacy devices, which will require the support of different but still secure 

interconnections and protocols. 
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Figure 17 ALES Scenario 2 (Controlled share of compliance data) data flow model. 

 

ALES Scenario 3 - Trusted compliance data share across the supply chain 

The manufacturing of complex and safety-critical systems requires collaboration between supply chain 

parties. Automation of these complex information flows requires to establish trust, guarantee integrity, 

support traceability and accountability, potentially without relying on a single central authority. 

Typically, a customer requests a batch of parts with quality/compliance information attached, and the 

enterprise receives this request, dispatching the production order to the manufacturing zone. During 

production, the shop floor sends process data to the data integrator, while the set of information about 

the product and its supplies shared with the customer through the internet. More details on the scenario 

are provided in D1.2 (Section 2.b.ii.3). The data flow model for this scenario is shown in Figure 18 where 

we can notice that each communication from zone to zone is securely encrypted. This scenario will be 

implemented using a blockchain solution based on the open-source framework Hyperledger Fabric, 

adopting thus all the native capabilities of blockchain technology including but not limited to protection 

from information tampering, traceability, and trustworthiness of dataflow. Moreover, once the 

information flows outside of the company a strong encryption scheme must be applied to ensure data 

confidentiality. For that reason, the communication between all components of this network shall take 

advantage of the latest TLS security protocol, namely the TLS 1.3. 
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Figure 18 ALES Scenario 3 (Trusted compliance data share across the supply chain) data flow model. 

PCL Industrial Environment 

Two scenarios are identified within the PCL industrial environment that rely on specific data flows with 

intrinsic security requirements. These are highlighted in the subsections that follow. 

PCL Scenario 1 - Shop floor threat detection and prevention 

This scenario focuses on the shop floor and its connection with the factory infrastructure. Networking in 

a shop floor environment is not managed by PCL due to organizational and political reasons. This lack of 

insight introduces a significant level of risk and therefore a security appliance is introduced between the 

shop floor and manufacturing zone. In COLLABS this solution is expected to perform detection and 

prevention of malicious activity, and all communications to/from the factory floor will go through this 

tool, while it will be responsible for encryption, authenticity and integrity of the data received from the 

shop floor and send it to the manufacturing network. More details regarding this scenario are provided 

in D1.2 (Section 2.a.ii.1), illustrating a typical shop floor environment which is usually consisted of an 

unmanaged network of several machines and controllers. All data flow in this level of the network are 

unencrypted and often consist of highly vulnerable legacy protocols and environments. Therefore, in 

order to efficiently deal with the trustworthiness of data flows as shown in Figure 19, it is deemed 

necessary the deployment of a firewall solution in high-risk situations, as well as the execution of 

advanced threat detector mechanisms. 
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Figure 19 PCL Scenario 1 (Shop floor threat detection and prevention) data flow model. 

 

PCL Scenario 2 - Remote data sharing 

This scenario revolves on remote data sharing (i.e., sharing with external/third parties) for collaboration 

purposes. Interactions with equipment and tool suppliers to develop new manufacturing processes, and 

collaboration with consortium partners in European, national as well as regional innovation projects, 

require a secure data exchange solution, for confidential and business critical data. Said solution must 

be flexible, work bidirectionally, and be able to deal with all sorts of (near real-time) machine and 

process data. More details on this scenario are provided in D1.2 (Section 2.a.ii.2) while its expected data 

flow model is illustrated in Figure 20. The transmission of data in a remote data sharing environment 

shall take advantage of the HTTPS protocol as a medium to simulate both a batch-based data transfer 

and a streaming data transfer. Last but not least, another security constraint that should be taken into 

consideration lies to the deployment of an explicit web proxy for proxying the aforementioned HTTPS 

traffic. 
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Figure 20 PCL Scenario 2 (Remote data sharing) data flow model. 

 

REN Industrial Environment 

Three scenarios are identified within the REN industrial environment that rely on specific data flows with 

intrinsic security requirements. These are highlighted in the subsections that follow. 

REN Scenario 1 - Controlled and secured remote maintenance 

This scenario involves the execution of maintenance operations, setting up production chains, and 

supervision of industrial processes in a remotely manner. For this, remote access to all levels of the 

Purdue model is required. Nevertheless, this remote access must guarantee a strong segregation with 

respect to existing functions and data, and especially ensure the integrity and availability of the critical 

production process. It should also guarantee the confidentiality of the data in the production 

environment, as the maintenance operations must be realized without revealing any sensitive data. More 

details on the scenario are provided in D1.2 (Section 2.c.ii.1). The data flow model for this scenario is 

shown in Figure 21, where the information exchanged between each zone and Purdue level share the 

same types of privacy-preserving and encryption methodologies. A VPN connection with REN 

infrastructure shall be deployed upon the Purdue Level 5, making use of the IKEv2/Ipsec NAT-T protocol 

and an AES-256_SHA1 cipher for connection outside of REN’s intranet. On the other hand, internal 

connections will be encrypted with the help of the HTTPS (TLS v1.2), SSH v2, and RDP protocols. 
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Figure 21 REN Scenario 1 (Controlled and secured remote maintenance) data flow model. 

 

REN Scenario 2 - Cloud-based architecture for industrial processes 

This scenario is motivated by the cloud-based smart factory of Industry 4.0 paradigm, modifying the 

production process to adopt a cloud-based agent approach to create an intelligent, collaborative, and 

more flexible industrial environment. Various partial use cases can be derived in this regard, as resources 

and services are progressively hosted externally in private/public cloud providers. An integral challenge 

is the need to collect more and more data from the manufacturing process, which are generated and 

collected for different domains of the industrial process regarding maintenance, performance, 

production, quality, and compliance. They key areas of impact are the shop floor level, as well as the 

manufacturing and enterprise zones. More details on the scenario are provided in D1.2 (Section 2.c.ii.2). 

The data flow model for this scenario is shown in Figure 22 where any information being exchanged 

between cloud app and manufacturing zones will be going through web and reverse proxies, allowing 

thus the adoption of proxy-compatible encryption standards like the HTTPS TLS protocol. Dataflow being 

output by shop flour will be additionally filtered and whitelisted, while dataflows coming from the 

manufacturing zone shall support the messaging and security traits defined by the Industry 4.0 vendor-

independent communication protocol known as OPC UA. 
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Figure 22 REN Scenario 2 (Cloud-based architecture for industrial processes) data flow model. 

 

REN Scenario 4 - Security of connected devices 

The objective of this scenario is to increase the security of the industrial environment providing security 

to low-cost IoT (sensors, actuators, etc.) and industrial automation devices. To achieve this, it is essential 

to identify the hardware security components, the cryptographic mechanisms, and the protocols 

pertinent to each device, while respecting their resource constraints and intricacies. Of importance is 

the usability of the chosen mechanisms, the provision of an effective convergence between OT and IT, 

with adapted protocols, and the adoption of distributed, collaborative protocols with mutual 

authentication mechanisms between devices to allow for automated segmentation based on devices 

security policies, and the security management of the devices throughout their lifecycle. More details 

on the scenario are provided in D1.2 (Section 2.c.ii.4). The data flow model for this scenario is shown in 

Figure 23 and involves the collaboration of devices belonging on the shop floor for distributed threat 

detection, mutual authentication, or remote attestation purposes. This communication could adopt any 

encryption methodology that matches that specific IoT device, with LoRa sensors making use of LoRa 

encryption mechanisms, and OPC UA sensors implementing OPC UA encryption mechanisms. 
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Figure 23 REN Scenario 4 (Security of connected devices) data flow model. 

 

SMC & Homomorphic Encryption 

One of the tasks of the COLLABS framework is to leverage powerful cryptographic tools, like 

homomorphic encryption and secure multiparty computation, to protect ML and DL algorithms and their 

input data’s confidentiality. Data will be protected at any time as they will always remain encrypted. 

However, mapping complex functions onto advanced cryptographic techniques remains an ad hoc process 

and practically always requires cryptographic expertise to be done correctly and efficiently. 

In the context of COLLABS, we provide guidelines and recommendations for hand-crafting DL solutions 

with advanced cryptographic techniques aiming to facilitate the work of the non-expert programmer. 

The AI models introduced in the COLLABS scenarios will be transformed into trustworthy AI inference 

systems demonstrating the effectiveness of the proposed optimizations.  

Privacy-preserving Storage & Analytics 

One of the tasks of the COLLABS framework is to offer privacy preserving data storage and analytics, 

while observing the need for easy integration and input of heterogeneous data and facilitating the 

adoption of collaborative analytics to enterprises. The solutions developed within the project allow - 

even in the MVP version of the framework - different participants to jointly process sensitive data without 



D2.2 - The COLLABS Level-3 Security Package for Secure Digital Supply Networks: 1st version    

COLLABS D2.2 Page 60 of 66 

disclosing sensitive and confidential data to anyone outside and ensuring compliance with data access 

and privacy criteria. 

Reliable statistical methods and machine and deep learning methods are defined and will be made 

available to different parties in the production chain in a privacy-preserving way. This is particularly 

aimed at the context of machine and deep learning where the service provider can have a model that 

returns predictions on the input data, and the user can get those predictions on their data without the 

need to expose sensitive information. This process will be further improved by applying differential 

privacy-based methods on shared data. With differential privacy appropriately defined, privacy 

guarantees are achieved by the introduction of randomness, by the data provider, in response to queries, 

which machine and deep learning algorithms are sent to the database. Amount of noise added to the 

original information is controlled by the so-called epsilon factor or privacy cost that represents a trade-

off between the level of privacy achieved and the performance of a machine or deep learning algorithm. 

Such implementation of machine and deep learning algorithms will make it possible to configure trade-

offs in terms of privacy and performance according to the needs of data owners. 

Distributed Authentication & Authorisation 

In a complex system such as the COLLABS framework, authentication and authorisation cannot be 

centralised since that would by its nature represent a security risk. Distributed authentication and 

authorization are achieved through a comprehensive mechanism involving various approaches including 

distributed PKIs, blockchain, device fingerprinting, attribute-based access control, etc. The following 

two subsection will overview the comprehensive access control mechanisms employed in COLLABS, as 

well as blockchain and smart contracts. 

Comprehensive Access Control 

Comprehensive access control is a data protection mechanism of the COLLABS framework. It includes 

security services based on trust for IoT authentication and ensures communication between trusted 

components only. 

Communication between cloud-based applications within the COLLABS framework is managed and 

protected using identity and context-based access control. We use a distributed PKI mechanism to 

authenticate users and devices removing the need to use passwords and using certificates instead of 

them. Using blockchain to manage certificates will prevent tampering and ensure consistency of 

certificates, raising security one more level up. 

On another level, the COLLABS framework contains fingerprint methods for IoT devices that may be used 

to detect abnormal behaviour and abnormal signals received from edge devices. We use advanced 

machine learning and deep learning methods to analyse the data acquired by IoT device fingerprinting 

to detect outliers and anomalous behaviour. Such a mechanism provides an additional level of security 

and confidence in industrial scenarios. 

Access rules are managed centrally, at the point of policy decision-making. Using attribute-based access 

control (ABAC) will allow precise and flexible definition of access rules using the XACML standard. IoT 

devices have low processing power and low memory capacity which makes them unsuitable to act as 

servers. In that case, attribute-based encryption (ABE) can be used to ensure trust between the sensor 

and the end user. That way the IoT device only needs to encrypt the data it sends, and the policy decision 

point will send the decryption key to the end user. In this way, it is ensured that communication adheres 

to the described rules described. 

Blockchain and Smart Contracts 
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A distributed ledger implements a decentralized record of transactions. A blockchain27 is a particular 

type of distributed ledger. A ledger is the sequenced, tamper-resistant record of all transitions approved 

on the blockchain. It is a growing list of cryptographically linked records (blocks). Each block contains a 

cryptographic hash of the previous block, a timestamp, and transaction data. The blockchain is designed 

to resist the modification of its data. Once recorded, the data in any given block cannot be altered 

without needing to alter all subsequent blocks. A blockchain is usually managed by a peer-to-peer 

network where peers follow a common inter-node communication and block-validation consensus 

protocol. A peer is an individual participant of a blockchain network. Generally, each peer holds a copy 

of the ledger, which can be modified only when the majority of peers agree on it via their consensus 

protocol.  

There are public (permissionless) blockchains, and permissioned (private) blockchains. Permissioned 

blockchains need a way to identify the participants of the network, like an identity and access 

management (IAM). Peers can only read and propagate transactions they are entitled to. There are 

different distributed ledger platforms, like Ethereum, Corda, and Hyperledger Fabric 28  (HLF). In 

permissioned blockchains like HLF the consensus protocol can be changed and adapted to fit specific 

use cases via policies. For instance, you can restrict which nodes need to verify the transactions and 

which nodes do not, and you can use consensus protocols that do not require costly mining. 

We value distributed ledger technologies for their cryptographically granted security properties, like 

immutability and accountability (non-repudiation). Parties, even if they do not trust each other, can 

collaborate without the need for trusted third parties. A blockchain allows untrusted parties to 

collaborate under a strict and formal agreement for assurance. Distributed ledger technologies often 

(like when no party controls more than 50% of the nodes) can ensure the following properties: 

Immutability means that once a transaction is stored on the ledger it cannot be deleted or modified any 

longer. Transparency is given as peers must accept all interactions with the ledger, they can observe 

and confirm each transaction and only validated transactions are written to the blockchain. An 

immutable and transparent ledger allows for auditability. For accountability (non-repudiation), an IAM 

system identifies participants in the ledger network and allows tracking their actions. In case one needs 

to resolve a dispute, the accountable party can be traced. 

Each peer node contains a copy of the distributed ledger. Peer-to-peer data sharing guarantees 

redundancy of the database and allows checks for consistency. Due to this redundancy, failure of one 

node does not affect the availability of the remaining system. High availability may be achieved. A 

blockchain represents a distributed system with the potential for supporting high Byzantine fault 

tolerance. Due to peer consensus of the transactions, the system can be regarded as reliable and fail-

safe, even if some peers default.  

Blockchains offer a decentralized, immutable, and verifiable ledger that can record transactions of 

digital assets. Different blockchain flavours offer different scalability, security, and potential privacy 

issues. Examples of privacy issues are transaction linkability, data privacy, and GDPR compliance. 

Research takes place in the area of resolving privacy issues by allowing blockchain users to act 

anonymously, to take control of their personal data, and to keep private data confidential (J. Bernal 

Bernabe, 2019).  

                                                 

27 https://hyperledger-fabric.readthedocs.io/en/latest/blockchain.html  
28 https://hyperledger-fabric.readthedocs.io/en/release-1.4/whatis.html  

https://hyperledger-fabric.readthedocs.io/en/latest/blockchain.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/whatis.html
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A smart contract is a self-executable program running on the blockchain. It 

can be seen as a stored procedure. A smart contract can update a ledger, 

store variables, and instantiate and invoke other smart contracts29. It consists 

of pre-defined rules specified between two or multiple parties. This allows 

the execution of distributed and automated workflows (Stahnke, 2020). A 

smart contract is a script describing proper interaction with the ledger. A 

smart contract provides a well-defined set of ways by which the ledger can 

be queried or updated. Smart contracts allow data to be shared with 

integrity, accessibility, and mutability while ensuring that these data can 

only be manipulated according to the rules stated in that smart contract. 

Only the entities that agree with the smart contract conditions interact with 

the smart contract. 

Smart contracts are often written to ensure fairness between participating 

entities without need for a trusted third party (Zupan, 2020). The author 

creates the smart contract and publishes it in the blockchain. Conditions 

written in the smart contract prior to HLF could not be changed even by the 

owner after publishing it in the blockchain, but current HLF versions allow 

updating the smart contract. The conditions stated in the smart contract are 

enforced by the code and the underlying blockchain system’s consensus 

mechanism, where the results are verified by the participating nodes.  

There are many languages to write smart contracts in. For instance, 

Ethereum supports a Turing-complete scripting language called Solidity for 

smart contracts. In Hyperledger Fabric, general-purpose programming 

languages, like Go and Node.js, can be used to write so-called chaincode.  

4.5 Encrypted Traffic Analysis 

Encrypted network traffic has been steadily growing in volume in recent years, compared to 

nonencrypted traffic. This presents a challenge to the task of acquiring insight into the nature 

of the traffic, since network packet payload contents are not visible.  

Traditional network traffic analysis techniques use machine learning methods to identify patterns in 

network flows. Anomaly detection systems can identify attacks against ICS networks in a proactive 

manner, reporting any suspicious activities. A major disadvantage of such systems is their focus on clear-

text packet payloads only. Considering the proliferation of encrypted network traffic, such approaches 

are bound to become obsolete. For this reason, techniques for network traffic analysis need to focus on 

detecting patterns in network flows based on other approaches, such as using metadata found in packet 

headers. 

Encrypted traffic analysis in the COLLABS framework will be achieved through the interaction of tools 

and components developed within three project tasks (T2.2, T2.3 and T2.5), as illustrated in Figure 25: 

Pattern-based encrypted traffic analysis (Section 3.4.2), ML-based cognitive security (Section 3.1), and 

anomaly detection (Section 3.4.1). 

 

                                                 

29 https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html  

Figure 24 Smart contracts 

being written to the 

ledger. 

https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
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Figure 25 Encrypted traffic analysis enablers. 

Pattern-based Encrypted Traffic Analysis 

Transport layer security (TLS) use is becoming the standard by people and organizations to protect the 

integrity and confidentiality of their data flows on the internet. IIoT is also in need of secure 

communication channels and encryption where technically possible. These encrypted channels can be 

misused by malicious actors to evade detection by security mechanisms such as intrusion detection 

systems. A novel mechanism will be used to analyse encrypted network traffic and detect attacks using 

signatures. It will strengthen the data flows trustworthiness by capturing attacks or anomalies inside the 

encrypted network traffic of the platform and reporting them to the anomaly detection modules. This 

mechanism will rely on metadata that can be found inside packet headers, including packet lengths, 

timestamps, directions, and inter-arrival times. 

In the training stage publicly available datasets of malicious traffic will be collected which can be used 

as a base for our malicious traffic dataset. Then multiple variations of attacks will be conducted in our 

use cases environment and scenarios to further increase our dataset of malicious network traffic. The 

captured network traffic will be broken into flows and the sequences of packet payload lengths (which 

remain constant in multiple variations of the same attack) will be turned into signatures. These 

signatures will contain the fingerprint of certain actions of malicious tools and malware which target or 

use the TLS protocol. They rely on specific patterns or sequences of packet lengths which remain constant 

when these tools are used. After the generation of these signatures, they will be used to detect attacks 

and malicious behaviour in live network traffic and forward alerts to the corresponding modules. 

In addition, CISCO’s Joy (cisco, 2020) will be used which can break the network traffic into flows and 

extract information from TLS connections such as the selected cipher suite, the server’s certificate, and 

the public key length. With this information extracted It will be possible to detect if a component or 

software is using an old and deprecated encryption method which is vulnerable to being cracked by 

attackers to extract sensitive information. In addition to detecting weak TLS versions, it will be able to 

detect TLS downgrade attacks, such as FREAK (Beurdouche, et al., 2015) or POODLE (Möller, Duong, & 

Kotowicz, 2014)  or other vulnerabilities like Heartbleed (Synopsys, 2020). By integrating CISCOS’s JOY 

inside the network environment it will be possible to verify the integrity and strength of every TLS 

connection. 

In the COLLABS framework, all of the modules and devices will aim to use strong encryption but there is 

still a residual threat from malicious insider activity or human error. An employee could intentionally or 

by mistake install (vulnerable or malicious) software or bring a device which uses an older or deprecated 

TLS version or is infected. 

ML-based Cognitive Security 
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The ML-based cognitive security framework (described in more detail in Section 3.1), consisting of two 

interacting components – the IoT Secure Wireless fingerprinting component and the ML S(N)C 

optimization and GMS tools – in its initial utilization, will provide increased security at the IoT device 

level, by enabling automated device identification based on various behavioural features and patterns, 

as well as threat identification by detecting anomalous device behaviour. The machine learning tools 

and models developed within the ML-based cognitive security framework can readily be applied to other 

types of network data to learn to distinguish regular from anomalous patterns in encrypted network 

traffic. 

Anomaly Detection 

Anomaly detection as has been done in the past is not ideal for the IIoT model. Installing an IDS system 

on a device or a group of devices provides each IDS system with a local security view. A new approach 

will be a distributed and lightweight anomaly detection which will leverage innovative ML techniques 

covering a wider spectrum and be able to detect attacks on both single devices and network wide. 

In addition, several supervised and unsupervised anomaly detection methods will be considered, 

including methods based on clustering (K-means, DBSCAN), Isolation Forest, Local Outlier Factor, Double 

Median Absolute Deviation, and Mahalanobis based approaches. This approach will be better suited for 

an IIoT environment and will be able to detect specific security threats and identify malicious behaviours. 

More details about the anomaly detection module can be found in subsection 3.4.1. 
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5. Summary and Conclusion  

 

In this deliverable, a detailed description of the results of the work within work package 2, until M18, is 
given. The results have been structured and presented as part of 1st release of the COLLABS platform.  

As described earlier in the document, the COLLABS framework is organized into three levels of security: 

 Level 1 - Hardware-enabled and device-level security, 

 Level 2 - Inter-device level security based on distributed ledger technologies, and 

 Level 3 – Machine learning-based cognitive security level. 

Various technologies presented and demonstrated within the deliverable comprise the initial version of 
the COLLABS Level-3 security package for secure digital supply networks. 

Work package 2 includes the following six tasks that round up development of the Level-3 security 
components in accordance with the project requirements. 

 T2.1 Tools and methods for secure data sharing, 

 T2.2 Trustworthiness of data flows,  

 T2.3 Machine learning-based cognitive security framework,  

 T2.4 Statistical Analytics and Machine- / Deep-Learning on shared data,  

 T2.5 Distributed anomaly detection for Industrial IoT and  

 T2.6 Workflow-driven security for supply chain and compliance in manufacturing. 

Level-3 security components developed within these tasks include tools and services for: 

 secure data sharing,  

 trustworthiness of data flows in collaborative manufacturing environments,  

 machine learning-based cognitive security framework applied to shared data, 

 workflow-driven security framework for supply chain and manufacturing based on distributed 
ledger. 

Security requirements for the COLLABS framework defined within Level-3 include monitoring different 
data flows originating from connected objects - IIoT devices. For this, we are using advanced cognitive 
security and anomaly detection mechanisms such as model-based verification and machine and deep 
learning to detect anomalies. Moreover, COLLABS focuses on edge-based AI solutions and analysis of 
encrypted network flows.  

Encrypted traffic analysis mechanisms based on metadata extraction (that in turn also leverage machine 
and deep learning techniques applied to datasets obtained by IIoT device fingerprinting) is another 
requirement that has been addressed by the components of the machine learning based cognitive security 
framework.  

A component offering secure computation outsourcing, using advanced cryptographic techniques, like 
(fully) homomorphic encryption, has been implemented. HE techniques can protect shared data both at 
rest and in use.  

 

Outlook 

Until M26, we will have a Level 3 development completed: ongoing development/finalization of 
components; (2) testing – i.e., validating the CSRs defined; and (3) further integration between the 
components described in this deliverable.  

In more details: (1) The Machine Learning-Based Cognitive Security Framework will be used to address 
the task of Confidential Data Discovery, and it will be further investigated in collaboration with the use 
case providers. (2) 3ACEs aims to advance to TRL7 at the final release. (4) The HE component will be 
improved in terms of efficiency, by using Single Input Multiple Data (SIMD)-like implementations and by 
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leveraging TEE components (like the INTEL SGX). (5) The WSDF tool will be further integrated into the 
ALES lab environment. (6) For the network monitoring, the signature database used for encrypted traffic 
analysis, will be enhanced, while the Distributed Anomaly Detection will be improved in terms of 
accuracy and privacy preservation.  

The final version of the components will be presented in M26 and discussed within the deliverable D2.3 
meant to describe the final phase of development within Work Package 2. 
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List of Abbreviations  

Abbreviation Translation 

CSR_XX Common Security Requirement no. XX (as described in deliverable D1.2) 

IIoT Industrial Internet of Things 

JSON JavaScript Object Notation 

WDSF Workflow-driven security framework 

(F)HE (Fully) Homomorphic Encryption 

LHE Levelled Homomorphic Encryption 

MPC Multi-Party Computation 

SIMD Single Instruction Multiple Data 

HE Homomorphic Encryption 

SMC Secure Multiparty Computation 

MS SEAL Microsoft Simple Encrypted Arithmetic Library 

BFV (RNS) Brakerski/Fan-Vercauteren (Residue Number System) 

CKKS (RNS) Cheon-Kim-Kim-Song (Residue Number System) 

HELib Homomorphic Encryption Library 

BGV Brakerski-Gentry-Vaikuntanathan 

HEAAN Homomorphic Encryption for Arithmetic of Approximate Numbers 

NLP Natural Language Processing 

BERT Bidirectional Encoder Representations from Transformers 

ML Machine Learning 

DL Deep Learning 

ML S(N)C Machine Learning Structured (Non)Convex Optimization 

DAD Distributed Anomaly Detection 
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6. Appendix. Methods for Screening and Improving the Security of Future COLLABS 

Solutions 

6.1    Methods and Guidelines for Oblivious Machine Learning 

6.1.1 Advanced Cryptography Tools 

In Task 2.1, we leverage powerful cryptographic tools (homomorphic encryption, secure multiparty 

computation) to protect the ML and DL algorithms. As described in D1.4, in COLLABS a DL outsourcing 

scenario will be adopted, as a locally running DL model will be migrated to the Cloud. The main security 

goal is to protect the confidentiality of both the input data and/or the model.  

ALES is working on the refinement of P&W Scenario #2 (from Deliverable D1.2) to define the requirements 

for the application of HE. In particular, ALES is considering the case where a compliance dataset and 

analysis algorithm are deployed on the cloud for product compliance analysis (images, geometrical 

measures, sensor data).  

Given our use case scenario, we have decided to protect the model execution with Fully Homomorphic 

Encryption (FHE) as the FHE schemes have limited communication overhead compared to SMC ones which 

are very interactive. The main Dl operations that will be implemented are:  

1. Convolution 

2. Matrix multiplication 

3. Activation functions: ReLu.  

4. (Max) Pooling 

Since 2009, the performance of FHE computations has impressively improved with a speedup of 109. 

However, programming FHE applications remains a demanding task that requires cryptographic expertise 

(R. Cammarota, 2020). The non-expert programmer can use the multiple available implementations 

(there are several open-source libraries), but as has been reported, the produced code can be 103 times 

slower than the code written by an FHE expert.  

In Task 2.1, we provide recommendations and guidelines on the optimal usage of the available schemes. 

Emphasis will be given to the ML and DL models used in COLLABS. The main goal is to optimize the trade-

offs between security, performance and accuracy and facilitate the programmer in managing the 

encryption parameters, the noise level, and the data approximation.  

6.1.2 Writing a FHE Program 

The initial program (plaintext program) can be re-written as a FHE program by naively replacing all the 

computations with the corresponding FHE ones (mainly additions and multiplications). However, this 

approach does not scale and can be extremely slow (more than 103 times).  

The general structure of a FHE circuit appears in the following Figure 7. 

  

 

Figure 26 The FHE circuit structure. 

All the proposed FHE schemes can compute any program. However, in order to achieve that, they need a 

rekeying operation called bootstrapping (orange circles in the scheme). This operation is very costly and 
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the FHE programmers must avoid it if possible. The boxes between the bootstrapping operations are 

called Levelled HE (LHE) circuits. This part implements a circuit with a given multiplicative depth L.  

That is that - the programmer with a LHE can implement any plaintext program with multiplicative depth 

up to L. However, the larger the value of L, the slower the program becomes. Thus, the programmer must 

find the optimal combination of the values L1, L2, etc., such that the overall complexity is the minimum 

possible. Such optimization is still an open problem and strongly relies on experience. 

In what follows, we provide guidelines and recommendations for the unexperienced programmer to 

create an efficient FHE program. Emphasis will be given to the implementation of efficient LHE programs. 

The programmer needs to make several decisions, including the selection of scheme, the specific data 

layout (for parallelism) and the encryption parameters, among others. The LHE program must be secure, 

efficient, and correct. 

6.1.3 Selection of the FHE Scheme 

While the first FHE schemes only supported Boolean operations (resulting to rather huge circuits), the last 

generation of FHE designs are able to homomorphically perform integer operations. This allows us to 

evaluate arbitrary arithmetic circuits efficiently without having to “explode” them into Boolean circuits. 

Among them, the most efficient ones are BFV, BGV and CKKS. All of them are constructed on the Ring 

Learning with Errors (RLWE) problem. 

Practical applications, like the DL model inference, require floating point arithmetic and approximate 

computation. However, all the FHE schemes support only integer operations. Thus, in order to obliviously 

compute using these schemes, we use fixed-point arithmetic and we explicitly define a scaling factor. 

While we can use all three FHE schemes with fixed-point arithmetic representation, only CKKS (and its 

variant RNS-CKKS) can give practical programs. The problem is the fast increase of the scaling factor with 

multiplication. In order to cope with that, we need to select huge encryption parameters, and especially 

an extremely large plaintext-coefficient.  

However, CKKS offers another alternative, as it enables ciphertext rescaling. It allows the programmer to 

reduce the scaling factor, at the expense of less accuracy. Actually, this is exactly the paradigm of floating-

point arithmetic. We are going to use CKKS in COLLABS. 

All three FHE schemes support four main evaluation operations:  

1. addition of ciphertexts,  

2. addition of ciphertext and plaintext,  

3. multiplication of ciphertexts and  

4. multiplication of ciphertext and plaintext. 

The FHE schemes implement nicely polynomial computations. For applications that use non-polynomial 

operations (like exp, log, etc.), it is assumed that such functions can be approximated by polynomials. It 

has been demonstrated that this is possible for ML and DL.  

Another important parameter is batching compatibility. In order to compute in parallel operations on 

messages, data can be processed in SIMD (single instruction multiple data) like way that allows a vector 

of input messages to be encoded in a single plaintext. With batching, the operations take place in an 

element-wise fashion increasing efficiency. All three FHE are batching compatible. 

6.1.4 FHE Libraries 
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There are several open-source libraries that implement the three main schemes. In Table 1, we provide 

the main ones. We want to emphasize that the field is very dynamic. Theoretical advances and new 

improved implementations change the scenery rapidly. 

  

Library HE schemes 

MS SEAL BFV (RNS), CKKS (RNS) 

HELib  BGV, CKKS 

Palisade BGV, BFV, CKKS 

HEAAN CKKS 

Table 3 FHE open-source libraries. 

CKKS is the most suitable scheme for ML and DL applications and there are two versions of the scheme. 

The first is referred to as plain “CKKS,” while the second is known as “RNS-CKKS.” Both have open-source 

implementations, like the HEAAN, PALISADE30 and SEAL libraries. We will mainly use the last one, as it 

offers more efficient implementations that can use machine-sized integer operations as opposed to multi-

precision libraries. However, it imposes further restrictions on the circuit multiplicative depth. Thus, we 

will have to decide on a per use case. 

6.1.5 FHE Security  

Each FHE is initialized with a set of parameters. The value of these parameters determines the level of 

security, the efficiency, and the accuracy of the scheme. In COLLABS, we will first decide on the security 

level, and then we choose the other parameters. The level of security will be at least 128 bits (security 

parameter). 

For the same level of security, the encryption parameters affect the performance and the accuracy of the 

generated FHE program. Typically, larger values lead to more accuracy, but slower programs, while 

smaller values to faster and less accurate programs. Choosing an adequate set of parameters is tricky.  

Current FHE schemes work by introducing noise during encryption that is subsequently removed during 

decryption. The amount of noise introduced during encryption and every intermediate operation is 

controlled by a set of encryption parameters that are set manually. Setting these parameters low can 

make the encryption insecure. On the other hand, setting them large can increase the size of encrypted 

text and increase the cost of homomorphic operations. Moreover, when the accumulated noise exceeds 

a bound determined by these parameters, the encrypted result becomes corrupt and unrecoverable. 

The parameters must be chosen following the recommendations of the “HomomorphicEncryption.org,” 

the open consortium of industry, government, and academia for the standardization of homomorphic 

encryption. Following the white paper31 (section 5.4) that they maintain, the parameters must be chosen 

following the tables provided.  

6.1.6 FHE Correctness 

                                                 

30 https://palisade-crypto.org 
31 http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf 

http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
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In all FHE schemes, noise is added in every homomorphic operation, and this noise must be controlled in 

order to perform correct decoding at the end. The CKKS scheme introduces an additional challenge by 

providing approximate results (of course with much higher efficiency). There are two extra sources of 

error: the error from the initial encoding of the input values and the noise from the rescale operation. 

FHE Error 

All the evaluation operations increase the level of noise. The level of noise must be controlled and always 

remain under a certain bound for correct computation. There are two main approaches. Either we 

increase the level of tolerance, i.e., the acceptable upper bound of noise, by increasing the ciphertext 

coefficient, or we reduce the level of the produced noise periodically during the computations. More 

precisely: 

 The upper bound of acceptable noise depends on parameter Q, the ciphertext modulus. This 

parameter can be increased to afford noise increase, but at the expense of reduced efficiency. 

 The programmer can apply a modulus switching operation. This operation reduces the level of 

noise by modifying the ciphertext modulus. The modulus is divided by one of its factors. 

However, the modulus switching operation can only be applied a limited (predefined) number of 

times and it is a costly operation. 

 Limit the number of multiplications. The ciphertext multiplication operation increases the level 

of the noise exponentially. Thus, it is necessary to choose computations that minimize the 

multiplication depth of the circuit to be evaluated.  

 Use bootstrapping to reset noise. This operation re-encrypts the ciphertext homomorphically 

and it is a very expensive operation. 

 Selecting the Scaling Factor   

Neural network models typically use floating-point values that must be transformed to fixed point and 

determining the optimal fixed-point scaling factors to use is not straightforward. The use of fixed-point 

arithmetic with scaling factors introduces two problems:  

1. The encoding can be lossy.  

2. The scaling factor increases very fast with multiplications, 

Determining the scaling factors to use for the inputs and the output is difficult as it involves a trade-off 

between performance and output precision. This is an open problem. 

Using high enough scaling factors allows errors to be hidden. However, the computations become shortly 

expensive as the scaling factor increases. Furthermore, power functions computation would rapidly 

overflow modest values of the modulus Q, requiring impractically large encryption parameters to be 

selected. In order to control the size of the scaling factor, CKKS supports an operation called rescaling. 

Rescaling operation 

CKKS schemes support an operation called rescaling that scales down the fixed-point representation of a 

ciphertext. Practically, it truncates the fixed-point representation. Consider a ciphertext x that contains 

the encoding of 0.25 multiplied by the scale 220, the rescaling operation will truncate to encode the value 

at a scale of 210.  

Rescaling has a secondary effect of also dividing the ciphertext’s modulus Q by the same divisor as the 

ciphertext itself. That means that there is a limited “budget” for rescaling built into the initial value of Q. 

This is similar to the modulus switch operation. However, the modulus switch does not affect the scale 

factor, only it brings down the level of a ciphertext.  
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Regarding the RNS-variants of CKKS that is supported by SEAL, the truncation is performed by dividing the 

encrypted values by prime factors of Q (it is the product of r distinct prime integers). The order of the 

prime factors is fixed, i.e., the order of the divisions is fixed. That means that from any point there is only 

one valid divisor available for rescaling. The value of Q is reduced by this factor each time.  

The rescale must also be lower bounded with respect to the output. If the output scale is less than a value, 

the computed output probably loses accuracy, and this is irreversible. This complicates selecting points to 

rescale, as doing so too early might make the fixed-point representation so small that the approximation 

errors destroy the message. The user decides on the input and output scale. Also, the maximum allowed 

rescale factor can be defined. In some implementations this maximum value is dictated by the library, like 

in the SEAL library (260). 

Input encryption coefficients correctness 

To apply any homomorphic operation, the two input ciphertexts must be at the same level, i.e., must have 

the same modulus Q. Furthermore, all additions (and subtractions) require that the input ciphertexts are 

encoded at the same fixed-point scale. A homomorphic evaluation is correct, when: 

 Rule 1 (addition): Two ciphertexts that are added must have the same modulus coefficient and 

the same fixed-point scale factor. 

 Rule 2 (multiplication): Two ciphertexts that are multiplied must have the same modulus 

coefficient (not the same fixed-point scale factor, necessarily). 

CKKS also supports a modulus switching operation. The application of the modulus switching operation 

modifies the current modulus Q and brings down the level of a ciphertext without scaling the message. 

Inserting the appropriate rescaling and modulus switching operations to match levels and scales is a non-

trivial task.  

Relinearisation 

A ciphertext is initially represented by two polynomials. However, the multiplication of two ciphertexts 

(consisting of several polynomials each) yields the ciphertext of the result with more computations than 

the initial ones (if q and w are the input, then q+w+1 polynomial will be the result). To set a bound on the 

number of polynomials an expensive operation, called relinearisation, is performed. Relinearisation 

reduces the number of polynomials to the input value (i.e., q+w) and using a distinct public key.  

Selecting the optimal placement of relinearisation operations is proven to be an NP-hard problem. 

Usually, relinearisation takes place after every multiplication so that a ciphertext needs always only two 

polynomials to be represented. However, it is an open problem to find other (better) strategies, given 

that the decryption operation can be generalized easily to the m-polynomials representation, with m>2. 

6.1.7 FHE Efficient Implementation 

The cost of individual homomorphic operations are orders of magnitude more expensive than the 

equivalent plaintext operations. Thus, we must compute them in parallel as much as possible. At the same 

time there is another weapon in our arsenal, the so-called batching.  

Batching 

Amortising the cost of FHE operations requires utilizing the vectorization capabilities (also called as 

“batching” in the FHE literature) of the FHE schemes. Data can be processed in a SIMD-like way by 

encoding a vector of input messages in a single plaintext. With batching, the FHE operations take place in 

an element-wise fashion increasing efficiency. Τhe SIMD width in CKKS and RNS-CKKS is N /2 and they 

support rotation operations that mimic the shuffle instructions of the SIMD units. The rotation by i 
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requires a different public key for each i. We usually produce keys for all the powers of 2 (until N). Also, 

they do not support random access to get a particular slot value from the ciphertext. We need a 

multiplication with a plaintext for such operations.  

However, vectorization is not a straightforward procedure. Different mapping on to ciphertext vectors 

results in different circuits with different performances. More precisely, for each resulting circuit the 

programmer must determine the encryption parameters that maximize performance while ensuring 

security and correctness. We will propose cost-based guidelines to assist the programmer in 

systematically searching over the different options.  

6.1.8 Guidelines and Recommendations  

We provide general guidelines for the programmers based on the analysis above. It is still necessary to 

have a good understanding of HE and its limitations. First, we provide guidelines for an implementation 

that does not use ‘batching.’ We recommend an unexperienced programmer to get familiar with such 

designs. Then, we provide guidelines regarding message vectorization. 

‘Simple’ Approach for LHE Circuit Design 

 Choose the appropriate FHE scheme. We assume that CKKS will be the selection for DL 

inference. 

 Select the version of plaintext circuit with the minimum multiplicative depth 

 Select the input and output level of accuracy. 

 Select the maximum rescale factor (in SEAL this must be 260). 

 Replace all the operations (additions and multiplications) with the corresponding FHE ones. 

 Use relinearisation after each FHE multiplication. 

 Use rescale, if needed, after each multiplication. 

 Verify that the input data of all operations has the correct input encryption coefficients. Place 

the modulus switching operation where necessary. 

 Compute the value of the modulus coefficient Q. Q is either power of 2 or the product of r 

prime numbers. We want to minimize either log Q or number r.  

 Use the table of coefficients to get the minimum possible value N. 

 Estimate the performance of the circuit using asymptotic complexity (Table 2). Be careful that 

we can get only a rough estimation as the hidden coefficients have a massive impact. Always it 

is better to measure the complexity of the actual implementation.  

  

HE Operation CKKS RNS-CKKS 

addition, subtraction   O(N · log Q)   O(N · r)  

scalar multiplication  O(N · log Q)   O(N · r)  

plaintext multiplication O(N · log N · M(Q)) O(N · r) 

ciphertext multiplication O(N · log N · M(Q)) O(N · log N · r2) 

ciphertext rotation O(N · log N · M(Q)) O(N · log N · r2) 
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Table 4 Asymptotic complexity of the main CKKS HE operations. M(Q) is the complexity of multiplying large 

integers32. 

 

 Implement all the operations at the same level in parallel. 

 Free memory when possible. 

  

Vectored Approach 

LHE efficiency can be significantly improved using batching. The ‘Simple’ LHE must be rewritten and all 

data must be organized in vectors. Such an implementation is suitable for neural network inference, 

where all operations are tensor operations. The programmer must first design the vectored version of the 

tensor circuit and then apply the guidelines described above. 

Note: Batching can be applied in simple LHE as well without any modification. It covers the case that we 

have several input data for prediction. 

For the vectored circuit:  

 The rotation operation needs a different public key for each l-position cyclic shift of the 

message. 

 The SIMD width in all CKKS versions is N/2. That is that - we can store up to N/2 messages in a 

plaintext. 

 The mask operation increases multiplicative depth.  

 There is a trade-off between splitting a large tensor and increasing N to fit it in.  

 There are several choices of layouts. I.e., several different ways to store the messages in a 

plaintext slot (rewrite input as a vector). 

 Depending on the data layout, different operations must be applied. The best layout selection 

depends on the complexity of each operation per FHE scheme. 

 

6.2    Distributed Anomaly Detection for Industrial IoT 

 

6.2.1 Overview / Functional Description 

Industrial Control Systems (ICS) are systems that are part of Operational Technologies (OT). Their 

functions are management, monitoring and control of infrastructure and industrial processes. This applies 

to manufacturing plants, industrial plants, electrical power and energy systems and other critical 

infrastructures. In the past, these systems were not intended to be accessible remotely. They remained 

in closed and controlled environments and were isolated from corporate networks and external networks. 

Thus, protocols used by such systems implemented little or no security features. Lately, in order to 

improve their efficiency, the ICSs integrated communications technologies from the world of Information 

Technology (IT). They are also more and more open and connected to services on corporate networks or 

on external networks. This openness brings great flexibility and benefit in the management of industrial 

processes. It also enables the development of new high added-value functions for industrial 

infrastructures. On the other hand, it exposes these infrastructures to new attack surfaces, such as cyber-

                                                 

32 CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. R Dathathri et al. Proceedings 
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 2019 
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attacks that were specific to IT technologies. Especially since legacy ICS protocols were not developed 

to deal with these attacks. 

Intrusion Detection Systems (IDS) are applications that monitor a network or system in order to detect 

attacks and malicious behaviour that takes place there. In particular, Network Intrusion Detection 

Systems (NIDS) are IDSs used to monitor networks. 

A NIDS collects network traces and analyses them to detect attacks or intrusions into the monitored 

network. The NIDS performs Deep Packet Inspection (DPI), and extracts information about the upper 

layers of the OSI models in the packet capture. This analysis can have low latency constraints. In these 

cases, the performance of NIDS is particularly important as it must analyse large amounts of information 

and return information in a very short time. In some cases, these time constraints can be relaxed, and 

more extensive processing can be performed. 

Different intrusion detection techniques exist. The signature-based methods of attacks use a knowledge 

base of existing and already listed attacks. These methods recognize the characteristics of the known 

attacks in the analysed network packets. Signature-based methods require access to a set of attack 

signatures. With such methods, it is not possible to detect an attack that is not listed in the set of 

signatures. 

There are also anomaly-based intrusion detection methods. These methods aim to detect abnormal 

behaviour or communications between network components. They often use machine learning algorithms 

to determine the normal behaviour of the network. It is then possible to detect deviations from this 

normal behaviour in the network. Anomaly-based IDSs may detect zero-day and unknown attacks. 

ICSs have specificities such that the usual IT security measures cannot be applied systematically: 

 There are often constraints about response time between devices, which make it difficult to 

use cryptography mechanisms to ensure data integrity and/or confidentiality. 

 These time constraints may also disallow using simple filtering equipment, as it may introduce 

too much latency. 

 Protocols used in ICSs such as Modbus or DNP3 are not secured by design, and a corrupted node 

inside the network may not be detected. It may produce illegitimate frames in order to disrupt 

the functioning of the ICS.  

 As ICSs operate continuously, they are not updated frequently. Often, updating such a system 

is done at scheduled maintenance operation, where it is shut down. Consequently, if a 

vulnerability on a device is referenced, it will not be corrected until the next scheduled 

maintenance. During this time, the ICS remains vulnerable. 

 An ICS has a lifespan of several decades. Even if the future ICSs are integrating more and more 

cybersecurity primitives, the current and legacy systems do not necessarily have these 

possibilities. They are therefore exposed to vulnerabilities. 

Regarding this context, IDSs are suitable for ICSs. IDSs allow enhancing the security and attacks detection 

on industrial systems without interfering with their operation. 

There are different metrics to assess the relevance of an IDS. The most common ones are: 

 the maximum throughput that the IDS can support, 

 the false alarms rate, 

 the detection rate, 

 the coverage, which is the set of attacks that are detectable by the IDS, 

 the robustness against evasion techniques and attacks directed at the IDS. 
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It is possible to categorize different attack types on ICS networks, depending on the scope of their targets 

and their applications: 

 Network wide attacks are attacks targeting (or originated from) a large number of devices on 

the network. These attacks can evade device-wise analysis systems. For instance, a Distributed 

Denial of Service (DDoS) attack with low traffic generation per device may not be detected by 

a device-wise attack detection system. It may be necessary to look at network traffic statistics 

to detect these attacks. 

 Single target attacks are attacks targeting a single device on the network. These attacks can 

fool statistical analysis systems since it can be stealthy. For instance, scanning open ports on a 

single target on a network with lots of devices and communication may not be detected by 

statistical analysis. It is necessary to look at a per-device traffic to detect these attacks. 

Attacks on the network are characterized by malicious packets. These packets divert or intend to divert 

devices from there nominal operations. It is possible to categorize different malicious packet types: 

 Data Maliciousness packets are packets that hold malicious data that intent to exploit some 

vulnerability at the target. For instance, command injection, malware uploading… belong to 

this malicious packet type. These packets may hold the malicious data at the application layer 

and thus may need special analysis of their transport layer's payload. 

 Contextual Maliciousness packets are packets that are not malicious by themselves, but they 

are sent for malicious intention. For instance, flooding attacks and replay attacks use 

legitimate packets to disrupt the operation of the network. These packets can normally be 

seen in both benign and attack scenarios. The context they come in decides whether they are 

malicious or not. 

Challenges of Distributed Anomaly Detection (Model Detection) 

The application of IDS technologies to ICSs encounters several challenges. Indeed, ICSs use 

heterogeneous, and sometimes proprietary, communication protocols. As a result, many of these 

protocols are not supported by conventional IDSs. The use of encryption in application layers limits the 

packet analysis capabilities of IDSs. 

The limited communication resources of some devices of the ICSs, their spatial distribution as well as 

the latency requirements of industrial processes make the collection of network traces complicated. This 

may result in the need to deploy multiple network probes to capture traffic. Since each probe has a 

capture of local exchanges, it will not have a global view of ICS communications. 

ICSs systems are driven by industrial process constraints. Their communication characteristics are 

predictable and relatively constant. The anomaly-based methods for IDS are therefore privileged for 

these systems. These approaches tend to generate a high rate of false positives. Training machine 

learning models can also be complicated by a low volume of communication, resulting in insufficient 

training data. 

Distributed Learning 

Most distributed learning algorithms have their foundations in ensemble learning. Ensemble learning 

builds a set of classifiers in order to enhance the accuracy of a single classifier. Although there are other 

methods, the most common one builds the set of classifiers by training each one on different subsets of 

data. Afterwards, the classifiers are combined in a concrete way defined by the ensemble algorithm. 

Thus, the ensemble approach is almost directly applicable to a distributed environment since a classifier 

can be trained at each site, using the subset of data stored in it, and then the classifiers can be eventually 

aggregated using ensemble strategies. In this sense, the following are the advantages of distributed 

learning: 
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 Using different learning processes to train several classifiers from distributed data sets increases 

the possibility of achieving higher accuracy, especially on a large-size domain. This is because 

the integration of such classifiers can represent an integration of different learning biases which 

possibly compensate one another for their inefficient characteristics.  

 Learning in a distributed manner provides a natural solution for large-scale learning where 

algorithm complexity and memory limitation are always the main obstacles. If several computers 

or a multi-core processor are available, then they can work on a different partition of data in 

order to independently derive a classifier. Therefore, the memory requirements as well as the 

execution time, assuming some minor communication overhead, become smaller since the 

computational cost of training several classifiers on subsets of data is lower than training one 

classifier on the whole data set.  

 Distributed learning is inherently scalable since the growing amount of data may be offset by 

increasing the number of computers or processors.  

 Finally, distributed learning overcomes the problems of centralized storage. Thus, many research 

works on distributed data learning have been concentrated on ensemble learning where the 

emphasis is put on making accurate predictions based on multiple models. 

6.2.2  Architecture Design: High Level  

In this section, we describe our distributed anomaly detection system. 

Level-3 security requirements for the COLLABS framework include monitoring various data flows from 

IIoT devices using cognitive security mechanisms like model-based verification and machine and deep 

learning for detection of anomalies. Moreover, COLLABS focuses on AI-based solutions for the edge and 

analysis of encrypted network flows.  

Trade-off between accuracy and performance will be further improved using Reservoir Computing in 

combination with deep learning methods with a wide range of available resources from edge to the cloud. 

Another requirement is related to encrypted traffic analysis mechanisms based on metadata extraction 

that will use machine and deep learning techniques. For wireless IoT devices, these methods will be 

applied to datasets acquired from wireless fingerprinting. 

The system is composed of local components that are deployed on the edge of the network (Figure 8). 

We call these components "Local Detection Units" (LDU). Each LDU is assigned a role to analyse and 

detect anomalies in network traffic locally. 
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Figure 27 Distributed Anomaly Detection System. 

As a black box, an LDU takes as input the raw network traces of the monitored network. Depending on 

the deployment scenario, the LDU can be connected to a span port that provides network traffic with 

(almost) no latency (Figure 8). The LDU produces decisions regarding the analysed packets. In addition, 

LDUs communicate with each other to share information that aims to increase the accuracy of detection. 

In detail, an LDU is composed of multiple machine learning (ML) models. Each of the ML models analyses 

different features in the analysed packet. These models start with pre-trained parameters and are 

updated over time using the previously monitored traffic. A Pre-processor component first parses the 

packets and extracts relevant features. The Activator then activates the corresponding ML model 

depending on the type of treated features. Each activated ML model outputs the decision and the 

confidence level. Finally, the Accumulator merges the output of the activated ML models, based on 

predefined rules, into a final decision. Since the models are updated, updates on the local models' 

parameters need to be transferred to other LDUs. Sharing these updates increases the efficiency of the 

learning process. We leverage distributed learning to share these model updates.  

 

Figure 28 Local Detection Unit. 
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Our system manages efficiently the overhead of distributing the learning information. A Distributed 

Learning Service (DLS) runs on each LDU. A DLS regularly transfers and receives learning information 

from and to the LDU ML models. 

Pre-Processing 

Network traffic is mirrored toward the LDU as raw packets. The Pre-processor first extracts identification 

information from the packets. This information is used to choose which models are activated for this 

packet. The identification information may be: 

 Source MAC address, 

 Destination MAC address, 

 TCP session, 

 Application Layer Protocol. 

The Pre-processor then parses these packets and extracts the relevant features from them. As a 

preliminary step to build an accurate and precise IDS, it is important to understand the potential attacks 

on the system. Attacks can be split into network-wide attacks and single-target attacks. Also, packets 

can be malicious in different ways: data maliciousness packets, and contextual maliciousness packets. 

Driven by the fact that the first step to detect an anomaly is to look at the right place, and since knowing 

"where to look" is equally important to knowing "how to look", the step of feature extraction from raw 

packets is a critical step for an efficient IDS. However, not all these attacks can be revealed from the 

same features. Hence, we propose to categorize the types of extracted features into three categories: 

Packet statistical features, Packet's metadata features, and Packet's payload features. We categorize 

features in this fashion since each of these categories reveals information relevant about special types 

of attacks. 

Parsing Packet Statistical Features  

These features are statistical data collected over a window of N packets. They may include: 

 Transmission rate, 

 Reception rate, 

 Packet size mean, 

 Packet size standard deviation, 

 Ratio of TCP packets, 

 Ratio of UDP packets. 

By analysing these features, we are able to detect network-wide attacks. 

Parsing Packet Metadata Features 

These features are extracted mostly from the headers of the Network and Transport layers. They may 

include: 

 Source port, 

 Destination port, 

 Packet length, 

 TCP Flags: SYN | SYNACK | ACK | PUSH | FIN, 

 Protocol: TCP / UDP / Other. 

By analysing these features, we are able to detect single-device attacks, especially the ones that are 

attained using contextual malicious packets. 



D2.2 - The COLLABS Level-3 Security Package for Secure Digital Supply Networks: 1st version   

COLLABS D2.2 Page 83 of 86 

Processing Packet's Payload Features 

These features are extracted from the payload of the transport layer. Since this is highly dependent on 

the application protocol used, the pre-processor extracts the payload and handles it as raw data. Later, 

the respective ML model parses this raw data depending on the identified application. A mechanism for 

analysing encrypted network traffic might be used. It will rely on the metadata that can be found inside 

packet headers, including packet lengths, timestamps, direction, and inter-arrival times. By analysing 

these features, attacks using data malicious packets can be detected. 

Activator 

The Activator transfers features extracted from a packet to a specific ML model. We follow a 

methodology of fine-grained separation of models and creating conditions for their activation and for 

the features they analyse. Therefore, the Activator is designed to register handlers for each ML model 

deployed in the LDU. The handler contains: 

 The method to call that ML model, 

 The inputs of the callable ML model,  

 The conditions when this model is called. 

When a model is deployed, these three pieces of information need to be specified for that model. For 

example, model Mx can be deployed and registered such that it takes as inputs all the statistical features 

and is called on packets originating from devices that are of type Dx. Activator can also take into account 

the resource consumption of the LDU and the volume of network traces to process before deploying or 

not ML models. 

  

Machine Learning (ML) Models  

The ML models are the core of the system. Each ML model works independently to detect certain 

anomalies in an analysed packet. It runs on specific packet features passed by the Activator. It then 

outputs a value between 0 and 1 representing the probability of the analysed packet being anomalous. 

The ML models are treated as black boxes, so there are no constraints about their internal design. An 

example of ML models can be Recursive Neural Network (RNN) models, Deep Neural Network (DNN) 

models, Support Vector Machine (SVM) models, etc. Models can be added or removed from the system at 

any time to adapt to computing resources, to changes in the network topology, on the latency 

requirements and on the security requirements. To design our system, we think that three types of 

models are needed to detect all types of attacks mentioned in Section 4.2.1. 

General Models: MG 

 Description: Analyse the overall behaviour of the devices to detect network-wide attacks such 

as worms. 

 Input Features: Packet statistical features from N consecutive packets. 

 Training Data: All network packets. 

 Activation Conditions: On receiving N packets. 

 Possible Designs: Clustering (SVM, k-means), Outlier Detection (Local Outlier Factor, Isolation 

Forest). 

Devices Specific models: MDx 

 Description: Analyse the behaviour of a specific device on the network to detect an anomaly in 

the device performance with respect to the normal behaviour of devices of the same type. Thus, 
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a model per device type is trained and a copy of the trained model is spawned for each device 

in the network. 

 Input Features: Packet's metadata features. 

 Training Data: Packets received and sent by devices of the same type of device x. 

 Activation Conditions: On receiving packets from/to the device x. 

 Possible Designs: RNN (Gated Recursive Units, Long Short-Term Memory), Auto-Encoders. 

Application Specific Models: MAx 

 Description: Analyse the payload data on the application layer to detect anomalies in the 

device's behaviour with respect to normal data used by the device's application. A model per 

application protocol is trained and a copy of the trained model is be spanned for each opened 

session. 

 Input Features: Packet's payload features. 

 Training Data: All the payload data for application app sent/received by all devices such app is 

the protocol used in session x. 

 Activation Conditions: On receiving a packet belonging to session x. 

 Possible Designs: NLP techniques (BERT, Transformers, RNN). 

Accumulator  

When a packet is mirrored to the LDU for analysis, multiple models can be activated. The Accumulator 

is the component that merges the output of the different activated models and gives as a result the final 

decision about the analysed packet. The Accumulator can be a decision tree whose parameters are 

trained in a supervised manner. In this case, the decision tree can be trained using real world attack 

scenarios. 

Distributed Learning Service (DLS) 

Distributed learning seems essential in order to provide solutions for learning from both “very large” 

data sets (largescale learning) and naturally distributed data sets. It provides a scalable learning solution 

since the growing volume of data may be offset by increasing the number of learning sites. Moreover, 

distributed learning avoids the necessity of gathering data into a single workstation for central 

processing. 

Distributed clustering or effective voting are two strategies that can be adopted for distributed machine 

learning. They also can be used alone or in combination with other algorithms such as decision rules, 

stacked generalization, meta-learning, knowledge probing, distributed pasting votes, effective stacking, 

or distributed boosting,   

Despite the clear advantages of distributed learning, new problems arise when dealing with distributed 

learning as, for example, the influence on accuracy of the heterogeneity of data among the partitions or 

the need to preserve privacy of data among partitions. 

Addressed COLLABS Common Security Requirements 

Regarding security requirements, CSR_08 is partially covered because our system provides a mean to 

detect anomalous behavior. Moreover, our distributed anomaly detection system will be not part of 

MVP. It will be more detailed and refined in the next deliverables D2.2 and D2.3.   

 

6.3    Formal Specs Verifier (FSV) 
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Formal Specs Verifier (FSV) is an industrial-strength formal verification framework, providing an 

environment for analysis of complex systems designs against functional, safety and security 

requirements. The framework is structured into: (1) a translation layer, supporting automated and formal 

transformation from a system design language to a mathematical model including formal requirements 

specifications, (2) an algorithmic layer, where the various verification objectives are addressed by 

specific verification algorithms, (3) an analytic layer, where computational tasks generated by 

verification conditions are discharged by backend engines, such as SAT/SMT/OMT solvers, industrial and 

academic model checking tools, internally developed analytics for specific verification tasks. The 

platform has a high-maturity core, developed across the years, and is currently adopted in multiple 

industrial programs, and it can be extended with more explorative/research tools/analyses by leveraging 

its layered architecture. Extensions can include design and specification languages, new verification 

tasks and related algorithms, novel analysis back-ends. 

Functional Description 

The FSV framework has been used in several industrial and research projects, and extensions have been 

presented for the verification of embedded systems (Ferrante, Benvenuti, Mangeruca, Sofronis, & 

Ferrari, 2012), synthesis of failure scenarios (Marazza, Ferrante, & Ferrari, 2014), automatic test 

generation (Ferrante, Marazza, & Ferrari, Formal Specs Verifier ATG: a Tool for Model-based Generation 

of High Coverage Test Suites, 2016), requirements validation (Mangeruca, Ferrante, & Ferrari, 2013) as 

well as applications to concrete industrial size cases. 

In the context of COLLABS the main functionalities exposed by FSV are: 

 Property verification: given a model with properties described as invariant or temporal logic 

formulae the tool can apply different formal techniques with the aim of verifying (proving) the 

property or falsifying it providing a counterexample 

 Synthesis of failure scenario: given a model, the specifications of failure modes that can affect 

any component in the model and a set of properties that should hold regardless the system 

failures the algorithm provides a Minimal Critical Failures Set (MCFS) that leads to an unsafe 

behaviour (invalidated property). 

Preconditions and Input 

FSV takes as input Simulink/Stateflow models. Therefore, this is a strong precondition for its usage. 

Furthermore, models and the properties must be specified according to specific modelling guidelines to 

be fully supported by the tool. These modelling guidelines guarantee that FSV will properly preserve the 

semantics of the source model during translation into the target language suitable for model checking. 

Postconditions and Output 

The expected output of the tool is different based on the features used: 

 Property verification: the assessment of a design can end with three different results. If the 

property is invalidated, the tool returns a counterexample that (simulated) allows to reproduce 

the behaviour invalidating the property. Instead, if the property gets proven the tool returns 

confirmation of its validity. The third possible outcome can be “unknown” which is the case if 

the engine cannot solve the problem (e.g., bounded model checking, or timeout reached). 

 Synthesis of failure scenario: this assessment can end with three different results. A minimal set 

of failures that can lead the system in an unsafe state (if the property is invalidated), or a 

confirmation of soundness if the property is proven to be valid even under fault conditions. The 

third possible outcome can be “unknown” which is the case if the engine cannot solve the 

problem (e.g., bounded model checking, or timeout reached). 
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Component Design 

FSV works on formal models designed in Simulink and Stateflow following proper design guidelines. The 

toolchain consists of four main components: 

 Parser: in this phase the input is processed by using a MATLAB API-based parser that reproduces 

the model using an internal formal intermediate representation. During this phase, the tool 

detects unsupported blocks or unsafe constructs, if present. 

 Model translator: the internal representation is processed and optimized with the objective of 

producing a formal model that encodes the input model as a finite state machine. In addition, 

(1) a set of assumptions on the primary input of the system (Environment model) and (2) the 

property to be verified are translated and processed by the optimization phase as specification 

patterns. 

 Target language encoder: finally, this step produces artifacts that can be processed by state-of-

the-art model checking tools such as NuSMV. 

 Formal analyser: FSV is capable to interface different verification engines. The main used is 

NuSMV which is a symbolic model checker used for the verification of industrial designs. 

 

Figure 29 Formal Specs Verifier transformation flow. 

Addressed COLLABS Common Security Requirements 

FSV will not be deployed as part of the COLLABS framework therefore it is not directly addressing any of 

the Common Security Requirement (CSR) identified in D1.2. 

This tool is a support utility that will be used to formally prove at design level that the solutions proposed 

by COLLABS are addressing properly the security requirements by verifying at design level that the 

required security properties satisfy the CSR. 

Outlook 

The development of the tool is out of COLLABS scope, in the context of this project we will just apply 

formal techniques exploiting FSV capabilities. 

 


