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One-sentence summary  
 
We identified common genetic variants associated with the rate of brain 
development and aging, in longitudinal MRI scans worldwide. 
 
Abstract  
 
Human brain structure changes throughout our lives. Altered brain growth or 
rates of decline are implicated in a vast range of psychiatric, developmental, 
and neurodegenerative diseases. While heritable, specific loci in the genome 
that influence these rates are largely unknown. Here, we sought to find 
common genetic variants that affect rates of brain growth or atrophy, in the 
first genome-wide association analysis of longitudinal changes in brain 
morphology across the lifespan. Longitudinal magnetic resonance imaging 
data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, 
were used to compute rates of morphological change for 15 brain structures. 
We discovered 5 genome-wide significant loci and 15 genes associated with 
brain structural changes. Most individual variants exerted age-dependent 
effects. All identified genes are expressed in fetal and adult brain tissue, and 
some exhibit developmentally regulated expression across the lifespan. We 
demonstrate genetic overlap with depression, schizophrenia, cognitive 
functioning, height, body mass index and smoking. Several of the discovered 
loci are implicated in early brain development and point to involvement of 
metabolic processes. Gene-set findings also implicate immune processes in 
the rates of brain changes. Taken together, in the world’s largest longitudinal 
imaging genetics dataset we identified genetic variants that alter age-
dependent brain growth and atrophy throughout our lives. 
 
Introduction 
 
Under the influence of genes and a varying environment, human brain 
structure changes throughout the lifespan. Even in adulthood, when the brain 
seems relatively stable, individuals differ in the profile and rate of brain 
changes (Hedman et al., 2012). Longitudinal studies are crucial to identify 
genetic and environmental factors that influence the rate of these brain 
changes throughout development (Giedd et al., 1999; Gogtay et al., 2004; 
Shaw, Gogtay, & Rapoport, 2010) and aging (Raz et al., 2005). Inter-
individual differences in brain development are associated with general 
cognitive function (Ramsden et al., 2011; Schnack et al.,  2015; Oschwald et 
al., 2019), and risk for psychiatric disorders (Shaw et al., 2009; Liberg et al., 
2016) and neurological diseases (Reiter et al., 2017; Eshaghi et al., 2018; 
Jiskoot et al., 2019). Genetic factors involved in brain development and aging 
overlap with those for cognition (Brans et al., 2010; Brouwer et al., 2014) and 
risk for neuropsychiatric disorders (Brans et al., 2008). A recent cross-
sectional study showed a genetic component to advanced brain age in 
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several brain disorders (Kaufmann et al., 2019). Yet, we still lack information 
on which genetic variants influence individual brain changes throughout life, 
since this requires longitudinal data. Discovering genetic factors for brain 
changes may reveal key biological pathways that drive normal development 
and ageing, and may contribute to identifying disease risk and resilience: a 
crucial goal given the urgent need for new treatments for aberrant brain 
development and aging worldwide.  

As part of the Enhancing Imaging Genetics through Meta-Analysis 
(ENIGMA) consortium (Thompson et al., 2014; 2020), the ENIGMA Plasticity 
Working Group recently quantified the overall genetic contribution to 
longitudinal brain changes by combining evidence from multiple twin cohorts 
across the world (Brouwer et al., 2017). Most global and subcortical brain 
measures showed genetic influences on change over time, with a higher 
genetic contribution in the elderly (heritability 16 – 42%). Genetic factors that 
influence longitudinal changes were partially independent of those that 
influence baseline volumes of brain structures, suggesting that there might be 
genetic variants that specifically affect the rate of development or aging. Even 
so, the genes involved in these processes are still not known. So far, only a 
single, small-scale genome-wide association study (GWAS) was performed 
for brain change (Szekely et al., 2018; N=715). Here, we set out to find 
genetic variants that may influence rates of brain changes over time, using 
genome-wide analysis in individuals scanned with magnetic resonance 
imaging (MRI) on more than one occasion. We also aimed to identify age-
dependent effects of genomic variation on longitudinal brain changes in 
mostly healthy, but also neurological and psychiatric, populations. 

In our GWAS meta-analysis, we sought genetic loci associated with 
annual change rates in 8 global and 7 subcortical morphological brain 
measures. We performed a coordinated analysis of 37 longitudinal cohorts (N 
= 10,163, with a 3.5-year interval between scans on average, 22% of 
participants with a neurological or psychiatric diagnosis, 50% females, mainly 
of European descent (95%), aged 4 to 99 years (Supplementary Figure S1, 
Supplementary Tables S1-S3). Global and subcortical brain measures were 
extracted, and annual change rates were analyzed using additive genetic 
association analyses to estimate effects of genetic variants on rates of change 
within each cohort. As brain change is not constant over age (Hedman et al., 
2012), and gene expression also changes during development and aging 
(Kang et al., 2011), we determined whether the estimated genetic variants 
were age-dependent, i.e., differentially affected rates of brain changes at 
different stages of life using genome-wide meta-regression models with linear 
or quadratic age effects (Materials and Methods).  
 
Results 
 
Longitudinal trajectories 
 
Change in global brain measures showed different trajectories of change with 
age (Figure 1 and Supplementary Video), characterized by either monotonic 
increases (lateral ventricles), monotonic decreases (cortex volume, cerebellar 
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gray matter volume, cortical thickness, surface area, total brain volume), or 
increases followed by stabilization and subsequently decreases (cerebral and 
cerebellar white matter, thalamus, caudate, putamen, nucleus accumbens, 
pallidum, hippocampus and amygdala). Each brain structure showed a 
characteristic trajectory of change, as reflected by generally low correlation 
coefficients between rates of change (Supplementary Figure S2). Using the 
correlation structure, we estimated the effective number of independent 
variables through matrix spectral decomposition on the rates of change 
(Nyholt, 2004), yielding 14 independent traits for multiple testing corrections 
(Materials and Methods).   
 
Age-independent associations with brain-structural change rates  
 
Two loci showed genome-wide significant effects on the rate of brain change 
in cohorts of European ancestry (Table 1; Supplementary Figure S3 provides 
Manhattan plots, QQ plots, and locus plots; Supplementary Figure S4). The 
first lead SNP, rs72772740 on chromosome 16, is an intronic variant located 
in the GPR139 gene and was associated with change in lateral ventricle 
volume (Figure 2). Functional annotation identified numerous significant eQTL 
associations (FDR < 0.05) in different datasets and highlighted genes by 
either eQTL mapping (GPRC5B, IQCK, KNOP1, C16orf62) or chromatin 
interaction mapping (ACSM1, ACSM5, UMOD, GP2). GPR139 is the G-
protein-coupling receptor gene 139, which encodes a member of the 
rhodopsin family of G-protein coupled receptors. The gene is almost 
exclusively expressed in the central nervous system, with highest expression 
from 12 to 26 weeks post-conception, and has been suggested as a 
therapeutic target for metabolic syndromes and motor diseases (Nohr 2019). 
GPR139 may play a role in fetal brain development (Süsens et al., 2006). The 
second lead SNP, rs449998, an intronic variant on chromosome 21 located in 
the Down Syndrome Cell Adhesion Molecule (DSCAM) gene, was associated 
with change in nucleus accumbens volume. Chromatin interactions 
highlighted DSCAM and additional genes as likely effector transcripts at this 
locus. DSCAM encodes a member of the immunoglobulin superfamily of cell 
adhesion molecules (Ig-CAMs), and is involved in the development of the 
human central and peripheral nervous system (Yamakawa et al., 1998). This 
gene has been identified in the critical Down syndrome region and is also a 
candidate risk gene for congenital heart disease (Agarwala et al., 2000).  
 
Age-dependent associations with brain-structural change rates  
 
The association of three additional loci with rate of change was variable 
across the lifespan (Table 1; Supplementary Figure S3 provides Manhattan 
plots, QQ plots, and locus plots; Supplementary Figure S4): white matter 
cerebellum volume change was affected by the intronic rs10674957 in the 
Thyrotropin Releasing Hormone Degrading Enzyme (TRHDE) gene, white 
matter cerebrum volume change was affected by rs573983368 (intronic 
variant) in the Dachshund Family Transcription Factor 1 (DACH1) gene, and 
rs6864758 (intergenic and located in long intergenic non-protein coding RNA 
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Table 1: SNPs for age-(in)dependent effect on longitudinal brain changes.   
 
 
Phenotype 
(change rate) 

SNP id Chr Positiona Tested 
Allele 
/Non-
tested 
Allele 

Frequency  
Tested  
Allele 

Age-
dependency 
model 

Effect on  
change rate:  
Estimated model 

P-valueb  
 

Gene in 
locus 

Description of effect of tested allelec:  

Surface Area* rs6864758  5  157750349  a/g  0.6341  linear -95.91 + 2.181 x 
age in mm2/year 

1.96e-08  intergenic; 
located in 
long 
intergenic 
non-protein 
coding RNA 
(LINC02227) 

less growth in children, less decline in 
older age 

Cerebellum 
White Matter 

rs10674957 
 

12 72717608 
 

g/gagat 0.3051 
 

linear -47.49 + 1.242 x 
age in mm3/year 

1.30e-08 intron 
variant, 
TRHDE 

less growth in children, less decline in 
older age 

Cerebral 
White Matter 

rs573983368 13 72353395 
 

a/g 0.3113 
 

quadratic 899.15 - 56.726 
x age + 0.683 x 
age2 in mm3/year 

1.41e-09 intron 
variant, 
DACH1 

more growth in children, less decline in 
older age 

Lateral 
Ventricles 

rs72772740  16 20064855  t/g 0.8841  constant 63.255 in 
mm3/year 

1.06e-08  intron 
variant, 
GPR139 

more growth over the whole lifespan 

Nucleus 
Accumbens  
 

rs449998  21  41467826  a/g  0.2423  constant -1.954 in 
mm3/year 

4.65e-08  intron 
variant, 
DSCAM 

less growth in children, less decline in 
adults 

 

 

a Position based on build hg19.  Data was clumped (p < 1e-04) to identify significant and LD-independent SNPs. bP-values are obtained by testing the 
age-independent effect versus no effect at all (age-dependency is "none") or age-related effects versus main effect only (age-dependency is linear – 
1 degree of freedom - or quadratic – two degrees of freedom). *This locus also showed a genome-wide significant quadratic age effect. The most 
parsimonious model is listed in this table.  Single significant SNPs without strong LD neighbors were omitted from this table. cSee Figure 1, 
Supplementary Figures S4 for the lifespan trajectories and a visualization of the effect of this locus.   
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LINC02227) on chromosome 5 had an age-dependent effect on the change in 
surface area (Figure 2; Table 1). Both the TRHDE and DACH1 loci show 
significant chromatin interaction. TRHDE encodes a member of the peptidase 
M1 family. The encoded protein is an extracellular peptidase that specifically 
cleaves and inactivates the neuropeptide thyrotropin-releasing hormone 
(Bauer et al., 1999). Concurring with this, knockdown of TRHDE in Drosophila 
sensory neurons is known to result in altered cellular morphology, impaired 
nociception and the sensory response to (potentially) harmful stimuli (Nagy et 
al., 2015). In our study, carriers of the minor allele showed a slower increase 
of cerebellum white matter, followed by reduced decline in older age 
(Supplementary Figure S5). DACH1 encodes a chromatin-associated protein 
that associates with DNA-binding transcription factors to regulate gene 
expression and cell fate determination during development. DACH1 is highly 
expressed in the proliferating neuroprogenitor cells of the developing cortical 
ventricular and subventricular regions, and in the striatum (Castiglioni et al., 
2019). We found the effect of DACH1 to have a quadratic age-dependence, 
with the variant being associated with faster growth in childhood and earlier 
but slower decline with aging (Figure 2). To visualize the age-dependent 
effects, we plotted the meta-regression results for the significant loci 
(Materials and Methods, Supplementary Figure S5). The top-10 loci for each 
phenotype and age model are presented in Supplementary Tables S4 to S6. 
 
Gene-based analyses  
 
Gene-based associations with all phenotypes were estimated using MAGMA 
(version 1.07b; de Leeuw et al., 2015) based on summary statistics from our 
GWAS meta-analyses and meta-regressions. Gene names and locations 
were derived based on ENSG v92 (Zerbino et al., 2018). We found 15 
genome-wide significant genes influencing structural rates of change (Table 
2); among these, two genes reached study-wide significance, GPR139 and 
TMCO2. GPR139 was again associated with change in lateral ventricle 
volume in this analysis, and the Trans-Membrane and Coiled-coil domains 2 
gene, TMCO2, was associated with an age-dependent change in thalamic 
volume. DACH1 and GPR39, which were implicated through SNP-based 
GWAS, also reached genome-wide significance in this gene-based GWAS. 
Additional genome-wide significant findings included age-related effects of the 
Alzheimer’s disease (AD)-related Apolipoprotein E gene (APOE) on change 
rates for both hippocampus and amygdala (Figure 2). Of note, this finding was 
based on GWAS and subsequent gene analysis, and we did not investigate 
the classical APOE status, since that is determined by a combination of two 
SNPs. However, we found that the effect of APOE on both phenotypes was 
fully driven by rs429358, with the risk variant for AD causing faster increases 
in childhood for amygdala and faster decay for both amygdala and 
hippocampus later in life (Figure 2). To visualize the age-dependent effects, 
we plotted the meta-regression results for the top SNP in each of the 
significant genes (Supplementary Figure S5). Supplementary Table S7 details 
putative biological functions of associated genes and genes harboring 
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Table 2: Genes contributing to longitudinal brain changes. 
 

Phenotype (change rate) Gene Chr Start positiona Stop 
positiona 

# 
independent 
SNPs 

Age dependency Z P-value 

 
Thalamus* TMCO2 1 40711619 40717363 3 linear 5.410 3.14e-08 
Cerebellum Gray Matter EPAS1 2 46520806 46613836 18 constant 4.590 2.22e-06 
Cerebellum Gray Matter PID1 2 229715242 230136001 79 quadratic 4.697 1.32e-06 
Cortical Thickness AC027309.1 5 172036245 1720364361 1 linear 4.572 2.42e-06 
Putamen TMEM30A 6 75962640 75994684 3 constant 4.911 4.53e-07 
Total Brain STEAP1B 7 22459063 22672544 39 quadratic 4.815 7.36e-07 
Cerebellum Gray Matter TMC1 9 75136717 75451267 20 quadratic 4.708 1.25e-06 
Cerebral White Matter DACH1 13 72012098 72441330 21 quadratic 4.984 3.11e-07 
Lateral Ventricles GPR139 16 20042807 20085239 16 constant 5.724 5.20e-09 
Cortex ABR 17 906758 1132315 53 quadratic 4.626 1.86e-06 
Cerebral White Matter MYOCD-AS1 17 12626199 12661542 10 linear 4.709 1.24e-06 
Caudate PLCD3 17 43186335 43210721 13 linear 4.692 1.35e-06 
Cerebellum White Matter OR7D2 19 9296279 9299493 2 linear 4.637 1.77e-06 
Amygdala APOE 19 45409011 45412650 2 linear 4.607 2.05e-06 
Hippocampus APOE 19 45409011 45412650 2 quadratic 4.889 5.07e-07 

 

a Position based on build hg19. Study-wide significant hits are displayed in bold. *This gene also showed a genome-wide significant quadratic age 
effect. The most parsimonious model is listed in this table.  
 
  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2020. ; https://doi.org/10.1101/2020.04.24.031138doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.031138
http://creativecommons.org/licenses/by-nd/4.0/


genome-wide significant associated loci. Supplementary Table S8 displays 
the top-10 genes for each phenotype and each age model.  
 
Gene-set analyses 
 
To test whether genetic findings for brain structure change converged onto 
functional gene sets and pathways, we conducted gene-set analyses using 
MAGMA (see Methods). We tested the associations of 9,975 gene sets 
derived from the MSigDB 7.0 (Subramanian et al., 2005) using gene-based p-
values. Competitive testing was used and revealed five genome-wide 
significant gene sets (Table 3, see Supplementary Table S9 for top-10 gene 
sets and genes included). Two of these reached study-wide significance: the 
interleukin-1 (IL-1) receptor activity gene set for age-dependent genetic 
associations with cortical volume change and the response to interleukin-2 
(IL-2) gene set for age-independent genetic associations with thalamic 
change. There were no overlapping genes in these gene sets. These gene 
sets are immune system-related, and both IL-1 and IL-2 are known to affect 
the growth and survival of neural cells (Hanisch and Quirion, 1996; Borsini et 
al., 2015). The finding of immune-related gene sets in both these structures is 
intriguing given the extensive reciprocal structural connections of thalamus 
with the cerebral cortex (Zhang et al., 2010; Bolkan et al.,  2017) and the 
known phenotypic and genetic link between psychiatric and immune-related 
disorders (Lambert et al., 2013, Psychiatric Genomics Consortium, 2014; 
Wang et al., 2015; Jeppesen et al., 2019; Pouget et al., 2019). 
 
Post-hoc analyses 
 
Overlap with cross-sectional findings  
 
SNP-based heritability estimates (h2) of the rates of change based on linkage 
disequilibrium score regression (LDSC; Bulik-Sullivan et al., 2015) were small 
overall (Supplementary Table S10). For all phenotypes, the h2 z-score was 
below 4, so we tested for genetic overlap with cross-sectional brain data and 
other phenotypes by applying approaches other than LDSC: to investigate 
whether cross-sectional GWAS for brain structure and our GWAS on rates of 
change identify the same or different genetic variants, we investigated overlap 
between rate of change and earlier published data on cross-sectional brain 
structure of the same structure (where available, Materials and Methods). 
Supplementary Figure S6 displays the number of overlapping genes tested 
against the expected number of overlapping genes that would occur by 
chance, in the first 1-1,000 ranked genes. Supplementary Table S8 lists the 
top-10 gene findings for each of the 15 change rate phenotypes and 
compares these with the gene ranks from cross-sectional data. In the top-10 
ranked genes, no overlap was seen for 11 of the measured phenotypes, and 
only up to 2 overlapping genes were observed for the remaining 4 
phenotypes. These genes included APOE, a major genetic risk factor for AD 
(Wolfe et al., 2019), which influenced change in both amygdala and 
hippocampus differentially across the lifespan. Additional top genes for 
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Table 3: Gene-sets for age-(in)dependent effect on longitudinal brain changes.   
 

Phenotype 
(change 
rate) 

Age-
dependency 

GO-term 
 

# 
genesa 

P-value       
 

Brief description 

Cortex linear GO_SECRETORY_GRANULE_LOCALIZATION 11 6.39e-07      Any process in which a secretory granule is transported to, and/or 
maintained in, a specific location within the cell) 

Cortex linear GO_INTERLEUKIN_1_RECEPTOR_ACTIVITY 6 6.80e-08       Combining with interleukin-1 to initiate a change in cell activity. 
Interleukin-1 is produced mainly by activated macrophages and is 
involved in the inflammatory response 

Pallidum constant GO_FLAVONOID_GLUCURONIDATION 9 1.51e-06  
 

The modification of a flavonoid by the conjugation of glucuronic 
acid. The resultant flavonoid glucuronosides are often much more 
water-soluble than the precursor. 

Thalamus constant GO_RESPONSE_TO_INTERLEUKIN_2 12 1.12e-07      Any process that results in a change in state or activity of a cell or 
an organism (in terms of movement, secretion, enzyme production, 
gene expression, etc.) as a result of an interleukin-2 stimulus. 

Thalamus linear GO_GTPASE_REGULATOR_ACTIVITY 259 2.63e-06  Modulates the rate of GTP hydrolysis by a GTPase. 

 
 
Genome-wide significant gene sets based on gene ontology. Study-wide significant gene sets are displayed in bold. aSee Supplementary Table S9 
for genes included in the gene set. Genes included in GO_INTERLEUKIN_1_RECEPTOR_ACTIVITY and GO_RESPONSE_TO_INTERLEUKIN_2 
do not overlap.  
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volume change that had previously been identified in GWAS of cross-
sectional volumes of the same structures were KTN1 (kinectin 1 gene) for 
putamen (Hibar et al., 2015), C16orf95 for ventricle volume (Elliot et al., 
2018), and APOC1 (Apolipoprotein C-1) for amygdala and hippocampus 
(Hibar 2017, Satizabal 2019). Extending this search to the top 200 (~1% of 
genes), we found no other overlapping genes above chance level. In the top 
1,000 ranked genes (~5% of genes), overlapping genes did emerge 
(Supplementary Figure S6).  

To test for global genomic overlap between our findings and GWAS of 
cross-sectional volumes we applied independent SNP-Effect Concordance 
Analyses (iSECA) (Nyholt, 2014; Materials and Methods) and tested for 
pleiotropy. We found no significant pleiotropy between longitudinal and cross-
sectional results, confirming a largely different genetic background for 
changes in brain structure and brain structure per se (Figure 3).  
 
Overlap with other traits 
 
We applied iSECA for overlap between our age-independent summary 
statistics for structural brain changes and several neuropsychiatric, 
neurological, physical, aging and disease-related phenotypes and 
psychological traits (Materials and Methods). We found significant genomic 
overlap (p < 1.6e-04) with genetic variants associated with depression 
(Howard et al., 2019), schizophrenia (Psychiatric Genomics Consortium, 
2014), cognitive functioning (Savage et al., 2018), height (Yengo et al., 2018), 
body mass index (BMI; Yengo et al., 2018), and ever smoking (Watanabe et 
al., 2019). Despite significant pleiotropy between rates of change and these 
traits, the directions of effects varied across loci. (Figure 3, Supplementary 
Figure S7).  

Of note, there was little overlap in the genetic loci associated with the 
longitudinal brain measures and intracranial volume at baseline, indicating 
that overall head size did not drive our findings (Figure 3).  
 
Gene expression in the brain across the lifespan 
 
We determined mRNA expression for genome-wide significant genes and 
genes associated with genome-wide significant SNPs (Tables 1 and 2) in 54 
tissue types and in both the developing and adult human brain, through 
GENE2FUNC (Watanabe et al., 2017). For the prioritized genes, a gene 
expression heatmap was created, based on GTEx v8 RNAseq data (GTEx 
Consortium, 2015). This revealed considerable expression levels across 
several brain tissues for the following genes: ABR, TMEM30A, APOE, 
EPAS1, PLCD3, and DSCAM, the latter showing higher relative expression in 
brain tissue compared to all other tissue types (Supplementary Figure S8A). 
TMCO2 was predominantly expressed in the testis. Expression heatmaps 
based on BrainSpan data (Miller et al., 2014) revealed that DACH1 shows 
highest relative expression during early prenatal stages (8-9 post conception 
weeks), compared to postnatal stages. A second cluster of genes 
demonstrated stable high relative expression levels throughout development 
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and across the lifespan (APOE, ABR, TMEM30A, PID1). Two additional 
genes, EPAS1 and PLCD3, showed lower relative expression in the early 
prenatal stages and higher expression later in life (Supplementary Figure 8B). 
 
Phenome-wide associations  
 
For the prioritized SNPs and genes (Table 1 and 2), exploratory pheWAS (i.e., 
“phenome‐wide”) analysis was performed to systematically analyze many 
phenotypes for association with the genotype and individual genes 
(Supplementary Table S11). PheWAS was performed using publically 
available data from the GWASAtlas (https://atlas.ctglab.nl; Watanabe et al., 
2019). Both a single variant (rs72772740) and gene associations of DACH1, 
GPR139 showed pleiotropic effects mainly in the metabolic domain, e.g., with 
estimated glomerular filtration rate and BMI (Supplementary Table S11, 
Supplementary Figure S9). APOE showed strong associations with 
cholesterol and lipids. Similarly, TMCO2 and PLCD3 showed significant 
associations with BMI-related phenotypes (Supplementary Table S11, 
Supplementary Figure S9).  
 
Sensitivity analyses 
 
We repeated the main analyses in various subgroups: 1) by adding four 
cohorts of non-European or mixed ancestry (N=540), 2) by omitting cohorts 
that did not meet a minimum sample size criterion (N>75) or a minimum 
scanning interval (> 0.5 years) leaving N=9,105, 3) by excluding diagnostic 
groups in each cohort leaving N=7,309, and 4) by including a covariate 
adjusting for disease status (Supplementary Tables S12-S14). In SNP-based 
analyses, effects sizes of SNPs were very similar in all subgroups, suggesting 
that our results are also applicable for individuals of non-European ancestry, 
the smaller cohorts, and in individuals irrespective of disease (Supplementary 
Table S12). For the gene-based analyses, a similar pattern was observed, 
with one notable exception: the APOE finding for hippocampus rate of change 
showing increasing influence of the top SNP with age, was no longer present 
when correcting for disease. This suggests that the APOE finding for 
hippocampus was driven by the presence of patients (Supplementary Table 
S13).  

Given that our main analyses included patients and iSECA analyses 
showed several associations with disease, we repeated iSECA analyses 
excluding diagnostic groups in each cohort, which did not change the findings 
(Supplementary Figure S7D). 

 
Discussion 
 
Here, we present the first GWAS investigating influences of common genetic 
variants on brain-structural changes in over 10,000 subjects. The longitudinal 
design of our study combined with the large age range assessed provides a 
flexible framework to detect age-independent and age-dependent effects of 
genetic variants on rates of structural brain changes. We discovered novel 
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genetic effects that influence inter-individual differences in both development 
and aging of brain structures. Many of the genes implicated play a crucial role 
in early, prenatal brain development. We identified these genes in a 
population aged 4 to 99, suggesting that the same genetic variants are also 
crucial for brain-structural changes later in life.  

Our findings show genomic overlap with psychiatric and physiological 
phenotypes that are associated with longitudinal brain-structural changes 
such as schizophrenia, smoking, cognitive functioning, and body mass index 
(Hulshoff Pol and Kahn, 2008; Bobb et al., 2014; Schnack et al., 2015; Kim et 
al., 2018). Additionally, we find the APOE gene, a major risk factor for AD 
(Wolfe et al., 2019), to influence amygdala and hippocampus rates of change 
with varying effects across the lifespan, with probably most pronounced 
effects in those affected with brain disorders. Gene-set findings imply a role 
for immune-related processes. Several of the identified genetic variants and 
genes were linked to metabolic phenotypes, and we found genetic overlap 
with body mass index, suggesting a role for metabolic processes in 
longitudinal brain changes.  

Given the dynamics of brain structural changes during the lifespan, we 
investigated both age-independent and age-dependent genetic effects. The 
age-independent effects can be interpreted as neurodevelopmental influences 
that also impact brain structure at older ages (Fjell et al., 2015; Walhovd et al., 
2016), whereas the age-dependent effects can be interpreted as possible 
changing effects of genes or gene expression during life (Kang et al., 2011). 
The genome-wide meta-regression approach employed here may enable 
future GWAS for other phenotypes that change over the human lifespan.  

How exactly variation in these genes impacts brain changes in health 
and disease cannot be answered based on genome-wide association studies. 
In this, our findings may direct future studies into brain development and 
aging, and prevention and treatment of brain disorders. For 
neurodegenerative disorders, for example, identifying genetic variants that 
influence brain atrophy over time might well be equally or more important than 
the identification of static genetic differences. In conclusion, our study shows 
that our genetic architecture is associated with the dynamics of human brain 
structure throughout life. 
 
 
Materials and Methods 
 
Ethical approval and data availability  
 
All participants gave written informed consent and all participating sites 
obtained approval from local research ethics committees/institutional review 
boards. Ethics approval for meta-analyses within the ENIGMA consortium 
was granted by the QIMR Berghofer Medical Research Institute Human 
Research Ethics Committee in Australia (approval: P2204). Upon publication, 
the meta-analytic results will be made available from the ENIGMA consortium 
webpage http://enigma.ini.usc.edu/research/download-enigma-gwas-results.  
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Inclusion criteria 
 
Cohorts that had longitudinal magnetic resonance imaging (MRI) data of the 
brain and genotyped data extracted from blood or saliva available were invited 
to participate, irrespective of disease status and age. Patients were not 
excluded as aberrant brain trajectories are often observed and we 
hypothesize that genetic risk for disease may be associated with genetic 
influences on rates of change. We included cohorts that had a preferred 
sample size of at least 75 subjects and a follow up duration (for repeated MRI 
scans) of at least six months. After quality control of individual subject’s 
imaging and genotyping data, not all the cohorts could meet these criteria. In 
total, we included 10,163 subjects aged 4 to 99 (50% female, 22% patients). 
Please see Supplementary Figure S1 and Supplementary Table S1 for further 
description of the cohorts.  
 
Longitudinal imaging 
 
Eight global brain measures (total brain including cerebellum and excluding 
brainstem, surface area measured at the grey-white matter boundary, 
average cortical thickness, total lateral ventricle volume, and cortical and 
cerebellar grey and white matter volume) and seven subcortical structures 
(thalamus, caudate, putamen, pallidum, hippocampus, amygdala and nucleus 
accumbens) were extracted from the FreeSurfer processing pipeline (Fischl et 
al., 2002, 2004; Reuter, Schmansky, Rosas, & Fischl, 2012; see 
Supplementary Table S2 for details per cohort). We chose these measures 
based on the fact that they show generally high test-retest reliability for cross-
sectional measures e.g. (Iscan et al., 2015; Liem et al., 2015; Wonderlick 
2009), thereby selecting those measures that would have sufficient signal to 
noise in change measures. Image processing and quality control were 
performed at the level of the cohorts, following harmonized protocols 
(http://enigma.ini.usc.edu/protocols/imaging-protocols/) which included visual 
inspection of the segmentation. Annual rates of change were computed in 
each individual for each phenotype by subtracting baseline brain measures 
from follow up measures and dividing by the number of years of follow-up 
duration. We chose not to correct for overall head size in this analysis: while 
this is common practice for investigating cross-sectional brain volumes 
(Voevodskaya et al., 2014), the influence of overall head size on brain 
changes over time is small (Supplementary Figure S2). Distributions of 
baseline and follow-up measures - as well as annual rates of changes - were 
visually inspected and change rates were centrally compared for consistency.  

Longitudinal trajectories of brain structure rates of change were 
estimated by applying locally, cohort-size weighted, estimated scatterplot 
smoothing with a Gaussian kernel, local polynomials of degree 2 and a span 
of 1 (LOWESS; Cleveland, 1979) implemented in R (R Core Team, 2018). 
Integrating these trajectories and then fitting these to the baseline values of 
the phenotypes in the cohorts provides trajectories throughout the lifespan. 
Trajectories were estimated in the full dataset including patients and by 
excluding diagnostic groups in each cohort separately.  
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Genome-wide association analysis 
 
At each participating site, genotypes were imputed using the 1000 Genomes 
project dataset (1000 Genomes Project Consortium, 2015) through the 
Michigan imputation server (https://imputationserver.sph.umich.edu/ - Das et 
al., 2016) or the Sanger imputation server (McCarthy et al., 2016) 
(Supplementary Table S3). Subsequently, each site ran the same 
multidimensional scaling (MDS) analysis protocol, computing MDS 
components from the combination of their cohort's data with the HapMap3 
population (International HapMap Consortium, 2010). This ensured that all 
sites corrected for ancestry in a consistent manner. See 
http://enigma.ini.usc.edu/protocols/genetics-protocols/ for the imputation and 
MDS analysis protocol. Within each cohort genome-wide association was 
conducted using an additive model, modelling change rate as a function of the 
genetic variant plus covariates age, sex, age*sex, age2, age2*sex and 
ancestry (the first four MDS components). Dummy variables were added 
where appropriate, e.g., when multiple scanners were used. We re-ran these 
analyses adding a covariate for disease status if the cohorts contained 
patients and controls. Most sites used our harmonized GWAS protocol, which 
used raremetalworker (Feng et al., 2014) for analysis (Supplementary Table 
S3). Regardless of the study design, a kinship matrix was incorporated in 
these analyses, accounting for relatedness in family studies, or possible 
unknown kinship in the other studies.  

Given the small sample sizes of the individual cohorts, a stringent 
cohort level quality control was enforced, to exclude variants with a minor 
allele frequency (MAF) < 0.05 or variants with imputation R2 / info score < 
0.75. Across cohorts and phenotypes, GWAS summary plots (Manhattan 
plots and QQ plots) were visually inspected at the central site. If a given 
cohort / trait showed deviation from expectations, sites were asked to re-
analyze their data, which usually involved removal of outliers in the 
phenotypic data.  
 
Meta-analysis and Meta-regression 
 
In the cohorts of European ancestry (N=9,604) we tested three models 
aggregating the cohort-level data for each phenotype, using standard-error 
weighted meta-analysis or meta-regression: Under the assumption that effect 
sizes of single nucleotide polymorphisms (SNPs) were consistent across the 
lifespan, where the subscript C denotes a cohort and e an error term.   
 

1) Effect_SNPC ~ b0 + eC, under the null hypothesis that b0 = 0. 
 

Given that brain changes throughout life are dependent on age, the effects 
of a genetic variant on brain change is likely to depend on age too. Within 
cohorts such an age by SNP effect analysis would not have been feasible 
since longitudinal cohorts that span the age-range between 4-99 years do not 
exist. Given the widespread mean age among the cohorts included 
(Supplementary Table 1 and Supplementary Figure S1), it was possible to 
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calculate the age-dependent effects across the life span comparing effects of 
loci between cohorts, through meta-regression. Meta-regression is a 
sophisticated tool for addressing heterogeneity between cohorts in meta-
analyses when the source of heterogeneity is known (in this case, age) (Baker 
et al., 2009). We estimated the following model under the assumption that the 
effects of SNPs may vary in size or direction across the lifespan: 
 
       2) Effect_SNPC ~ b0 + b1*ageC + eC under the null hypothesis that b1=0 (1 
degree of freedom), and 
       3) Effect_SNPC ~ b0 + b1*ageC + b2*ageC2 + eC under the null hypothesis 
that (b1=b2=0, 2 degrees of freedom).  
 

SNP data were aligned using METAL (Willer, Li, & Abecasis, 2010) for 
all three analyses. The age-independent effect of SNPs (model 1) was 
computed in METAL. For the age-dependent analyses the aligned data were 
imported into R (version 3.5.0, R Core Team, 2018) and fixed effects meta-
regression was performed using the R-package metafor (version 2.0-0, 
Viechtbauer, 2010). Results were filtered on SNPs that were present for at 
least 50% of the cohorts and in at least 50% of the subjects.  
 
Functional mapping 
 
Functional mapping was performed using the FUMA platform designed for 
prioritization, annotation and interpretation of GWAS results (Watanabe, 
Taskesen, Van Bochoven, & Posthuma, 2017). As the first step, independent 
significant SNPs in the individual GWAS meta-analysis summary statistics 
were identified based on their p-value (p < 5 x 10-8) and independence of 
each other (r2 < 0.6 in the 1000G phase 3 reference) within a 1Mb window. 
Thereafter, lead SNPs were identified from independent significant SNPs, 
which are independent of each other (r2 < 0.1). We used FUMA to annotate 
lead SNPs in genomic risk loci based on the following functional 
consequences on genes: eQTL data (GTEx v6 and v7 (Lonsdale et al., 
2013)), blood eQTL browser (Westra et al., 2013), BIOS QTL browser 
(Zhernakova et al., 2017), BRAINEAC (Ramasamy et al., 2014), MuTHER 
(Grundberg et al., 2012), xQTLServer (Ng et al., 2017), the CommonMind 
Consortium (Fromer et al., 2016) and 3D chromatin interactions from HI-C 
experiments of 21 tissues/cell types (Schmitt et al., 2016). Next for eQTL 
mapping and chromatin interaction mapping, genes were mapped using 
positional mapping, which is based on a maximum distance between SNPs 
(default 10kb) and genes. Chromatin interaction mapping was performed with 
significant chromatin interactions (defined as FDR < 1 × 10-6). The two ends 
of significant chromatin interactions were defined as follows: region 1 – a 
region overlapping with one of the candidate SNPs, and region 2 – another 
end of the significant interaction, used to map to genes based on overlap with 
a promoter region (250bp upstream and 50bp downstream of the transcription 
start site). 
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Visualization of SNP effects 
 
We visualized the effects of our top SNPs on the lifespan trajectory, assuming 
no effects of the other SNPs, for easier interpretation of the direction of effect. 
Similar to the estimation of the lifespan trajectory, we estimated a smoothed 
version f(x) of the phenotypic change rate using LOWESS (see above) and 
integrated the rate of change. We added the unknown volume C at the start of 
our age range by fitting the integrated curve to the baseline data. Suppose 
h(x) is the unknown rate of change for non-carriers. The additional change 
rate g(x) for carriers was estimated through the meta-analysis or meta-
regression. The full dataset contained a fraction p of the carriers of the tested 
allele. Assuming p + q = 1, f(x) = p*(h(x) + g(x)) + q*h(x) = h(x) + p*g(x). We 
created a rate of change curve for non-carriers as f(x)-p*g(x) and a rate of 
change curve of carriers as f(x)+q*g(x). The offset C is potentially different in 
carriers and non-carriers, so we estimated this difference by taking the effect 
of the cross-sectional GWAS data (see below) in this SNP, or a proxy SNP in 
high linkage disequilibrium (LD).  
 
Gene-based and gene-set analyses 
 
Gene-based associations with 15 phenotypes were estimated using MAGMA 
(version 1.07b; de Leeuw et al., 2015) using the summary statistics from age-
independent and age-dependent GWAS meta-analyses of rate of change of 
global brain measures. Gene names and locations were based on ENSG v92 
(Zerbino et al., 2018) as is used in the FUMA pipeline (Watanabe et al., 
2017). Association was tested using the SNP-wise mean model, in which the 
sum of -log(SNP p-value) for SNPs located within the transcribed region 
(defined using NCBI 37.3 gene definitions) was used as the test statistic. LD 
correction was based on estimates from the 1000 Genomes Project Phase 3 
European ancestry samples (1000 Genomes Project Consortium, 2015). To 
describe the direction of the age effect for significant genes in the age-
dependent analyses, we subsequently identified the SNPs that were used in 
the gene-based p-value and plotted the age-dependent effect of the top SNP 
that contributed to the gene-based p-value. 

The generated gene-based p-values were used to analyze sets of 
genes in order to test for association of genes belonging to specific biological 
pathways or processes. MAGMA applies a competitive test to analyze if the 
genes of a gene set are more strongly associated with the trait than other 
genes, while correcting for a series of confounding effects such as gene 
length and size of the gene set. For gene sets we used 9,975 sets with 10 –
1,000 genes from the Gene Ontology sets (Gene Ontology Consortium, 2015) 
curated from MsigDB 7.0 (Subramanian et al., 2005). 
 
Multiple testing corrections 
 
We investigated annual rates of change for 15 brain phenotypes, but these 
are correlated to some extent (Supplementary Figure S2). We therefore 
estimated the effective number of independent variables based on matrix 
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spectral decomposition (Nyholt, 2004) for the largest adolescent cohort 
(IMAGEN; N=1,068) and for the largest elderly cohort (ADNI2; N=626). The 
most conservative estimate of the number of independent traits was 13.93. 
Despite the fact that models 2 and 3 are nested and therefore not 
independent, we also corrected for the fact that we performed three analyses 
per trait. The study-wide significant threshold for the genome was therefore 
set at p < 1.2e-09 (5e-08/13.93*3). For gene-based significance, we applied a 
genome-wide significance level of 0.05/18,217= 2.64e-06, and a study wide 
significance of 2.64e-06/(13.93*3), i.e. p < 6.6e-08. For gene-set significance, 
we applied a genome-wide significance level of 0.05/9,975 = 5.01e-06 and a 
study-wide significance level of 5.01e-06/(13.93*3), i.e. p < 1.20e-07. 
 

Post-hoc analyses 

SNP heritability  

SNP heritabilities, h2SNP, were estimated by using linkage disequilibrium (LD)      
score regression (LDSR; Bulik-Sullivan et al., 2015) for the European-
ancestry brain change GWASs to ensure matching of population LD structure. 
For LDSR, we used precomputed LD scores based on the European-ancestry 
samples of the 1000 Genomes Project (1000 Genomes Project Consortium, 
2015) restricted to HapMap3 SNPs (International HapMap Consortium, 2010). 
The summary statistics with standard LDSC filtering were regressed onto 
these scores. SNP heritabilities were estimated based on the slope of the LD 
score regression, with heritabilities on the observed scale calculated. To 
ensure sufficient power for the genetic correlations, rg was calculated if the Z-
score of the h2SNP for the corresponding GWAS was 4 or higher (Bulik-
Sullivan et al., 2015). 

Comparison with cross-sectional results  
 
For the genome-wide significant genes and genes associated with genome-
wide significant SNPs, we compared our findings with cross-sectional GWAS 
summary statistics when available. To this end datasets from (Elliott et al., 
2018; Hibar et al., 2017; Satizabal et al., 2019; Grasby et al., 2020) were 
requested/downloaded from (http://enigma.ini.usc.edu/research/download-
enigma-gwas-results/; http://big.stats.ox.ac.uk/download_page). Gene-based 
association analyses for cross-sectional brain GWAS summary statistics were 
performed using MAGMA (as described above). Additionally, we compared 
the overlap in the first 1,000 ranked genes to the expected number of 
overlapping genes based on chance. False discovery rate correction 
(Benjamini and Hochberg, 1995) was applied to determine over- or under-
representation of genes from our longitudinal GWAS to the cross-sectional 
previously published GWAS.  
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Genetic overlap with cross-sectional results and other traits 
 
To investigate genetic overlap with other traits across the genome we applied 
an adapted version of iSECA (independent SNP effect concordance analysis; 
Nyholt, 2014) which examines pleiotropy and concordance of the direction of 
effects between two phenotypes by comparing expected and observed 
overlap in sets of SNPs from both phenotypes that are thresholded at different 
levels. From the results at each threshold, heatmap plots are generated 
containing binomial tests for pleiotropy and Fisher’s exact tests for 
concordance. An empirical p-value for overall pleiotropy and concordance is 
then generated through permutation testing. Our implementation of iSECA 
also included a p-value for overall discordance, as we expect some 
phenotypes to negatively influence brain-structural change rates. P-values 
were computed using a two-step approach: we first ran 1,000 permutations. If 
the p-value for pleiotropy was below 0.05/15 we reran the analyses with 
10,000 permutations to obtain a more precise p-value. Summary statistics of 
change rates were first filtered on SNPs for which > 95% of the subjects 
contributed data to remove the sample size dependency of p-values and 
subsequently clumped (p=1,kb=1000) to ensure independence of input SNPs.   

We investigated the genetic overlap between brain-structural changes 
and risk for 20 neuropsychiatric, neurological and somatic disorders, and 
physical and psychological traits. Summary statistics were downloaded or 
requested for aggression (Pappa et al., 2016), alcohol dependence (Walters 
et al., 2018), Alzheimer's disease (Lambert et al., 2013), attention-
deficit/hyperactivity disorder (Demontis et al., 2019), autism (Psychiatric 
Genomics Consortium, 2017), bipolar disorder (Stahl et al., 2019), body mass 
index (Yengo et al., 2018), brain age gap (Kauffman et al., 2019), cognitive 
functioning (Savage et al., 2018), depression (Howard et al., 2019), diabetes 
type 2 (Scott et al., 2017), ever smoking (Watanabe et al., 2019), focal 
epilepsy (The International League Against Epilepsy Consortium on Complex 
Epilepsies, 2018), height (Yengo et al., 2018), inflammatory bowel disease 
(Liu et al., 2015), insomnia (Jansen et al., 2019), multiple sclerosis (Sawcer et 
al., 2011), Parkinson's disease (Nalls et al., 2018), rheumatoid arthritis 
(Okada et al., 2014) and schizophrenia (Psychiatric Genomics Consortium, 
2014). These phenotypes were chosen because of known associations with 
brain structure or function, and availability of summary statistics based on 
large GWA-studies.  

Apart from these, we also 1) included intracranial volume (Adams et 
al., 2016) to investigate the effect of overall head size and 2) tested the 
overlap between each structure’s longitudinal change measure against its 
cross-sectional brain structure. Pleiotropy, concordance or discordance was 
considered significant when the p-value was smaller than 0.05/15*22 
(#change rates * #phenotypes tested) = 1.6e-04. 
 
Brain gene expression 
 
GENE2FUNC, a core process of FUMA (Functional Mapping and Annotation 
of Genome-wide Association Studies; http://fuma.ctglab.nl; Watanabe et al., 
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2017), was employed to analyze gene expression patterns. For this, a set of 
16 genes was used as input, including all genome-wide significant genes and 
genes harboring genome-wide significant SNPs (compare Table 1 and 2). 
Gene expression heatmap was constructed employing GTEx v8 (GTEx 
Consortium, 2015; 54 tissue types) and BrainSpan RNA-seq data across 29 
different ages or 11 different developmental stages (Miller et al., 2014). The 
average of normalized expression per label (zero means across samples) was 
displayed on the corresponding heatmaps. Expression values are TPM 
(Transcripts Per Million) for GTEx v8 and RPKM (Read per Kilobase Million) 
in the case of BrainSpan data set.  
 
Phenome-wide association studies 
 
To identify phenotypes associated with the candidate SNPs and genes 
(defined as genome-wide significant SNPs and the genome-wide significant 
genes and genes associated with genome-wide significant SNPs), a 
phenome-wide association study (pheWAS) was done for each SNP and/or 
gene. PheWAS was performed using public data provided by GWASAtlas 
(https://atlas.ctglab.nl; Watanabe et al., 2019). To correct for multiple testing, 
the total number of GWASs (4,756) was considered (including GWASs in 
which the searched SNP or gene was not tested) and the number of tested 
SNPs and genes, resulting in a Bonferroni corrected p-value threshold of 
1.05e-05/19, i.e., p < 5.53e-07. 
 
Sensitivity analyses 
 
The main analyses include available data from all cohorts with European 
ancestry (N=9,623). The four cohorts of non-European and mixed ancestry 
together consist of 540 subjects, who are predominantly children and 
adolescents (Supplementary Table S3). The number of subjects, 
heterogeneity in ancestry and the age-distribution do not allow for separate 
meta-analysis or meta-regression. We therefore added the cohorts of non-
European ancestry to the original datasets and reran analyses (N=10,163). In 
a second analysis, we excluded the 9 cohorts that had N < 75 or mean 
scanning interval < 0.5 years (Supplementary Table S2), leaving N=9,105 
subjects. The main analyses include data from all subjects combined, without 
correction for disease. This approach was chosen because many neurological 
and neuropsychiatric diseases are characterized by aberrant brain changes 
over time, and genes involved in the disease may also be involved in these 
brain changes. To check whether our results were confounded by disease, we 
repeated the main analyses excluding diagnostic groups of each cohort 
(N=7,309) and by correcting for disease status. 
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Figure legends 
 
Figure 1: Phenotypic brain changes throughout the lifespan.  
Visualization of growth and decline of brain structures throughout the lifespan. 
The subcortical structures are shown in exploded view (a). Individual change 
rates are shown for (b) amygdala, (c) caudate, (d) cerebral white matter 
volume, (e) cerebellum cortex volume, (f) cerebellum white matter volume, (g) 
cortex volume, (h) cortical thickness, (i) hippocampus, (j) lateral ventricle 
volume, (k) nucleus accumbens, (l) pallidum, (m) putamen, (n) surface area, 
(o) thalamus and (p) total brain. Annual rates of change Δ per cohort. “For 
each structure, the estimated trajectories with confidence intervals (in green) 
are displayed in the top row (b-p). The size of the points represents the 
relative size of the cohorts. Standard errors are displayed in gray. Means and 
standard deviations are based on raw data – no covariates were included. 
Only cohorts that satisfy N>75 and mean interval > 0.5 years are shown. The 
estimated trajectories of the volumes themselves are displayed in the bottom 
row, for all subjects (solid line) and for subjects not part of diagnostic groups 
(dashed line).  
 
Figure 2: Genetic effects on rates of brain changes throughout the 
lifespan. a) genome-wide significant SNPs and genes with effects on brain 
changes at their respective loci across the human genome; Illustrations of the 
two significant genome-wide loci with significant associated genes for b) age-
independent effect of GPR139 and rs72772740 on lateral ventricle change 
and c) age-dependent effect of DACH1 and rs573983368 on white matter 
change; both b) and c) are represented by Manhattan plot, locus plot, meta-
regression plot with the meta-regression curve with 95% confidence interval in 
red and effect size of cohorts represented by circle size, and trajectory plot 
with the estimated trajectories of the volumes themselves for carriers and 
non-carriers of the top SNP; Illustrations of the three other genome-wide 
genetic effects with d) age-dependent effect of top SNP of APOE on 
amygdala change and e) age-dependent effect of the top SNP of APOE on 
hippocampus change; d) and e) are represented by meta-regression curve 
and estimated trajectories for carriers and non-carriers of the effect allele.  
 
Figure 3: Overlap with other phenotypes 
P-values for pleiotropy between change rates of structural brain measures 
(rows, indicated by Δ for change rate) and neuropsychiatric, disease-related 
and psychological traits (columns left of color legend). P-values for pleiotropy 
between change rates of structural brain measures and head size (total brain 
volume) and the cross-sectional brain measure are displayed on the right 
(columns right of color legend). Significant overlap (p < 1.6e-04) is marked 
with *.  
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Investigator). Biomarkers Core Leaders and Key Personnel: Leslie M. Shaw (UPenn School 
of Medicine), John Q. Trojanowki (UPenn School of Medicine), Virginia Lee (UPenn School of 
Medicine), Magdalena Korecka (UPenn School of Medicine), Michal Figurski (UPenn School 
of Medicine). Informatics Core Leaders and Key Personnel: Arthur W. Toga (USC (Core PI)), 
Karen Crawford (USC), Scott Neu (USC). Genetics Core Leaders and Key Personnel: 
Andrew J. Saykin (Indiana University), Tatiana M. Foroud (Indiana University), Steven Potkin 
(UC Irvine), Li Shen (Indiana University), Kelley Faber (Indiana University), Sungeun Kim 
(Indiana University), Kwangsik Nho (Indiana University). Initial Concept Planning & 
Development: Michael W. Weiner (UC San Francisco), Leon Thal (UC San Diego), Zaven 
Khachaturian (Prevent Alzheimer’s Disease 2020). Early Project Proposal Development: 
Leon Thal (UC San Diego), Neil Buckholtz (National Institute on Aging), Michael W. Weiner 
(UC San Francisco), Peter J. Snyder (Brown University), William Potter (National Institute of 
Mental Health), Steven Paul (Cornell University), Marilyn Albert (Johns Hopkins University), 
Richard Frank (Richard Frank Consulting), Zaven Khachaturian (Prevent Alzheimer’s Disease 
2020). NIA: John Hsiao (National Institute on Aging). ADNI Investigators by Site: Oregon 
Health & Science University: Joseph Quinn, Lisa C. Silbert, Betty Lind, Jeffrey A. Kaye – Past 
Investigator, Raina Carter – Past Investigator, Sara Dolen – Past Investigator. University of 
Southern California: Lon S. Schneider, Sonia Pawluczyk, Mauricio Becerra, Liberty Teodoro, 
Bryan M. Spann – Past Investigator. University of California – San Diego: James Brewer, 
Helen Vanderswag, Adam Fleisher – Past Investigator. University of Michigan: Jaimie 
Ziolkowski, Judith L. Heidebrink, Joanne L. Lord – Past Investigator. Mayo Clinic, Rochester: 
Ronald Petersen, Sara S. Mason, Colleen S. Albers, David Knopman, Kris Johnson – Past 
Investigator. Baylor College of Medicine: Javier Villanueva-Meyer, Valory Pavlik, Nathaniel 
Pacini, Ashley Lamb, Joseph S. Kass, Rachelle S. Doody – Past Investigator, Victoria Shibley 
– Past Investigator, Munir Chowdhury – Past Investigator, Susan Rountree – Past 
Investigator, Mimi Dang – Past Investigator. Columbia University Medical Center: Yaakov 
Stern, Lawrence S. Honig, Karen L. Bell, Randy Yeh. Washington University, St. Louis: Beau 
Ances, John C. Morris, David Winkfield, Maria Carroll, Angela Oliver, Mary L. Creech – Past 
Investigator, Mark A. Mintun – Past Investigator, Stacy Schneider – Past Investigator. 
University of Alabama - Birmingham: Daniel Marson, David Geldmacher, Marissa Natelson 
Love, Randall Griffith – Past Investigator, David Clark – Past Investigator, John Brockington – 
Past Investigator. Mount Sinai School of Medicine: Hillel Grossman, Effie Mitsis – Past 
Investigator. Rush University Medical Center: Raj C. Shah, Melissa Lamar, Patricia Samuels. 
Wien Center: Ranjan Duara, Maria T. Greig-Custo, Rosemarie Rodriguez. Johns Hopkins 
University: Marilyn Albert, Chiadi Onyike, Daniel D’Agostino II, Stephanie Kielb – Past 
Investigator. New York University: Martin Sadowski, Mohammed O. Sheikh, Jamika 
Singleton-Garvin, Anaztasia Ulysse, Mrunalini Gaikwad. Duke University Medical Center: P. 
Murali Doraiswamy, Jeffrey R. Petrella, Olga James, Salvador Borges-Neto, Terence Z. 
Wong – Past Investigator, Edward Coleman – Past Investigator. University of Pennsylvania: 
Jason H. Karlawish, David A. Wolk, Sanjeev Vaishnavi, Christopher M. Clark – Past 
Investigator, Steven E. Arnold – Past Investigator. University of Kentucky: Charles D. Smith, 
Greg Jicha, Peter Hardy, Riham El Khouli, Elizabeth Oates, Gary Conrad. University of 
Pittsburgh: Oscar L. Lopez, MaryAnn Oakley, Donna M. Simpson. University of Rochester 
Medical Center: Anton P. Porsteinsson, Kim Martin, Nancy Kowalksi, Melanie Keltz, Bonnie 
S. Goldstein – Past Investigator, Kelly M. Makino – Past Investigator, M. Saleem Ismail – 
Past Investigator, Connie Brand – Past Investigator. University of California Irvine IMIND: 
Gaby Thai, Aimee Pierce, Beatriz Yanez, Elizabeth Sosa, Megan Witbracht. University of 
Texas Southwestern Medical School: Kyle Womack, Dana Mathews, Mary Quiceno. Emory 
University: Allan I. Levey, James J. Lah, Janet S. Cellar. University of Kansas, Medical 
Center: Jeffrey M. Burns, Russell H. Swerdlow, William M. Brooks. University of California, 
Los Angeles: Ellen Woo, Daniel H.S. Silverman, Edmond Teng, Sarah Kremen, Liana 
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Apostolova – Past Investigator, Kathleen Tingus – Past Investigator, Po H. Lu – Past 
Investigator, George Bartzokis – Past Investigator. Mayo Clinic, Jacksonville: Neill R Graff-
Radford (London), Francine Parfitt, Kim Poki-Walker. Indiana University: Martin R. Farlow, 
Ann Marie Hake, Brandy R. Matthews – Past Investigator, Jared R. Brosch, Scott Herring. 
Yale University School of Medicine: Christopher H. van Dyck, Richard E. Carson, Pradeep 
Varma. McGill Univ., Montreal-Jewish General Hospital: Howard Chertkow, Howard 
Bergman, Chris Hosein. Sunnybrook Health Sciences, Ontario: Sandra Black, Bojana 
Stefanovic, Chris (Chinthaka) Heyn. U.B.C. Clinic for AD & Related Disorders: Ging-Yuek 
Robin Hsiung, Benita Mudge, Vesna Sossi, Howard Feldman – Past Investigator, Michele 
Assaly – Past Investigator. Cognitive Neurology - St. Joseph's, Ontario: Elizabeth Finger, 
Stephen Pasternak, William Pavlosky, Irina Rachinsky – Past Investigator, Dick Drost – Past 
Investigator, Andrew Kertesz – Past Investigator. Cleveland Clinic Lou Ruvo Center for Brain 
Health: Charles Bernick, Donna Muni. Northwestern University: Marek-Marsel Mesulam, 
Emily Rogalski, Kristine Lipowski, Sandra Weintraub, Borna Bonakdarpour, Diana Kerwin – 
Past Investigator, Chuang-Kuo Wu – Past Investigator, Nancy Johnson – Past Investigator. 
Premiere Research Inst (Palm Beach Neurology): Carl Sadowsky, Teresa Villena. 
Georgetown University Medical Center: Raymond Scott Turner, Kathleen Johnson, Brigid 
Reynolds. Brigham and Women's Hospital: Reisa A. Sperling, Keith A. Johnson, Gad A. 
Marshall. Stanford University: Jerome Yesavage, Joy L. Taylor, Steven Chao, Barton Lane – 
Past Investigator, Allyson Rosen – Past Investigator, Jared Tinklenberg – Past Investigator. 
Banner Sun Health Research Institute: Edward Zamrini, Christine M. Belden, Sherye A. Sirrel. 
Boston University: Neil Kowall, Ronald Killiany, Andrew E. Budson, Alexander Norbash – 
Past Investigator, Patricia Lynn Johnson – Past Investigator. Howard University: Thomas O. 
Obisesan, Ntekim E. Oyonumo, Joanne Allard, Olu Ogunlana. Case Western Reserve 
University: Alan Lerner, Paula Ogrocki, Curtis Tatsuoka, Parianne Fatica. University of 
California, Davis – Sacramento: Evan Fletcher, Pauline Maillard, John Olichney, Charles 
DeCarli, Owen Carmichael – Past Investigator. Neurological Care of CNY: Smita Kittur – Past 
Investigator. Parkwood Institute: Michael Borrie, T-Y Lee, Dr Rob Bartha. University of 
Wisconsin: Sterling Johnson, Sanjay Asthana, Cynthia M. Carlsson. Banner Alzheimer's 
Institute: Pierre Tariot, Anna Burke, Joel Hetelle, Kathryn DeMarco, Nadira Trncic – Past 
Investigator, Adam Fleisher – Past Investigator, Stephanie Reeder – Past Investigator. Dent 
Neurologic Institute: Vernice Bates, Horacio Capote, Michelle Rainka. Ohio State University: 
Douglas W. Scharre, Maria Kataki, Rawan Tarawneh. Albany Medical College: Earl A. 
Zimmerman, Dzintra Celmins, David Hart. Hartford Hospital, Olin Neuropsychiatry Research 
Center: Godfrey D. Pearlson, Karen Blank, Karen Anderson. Dartmouth-Hitchcock Medical 
Center: Laura A. Flashman, Marc Seltzer, Mary L. Hynes, Robert B. Santulli – Past 
Investigator. Wake Forest University Health Sciences: Kaycee M. Sink, Mia Yang, Akiva 
Mintz. Rhode Island Hospital: Brian R. Ott, Geoffrey Tremont, Lori A. Daiello. Butler Hospital: 
Courtney Bodge, Stephen Salloway, Paul Malloy, Stephen Correia, Athena Lee. UC San 
Francisco: Howard J. Rosen, Bruce L. Miller, David Perry. Medical University South Carolina: 
Jacobo Mintzer, Kenneth Spicer, David Bachman. St. Joseph’s Health Care: Elizabeth Finger, 
Stephen Pasternak, Irina Rachinsky, John Rogers, Andrew Kertesz – Past Investigator, Dick 
Drost – Past Investigator. Nathan Kline Institute: Nunzio Pomara, Raymundo Hernando, 
Antero Sarrael. University of Iowa College of Medicine: Delwyn D. Miller, Karen Ekstam 
Smith, Hristina Koleva, Ki Won Nam, Hyungsub Shim, Susan K. Schultz – Past Investigator. 
Cornell University: Norman Relkin, Gloria Chiang, Michael Lin, Lisa Ravdin. University of 
South Florida: USF Health Byrd Alzheimer’s Institute: Amanda Smith, Christi Leach, Balebail 
Ashok Raj – Past Investigator, Kristin Fargher – Past Investigator. 
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