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Abstract- This paper presents a complete solution 
consisting of sustainable loT-based Reliable Industrial Data 
Services (RIDS) able to manage the huge amount of industrial 
data coming from cost-effective, smart, and small size 
interconnected factory devices for supporting manufacturing 
online monitoring and control. The i4Q Framework guarantees 
data reliability with functions grouped into five basic 

capabilities around the data cycle: sensing, communication, 
computing infrastructure, storage, and analysis and 
optimisation. With the i4Q RIDS, factories will be able to handle 
large amounts of data, achieving adequate levels of data 
accuracy, precision and traceability, using it for analysis and 
prediction as well as to optimise the process quality and product 
quality in manufacturing, leading to an integrated approach to 

zero-defect manufacturing. The i4Q Solutions efficiently collect 

the raw industrial data using cost-effective instruments and 
state-of-the-art communication protocols, guaranteeing data 
accuracy and precision, reliable traceability and time stamped 
data integrity through distributed ledger technology and 
provide simulation and optimisation tools for manufacturing 
line continuous process qualification, quality diagnosis, 
reconfiguration and certification for ensuring high 
manufacturing efficiency and optimal manufacturing quality. 

Keywords- Data Quality, Data Reliability, Blockchain, 
Product Quality, Process Quality, Digital Twin, Process 
Simulation, Process Optimization, Zero-defect Manufacturing 
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I. INTRODUCTION 

Manufacturing companies are continuously facing the 
challenge of redesigning and adjusting their manufacturing 
systems to adapt their process to produce goods adapted to 
specific requirements and produced under the minimum 
required production rate, guaranteeing high quality and 
limiting the use of resources in order to reduce production 
costs. Therefore, reducing waste, scraps and defects, as well 
as production costs and lead times is crucial to increase 
productivity and hence, to pursuit manufacturing excellence. 

In this context, the implementation of zero-defect 
strategies plays a decisive role. During the last decade, 
several R&D efforts have targeted on zero defect approaches 
with the purpose of developing solutions to improve 
performance of process control by incorporating enhanced 
quality control solutions. Nevertheless, current solutions 
need further developments on: 

• Data management: Thanks to the increase in the use 
of sensors, actuators and instruments, manufacturing 
lines collect a huge amount of data during the 
manufacturing process, which is very valuable for the 
improvement of quality in manufacturing but, for 
most of the European factories, it is not possible to 
analyse the data generated in the process on a daily 
basis. 
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• Complexity of current solutions: Requiring heavy 
statistical and technology training and support, 
making them not accessible for SMEs. Now, users are 
demanding access to insights from advanced 
analytics, without requiring them to have IT or data 
science advanced skills. Most of the current solutions 
lack of easy-to-use advanced data preparation, 
production reporting and advanced analytics and 
prediction. 

• Dynamic behaviour of the manufacturing factories:  
Complex systems of diverse, connected, 
interdependent entities which need suitable modelling 
and simulation approaches and data fusion techniques 
to interpret the collected data. 

A successful smart factory should be able to manage data­
related processes along the entire data life cycle, including 
data collection, storage, distribution, analysis, use, and 
deletion, to ensure high data quality at all times. This includes 
processes related to: (i) the design, deployment, and use of 
hardware and software; (ii) the planning, implementation, 
and monitoring of intra-organisational procedures; (iii) and 
the inter-organisational practices in the value chain. The 
comprehensive quality control of all important factors is an 
effective measure against unfit, erroneous, unintelligible, or 
otherwise unreliable data. 

This paper presents the i4Q Project, whose approach 
targets a complete solution consisting of sustainable loT­
based Reliable Industrial Data Services (RIDS) able to 
manage the huge amount of industrial data coming from cost­
effective, smart, and small size interconnected factory 
devices for supporting manufacturing online monitoring and 
control. In section 2, the authors present a literature review of 
the most relevant concepts and research in the area. Section 3 
describes the i4Q Project proposition. Section 4 discusses the 
advances provided by i4Q beyond the start -of-the-art 
technologies. Section 5 presents the conclusions and future 
work. 

II. LITERATURE REVIEW 

A. Manufacturing Data Quality 

Data Quality is a term coined in the 1990s. It adopted the 
ideas of product quality management and the basic notion for 
quality as: "degree to which a set of inherent characteristics 
of an object fulfils requirements" [ 1  ] .  The reference object is 
data, though oftentimes, it is more useful in practice to widen 
the scope to information, i.e. data with semantics (meaning). 
The main difference between data quality and information 
quality is that the former focuses on the technical means to 
collect and store data (e.g. databases), while the latter focuses 
on the application of meaningful data and the fit-for-purpose 
aspect, i.e. how well information meets information needs. 
The operationalisation of data quality requires the 
specification of relevant inherent characteristics of the data. 
While the exact characteristics typically depend on the data 
user and the application purpose of the data, several 
researchers and practitioners developed quality models that 
describe common data quality characteristics. Acknowledged 
models are the ones described in [2], [3], and the ISO 25012 
standard [ 4] . The latter proposes 15  characteristics including, 
for instance, accessibility, accuracy, confidentiality, 
completeness, compliance, credibility, recoverability, and 
understandability. Besides these quality models, the literature 
also identified data quality management frameworks that 
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suggest a management scope and procedures aligned to basic 
management processes, such as Plan-Do-Study-Act. These 
frameworks include early approaches, such as Total Data 
Quality Management [5], and later ones that focus, e.g., on 
Big Data [6] . The data quality management typically needs to 
specify data quality characteristics as measurable indicators 
and based on the data application context. In manufacturing, 
the quality of data is important in most decisions taken by 
humans (e.g., planning, and operations) or machines (e.g., 
artificial intelligence). Successful data analytics depend on 
data with sufficient quality for the individual analytics task 
[7], [8] . This typically concerns characteristics, such as 
accuracy, precision, completeness, and timeliness, because 
they influence algorithms results significantly. Besides the 
selection of relevant quality characteristics, also the factors 
that influence these characteristics over the entire data life 
cycle require attention. [9] suggested to use cause-effect 
diagrams to identify and analyse data quality factors related 
to the collection, organisation, presentation, and application 
of data. Understanding and controlling these factors can be a 
key to manage data quality comprehensively. 

B. Manufacturing Data Collection 

Modem manufacturing produces high volumes of data 
[ 10] up to the point that the concept of "Smart 
Manufacturing" is itself tightly intertwined to that of data­
driven manufacturing [ 1 1] ,  allowing companies, for instance, 
to visualise, analyse and react to both collected and real-time 
(or near real-time) information, relevant to many areas of 
manufacturing, ranging from production to maintenance, 
order management and supply chain. Additionally, data can 
be used in periodic analysis and strategic/business planning. 

As highlighted in various research, e.g., [12],  [13] ,  [ 14] , 
the quality of data plays a critical role in business applications 
under various aspects including performance, decision­
making (management) and cooperation. As already 
highlighted by [2] it is, of course, important to define what 
'data quality' actually means. In fact, there are several 
dimensions (and measures) related to the concept. In their 
book on Data Quality [12] and then in [ 15] examine in great 
detail the dimensions of data quality, highlighting how 
literature does not always agree on the definitions of such 
dimensions and measurements. Furthermore, [ 16] provide a 
detailed overview of data quality assessment methodologies 
and frameworks. Nonetheless, common attributes/measures 
defining a basic set of data quality attributes can be identified 
in the dimensions of accuracy, completeness, consistency, 
timeliness. Regarding accuracy, two types can be defined: 
syntactic and semantic. The former essentially assesses how 
close a data value is to a set of values defined in a domain 
considered syntactically correct. The latter assesses closeness 
from a semantic point of view. Completeness assesses the 
degree to which a given data collection includes data 
describing the corresponding set of real-world objects. In 
certain domains (especially databases), completeness has to 
do with the presence (and meaning) of null values, therefore 
some authors suggest that during quality assessment a 
Boolean value should be associated with a field. Consistency 
assesses the adherence to semantic rules defined over a set of 
data i.e., answering the question: "are data consistent across 
the data sets?" and "are the data representing conflicting 
information?". Currency is a time dimension which relates to 
how often the data is updated. Related time dimensions are 
volatility which represents how frequently data changes in 
time (e.g., a birth date has volatility equal to zero), and 
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timeliness which specifies the currency of data with respect 
to a given task/usage e.g., data could be current, but still late 
for a certain usage. Accessibility relates to the capability of 
users to access data within their own context, including 
physical status/functions, technologies and culture. [17] 
focus on data (quality) dimensions in Digital Manufacturing 
and consider information as manufacturing 'product' itself. 
[ 18] highlight how in real world industrial application it is not 
uncommon to face situation of low quality data including 
non-accuracy, non-completeness due to data loss, non­
consistency due to different vendors, software versions, etc. 
To this end a set of data cleaning strategies are proposed [19] 
such as duplicate identification and elimination, data 
transformations, schema matching and data mining 
approaches. Additionally, domain ontologies are suggested 
as a tool to improve data quality management tasks [20] . [2 1] 
report several efforts to propose ontologies, semantics, and 
semantic web technologies within manufacturing and [22] 
underline how semantically rich descriptions can provide 
benefits in Industry 4.0 scenarios. Indeed, several ontologies 
for manufacturing exist such as PSL (Process Specification 
Language), MASON (Manufacturing's  Semantics 
Ontology), SIMPM (Semantically Integrated Manufacturing 
Planning Model), among others. In dealing with data quality, 
especially in the context of industrial applications and 
manufacturing it is important to mention the ISO 8000 [23] ,  
the international standard for data quality. ISO 8000 
considers data as a representation of information and quality 
data as instrumental to capture, store and share information. 
Data portability is one of the core characteristics ofiSO 8000. 
On the one hand this facilitates preservation and exchange, 
but (within IT systems) also allows to separate data from the 
software being used to manage it. Another fundamental 
principle of ISO 8000 is the use of dictionaries for both 
consistency and portability. 

C. Manufacturing Data Analytics 

Since the third Industrial Revolution, which was 
characterised by the emergence of the digital information age, 
that manufacturers all over the world are embracing the 
notion of convergence of the digital and physical worlds [ 1 1 ] .  
Mainly due to this convergence and to technological 
advances achieved throughout the last two decades, 
manufacturing-related data is being generated at 
exponentially growing rates [24] . Still, there are few 
manufacturing sectors that truly capitalise on such amount of 
collected data, by extracting meaningful insights for 
supporting improvements on their businesses, processes and 
products [25] .  Recently, the application of Data Analytics to 
manufacturing data has been presented as a solution for the 
issue of capitalising on ever-growing manufacturing data 
[26]. Manufacturing Data Analytics can be defined as the 
process of finding useful information from analysing 
manufacturing-generated raw data, whether for decision­
making support or for optimisation of business and 
production processes, among other objectives [15] .  [27] 
present the main objectives for applying Big Data Analytics 
(BDA) in smart manufacturing. It is envisioned that BDA 
applications will be able to assist enterprise managers to learn 
everything about what they did today and to predict what they 
will do tomorrow. This future vision is based on a taxonomy 
of data analytics approaches for manufacturing, which entails 
four types of analytics processes: descriptive, diagnostic, 
predictive and prescriptive analytics [28], [24] . Both 
descriptive and diagnostic analytics methods are reactive 
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while predictive and prescriptive analytics approaches are 
proactive. Descriptive analytics is an exploratory analysis of 
historical data to tell what happened. During this stage, most 
of data mining and statistical methods can be used to reveal 
the data characteristics, recognise patterns and identify 
relationships of data objects. Diagnostic analytics is a deeper 
look at data to attempt to understand the causes of events and 
behaviours. The diagnostic analysis of machines and other 
equipment can help to identify the possible faults and predict 
the failures to reduce the machine down-times. Predictive 
analytics mainly utilises historical data to anticipate the 
trends of data (i.e., what will occur in the future).  Finally, 
prescriptive analytics extends the results of descriptive, 
diagnostic and predictive analytics to make the right 
decisions in order to achieve predicted outcomes. The 
prescriptive methods typically include simulation, decision­
making, optimisation and reinforcement learning algorithms. 
Although the three first types of data analytics are not new 
research trends, the fourth, prescriptive analytics, is seen as a 
future challenge in Manufacturing Data Analytics [28], [24], 
and is closely linked to simulation (Digital Twins) and 
optimisation. 

D. Manufacturing Data Trustworthiness 

Trust in data may rely on a blockchain-based platform. 
Blockchain, at heart, is a distributed ledger which maintains 
ordered records of all transactions that occur over a network. 
Participants in a blockchain network maintain a replicated 
shared state through consensus algorithms [29] . A transaction 
recorded in a blockchain signifies information pertaining to 
an exchange of an asset, data or monetary value, and each 
transaction is governed by a smart contract. Transaction 
information is grouped together in blocks which get 
appended to the blockchain, with transaction validation and 
immutability guaranteed, through algorithmic consensus 
among participants in a blockchain network. Since each block 
is linked to its predecessor block, altering any contents of a 
single block incurs alterations in all subsequent blocks, and 
algorithmic consensus ensures any corrupted copies of the 
ledger are detected and corrected. Blockchain is a fully 
decentralised technology that does not rely on single trusted 
authorities for record-keeping between transacting parties, 
thus blockchains create a trusted environment for conducting 
transactions. The blockchain technology is currently being 
applied in numerous application domains, including financial 
services, and supply-chain management [30] . For traceability 
blockchain can be used to provide an audit trail for assets 
exchange, use and associated data [3 1 ] .  Transactions across 
multiple parties, protected by a security and privacy layer, are 
immutable offering transparency and trust in data and 
transactions. Blockchain provides for immutability, finality, 
consensus, and provenance of its state and all the transactions 
therein. The primary use of blockchains is the transfer of 
assets (tokens) among different parties. The same 
infrastructure can be used for conserving data reliability. New 
trends in Blockchain technology lead to an integration with 
the Internet of Things domain, providing a powerful 
combination that can cause significant transformations across 
several industries, paving the way for new distributed 
applications. Being able to provide guaranties of the 
authenticity of data is important to enhance trust in incoming 
data and act accordingly. Inability to provide data reliability 
guarantees might endanger the credibility of the decision 
maker. 
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E. Manufacturing Process Qualification and 
Reconfiguration 

Qualification involves evaluating a complete process, 
consisting of many individually certified activities, to 
determine whether the process can perform at the appropriate 
level when the activities are linked together [32] . Process 
qualification is a component of the process validation, which 
analyses the data gathered throughout the design and 
manufacturing of a product in order to confirm that the 
process can reliably output products of a determined 
standard. Process validation has been widely applied and 
documented in the pharmaceutical, medicine, food and drugs 
research areas [33] [34] . Process validation can be broken 
down into 3 steps : process design, process qualification, and 
continued process verification. In this regard, manufacturing 
process qualification enables to assess if the process is able 
to meet determined manufacturing targets. In this stage all 
production processes and manufacturing equipment are 
proofed to confirm quality and output capabilities. Critical 
quality attributes are evaluated and critical process 
parameters taken into account to confirm product quality 
[33] .  The process performance qualification (PPQ) protocol 
is a key element of process qualification, that allows 
recording and having available for review essential 
conditions, controls, testing, and expected manufacturing 
outcome of a production process. The following criteria must 
be considered in the PPQ protocol: (i) manufacturing 
conditions, including operating parameters, equipment limits, 
and component inputs; (ii) the data that should be recorded 
and analysed; (iii) the tests that should be performed to ensure 
quality at each production step; (iv) a sampling plan to outline 
sampling methods both during and between production 
batches; (v) an analysis methodology that allows for data 
scientific and risk oriented decision making based on 
statistical data; and (vi) variability limits should be defined 
and contingencies in the event of non-conforming data 
established. 

Reconfiguration aims at modifying the manufacturing 
process to rapidly and cost efficiently (i) adapt the production 
to market changes, (ii) increase production flexibility for 
mass customisation, or (iii) react upon unpredicted events 
such as machine faults or quality degradation [35] . Process 
reconfiguration relies on reconfigurable machines and 
controllers, and methodologies for the systematic design of 
new process configurations [36] . Such methodologies must 
account for the current customer specifications, current 
product quality, and available resources. Therefore, they feed 
on many heterogeneous data sources, such as sensors, 
customer demands or diagnostic analytics. In this context, the 
Digital Twin (DT) concept is an attractive solution to supply 
the required data in a systematic way [37]. According to [38], 
the "DT is an integrated multi-physics simulation of a system, 
that uses the available physics-based models, sensors and 
fleet history to replicate the behaviour of its real counterpart" . 
Through these models, the DT behaves as a one-to-one 
replica of a system, running parallel to it and with the same 
known operational conditions. Such a replica, may thus give 
insight into the system's behaviour, for instance, by (i) 
providing virtual sensors to extend available data [39], (ii) 
generating synthetic data to infer the system's  behaviour 
under unknown conditions [40], (iii) providing descriptive 
features [ 41 ] ,  or simulating operational decisions to aid in the 
decision making. 
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Ill. I4Q CONCEPTUAL APPROACH 

The design of the i4Q loT-based Reliable Industrial Data 
Services (RIDS) is based on the i4Q Reference Architecture 
(RA). The conceptualisation of the i4Q RA (Fig. 1) follows 
the ISO/IEC/IEEE 42010 "Systems and software engineering 
- Architecture" and it is aligned with the most common 
reference architectures in the manufacturing domain: liRA, 
RAMI4.0, IDSA, and IMSA. i4Q RA is structured around 
five basic layers: physical, network, middleware, database, 
and application. 

The i4Q digital representation of data produced during 
manufacturing and supply chain processes is described 
considering well-known standards and ontologies adopted in 
the manufacturing domain: B2MML, AutomationML, 
CAEX, PLCOpen, COLLADA, MTConnect, MIMOSA, 
PSL, MASON, SIMPM, etc., in order to ease data 
interoperability, exchange and processing. The exchange of 
digital data across i4Q Solutions is supported by a range of 
data models and ontologies providing the interoperability 
specification used in the different viewpoints of the i4Q RA. 

t Altem.,we "'"'''"' •lmo"''" 

.,.� Manufacturing Line 

• • Reconfiguration: Simulation 

I---· r Sl�l•tioo eoglo . .  od model• ® Manufacturing Digital Simulation Models 

@ Manufacturing DataAnalysisfor Quality Qualification 

Big Data Services 

ri::\ Manufacturing Data Integration \{!)#' and Fusion 

rA\ Smart Manufacturing \:::J Monitoring and Alerting 

t=::\ Scalable Policy Based Model \CJ Distribution from cloud to edge 

� AI workload placement and � deployment 

i4Q Infrastructure Reliable Industrial Data Service Infrastructure 

...........__ t:::\ Manufacturing Data ............- \::J Storage and Use 

..... .. 
(';;\ Manufacturing Data Trustiness � and TraceabHity 

r:::\ Man�acturing Data ----Iiiio..._ � Secunty .......,.... 

r:\ Manufacturing Data � .. \!.,) CommWliccrtion and Distribution 

AI Worldoad management -
Fig. 1. i4Q Conceptual Architecture 

The design of the i4Q RA is realised taking into account 
the analysis across four key viewpoints: business, usage, 
functional and implementation. 

• The Business viewpoint has the objective of avoiding 
the 'technology-centric ' view in the design phase. 
This view allows to incorporate in the early design the 
stakeholders' requirements and needs which are 
closer to real world. 

• The Usage viewpoint includes the tasks, roles, 
activities and parties, taking into account both human 
beings and software systems. One level deeper defines 
the functional map, the implementation maps, the role 
responsible for the execution of the tasks, the triggers 
that start the activity, workflows that define the 
organisation of the tasks within the activity and the 
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effects that will produce the execution of the activity 
on the system and the constraints of its execution. 

• The Functional viewpoint decomposes the i4Q RA 
into its Control, Operations, Information, Application 
and Business domains and identify the data, decision 
and command/request flows circulating among them, 
and the controls, coordination and orchestration 
exercised from each of these domains as well as on the 
different typical operations from these domains. 

• The Implementation viewpoint technically describes 
the different components of the i4Q RA, how they are 
interconnected and the technologies required for its 
proper implementation. On the other hand, it provides 
a detailed architecture based on cloud computing 
patterns, considering edge computing, microservice 
applications, and Function as a Service (FaaS) 
platforms. 

A. Reliable Industrial Data Services Infrastructure 

Th� i4Q RIDS infrastructure provides the necessary 
strategies, methods, and key technologies to ensure data 
quality, which is influenced by many factors including human 
error, communication issues or inaccuracies. Monitoring 
systems are expected to be reliable enough for decision­
making, but sensors are susceptible to provide unreliable �nfolll_lation. Trusted networks allow ensuring the reliability, 
mtegnty and privacy of the data exchanged. The 
heterogeneity in technologies leads to a complex ecosystem 
of data models that is difficult to contextualise, leading to 
misinterpretations and incomplete data analysis. Setting the 
guidelines for information models, needed metadata for 
traceability and interoperability is crucial for ensuring data 
quality. The increasing amount of collected data requires 
flexible data storage and data analysis infrastructure able to 
process information without affecting data quality. 

The i4Q RIDS provides an easier, trustable and traceable 
access to data coming from many different sources by 
employing a blockchain based data service. This enhances 
trust and acceptability by providing security and trust in the 
data that flows directly to the blockchain, serving as a single 
point of truth, preserving provenance and supporting non­
repudiation. Information stored on the blockchain cannot be 
changed or erased and can be proved to be authentic. 
Blockchain based services ensure that the information is not 
�ampere� with. Moreover, differential visibility scopes of 
InformatiOn are supported for cases in which a subset of the 
participating entities needs to share some information. The 
blockchain capabilities are exposed to other platform 
components and microservice applications via REST 
interfaces. Smart contracts are provided to govern the actions 
that take place upon the arrival of new data, and to ensure that 
the req�ired participants in the network approve incoming 
transactiOns. The REST interfaces provided enable the 
invocation of transactions to add data to the blockchain and a 
query mechanism to retrieve data previously stored in the 
blockchain. 

The i4Q RIDS implements reliable data collection 
providing connectivity to industrial data sources through 
Trusted Networks able to assess and ensure precision, 
accuracy, and reliability. Technologies such as TSN (Time 
Sensitive Networks) for wired communications, and wireless 
access networks (e.g. Industrial WSN, LPWAN, ad-hoc 
connections . . .  ), are integrated with other solutions such as 
Software Defined Network, Network Function Virtualisation, 
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or Network Slicing in order to improve reliability of the 
communication infrastructure and therefore the integrity and 
reliability of data collected. This includes software-defined 
wireless industrial interfaces for data communication, paying 
special attention to requirements such as predictability and 
determinism, high reliability and trustability and low 
consumption, while reducing the installation cost of new­
wired infrastructure. Time-sensitive transmission of data over 
deterministic Ethernet networks is also required for 
applications that require very low transmission latency and 
high availability and can use the floor plant wired network 
infrastructure. 

Collected data can be delivered by diverse types of 
d�vi�es and be transmitted through and processed by a 
sigmficant number of layers and technologies. This translates 
into the necessity of recommendations and guidelines to 
enable multilayer cyber security features in Industrial Internet 
of Things (IIoT), as well as the tools to implement these 
recommendations, enabling IloT devices to interact with the 
platform securely in all stages of a manufacturing scenario. 
The i4Q RIDS provisions signed certificates with Hardware 
Security Module (HSM) and trusted material to devices' 
Trusted Platform Module (TPM) using asymmetric 
encryption architecture. Furthermore, it includes the use of 
software-Trusted Execution Environment (TEE) in order to 
set the boundaries between the security and non-security 
p�ocesses running in the devices. Security mechanisms may 
differ between communication solutions or Distributed 
Ledger Technology (DL T) tools, which means that it is 
ne�de� to app�y security by design during development, 
adJustmg secunty, and safety policies at different levels to 
ensure the trustability and privacy of data. 

.The. i4Q RIDS implements a distributed storage system 
taking mto account those aspects unique to the Industry 4.0 
paradigm. One of the main aspects to consider is the high 
degree of digitisation expected in companies, resulting in 
most manufacturing devices acting as sensors or actuators 
and generating vast amounts of data. The infrastructure has 
to be, then, able to absorb large volumes of data coming into 
the system at high speeds. Similarly, it has to be as elastic as 
possible, to adapt the computing resources it requires to the 
existing demand and be ready to use additional resources 
either local to the factory or from remote systems like publi� 
or private clouds if needed, although bearing in mind possible 
data privacy restrictions. In addition to the storage 
capabilities, the i4Q storage system provides easy ways to 
access this data so other platform components and 
microservice applications can easily consume and use it to 
improve the efficiency of the system. 

B. Big Data Services 

The i4Q RIDS data services provide the mechanisms for 
the analysis of manufacturing data by combining simulation 
and real data, while employing data fusion techniques. 
Microservice applications are able to use manufacturing data 
processing services, data streams and artificial intelligence 
(AI) models, scaling up resources in an efficient and 
transparent way. 

The i4Q Data Integration and Transformation Services 
prepare manufacturing data so that microservice applications 
can process it. This includes all the elements required for 
manufacturing data stream management: reading, cleaning, 
sto�ng: . indexing, enriching, searching & retrieving, 
mamtaimng, and correspondence of open APis. The key 
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characteristics of the data to be managed are : (i) variety -
supporting different data types from different sensors; (ii) 
velocity - most of the data includes more or less intensive 
data streams to be processed in real-time; (iii) volume - data 
size to be processed is typically large (GBs) to very large 
(TBs). Big Data analytic databases are used for supporting 
the required specifications and being adapted/parameterised 
to support the required complexity of higher-level services. 

The i4Q Manufacturing Data Analysis for Quality 
Qualification is a set of specialised analytic functions on top 
of the data infrastructure, implementing several incremental 
algorithms (i.e., operating on data streams with fast 
incremental updates) suitable for analytic processing of high­
speed data streams. The core functions are related to 
clustering, regression, classification, anomaly detection and 
temporal correlation. The key properties of these 
implementations are speed and ability to support intensive 
data streams. 

The i4Q RIDS includes a multi-tier infrastructure to 
address the management of AI -based workloads in a hybrid 
cloud edge manufacturing environment. Scalability is a major 
concern for smart manufacturing environments that involve 
multiple sites.  On the one hand, a discovery component keeps 
track of all components of the distributed system and, on the 
other hand, a policy-based mechanism eases the task of the 
controller by enabling the specification of rules for eligible 
targets in a simplified manner (such as the model type, model 
version, geographic area, or the existence of specific 
resources). The AI model distribution is coordinated with the 
workload distribution mechanism to ensure that the right set 
of AI models is made available for the workload that uses 
them. 

Analysis capabilities utilise the potential to deploy and 
run AI workloads on the edge computing environments 
prevalent in manufacturing facilities. The i4Q RIDS enables 
workloads to execute efficiently on the edge, including 
placement and deployment services. Target deployment 
environments may be very heterogeneous and dynamic; thus, 
deployment needs to take a variety of criteria into 
consideration. The environment is dynamic thus re­
deployment of the entire workload or the adaptation of the 
underlying model may be required while the workload is 
running. A Cloud/edge architecture provides efficient and 
flexible management of edge workloads with deployment on 
an orchestrator. 

The i4Q RIDS provides scalable monitoring tools 
designed for the manufacturing edge environment. 
Monitoring is performed on applications running on the edge 
and the resources they consume, and specific data of the AI 
models. The information that is collected can be used in smart 
workload assignment to edge nodes and AI models 
evaluation. Monitoring is performed at various levels, such as 
the infrastructure, available resources, and the active 
workloads. The collected information provides an updated 
view of resources consumption and availability, in tum 
enabling better workload distribution and deployment. 
Collected data can be used for retraining of the model, which 
later shall be used for updating the running workloads. This 
task shall develop monitoring tools designed for smart 
manufacturing workload orchestration and predictive failure 
alerting, including monitoring the health of workloads and 
productively alerting and taking corrective actions when a 
predicted problem is detected. 
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The i4Q Digital Twin implements digital twins 
representing the complete production line to control the full 
traceability and to streamline and digitalize the entire 
production process. Supervised classification techniques 
(artificial neural networks, support vector machines, 
boosting, pattern recognition, etc.) and time series analysis 
(estimate uncertain events of the past, predict future events) 
are used to virtually replicate various stages of the 
manufacturing process (machine, tools and process 
parameters and product characteristics) to improve further 
process control and to avoid bottlenecks. In addition, model­
based strategies are exploited for the estimation of virtual 
sensors and quality-sensitive features. To this end, physics­
based models of the plant and model updating strategies are 
included to achieve a connected 3D production simulation, 
with a digital twin for manufacturing enabling virtual 
validation/visualisation and productivity optimisation using 
pre-existing and data from different factory levels (small cell 
to entire factory). 

C. Manufacturing Line Qualification and Reconfiguration 

Process qualification in flow process manufacturing is an 
essential step during ramp-up and after reconfiguration of 
production processes. The i4Q Data-Driven Continuous 
Process Qualification overcomes the classical approaches 
and methods for Continuous Process Qualification (CPQ) for 
ensuring best practice for manufacturing high quality goods 
and assure final product quality through adequate control 
over processes, collection of multivariate data and statistical 
procedures for evaluation of process stability and process 
performance. It implements an automated CPQ system based 
on real-time data provided AI algorithms combined with 
improved smart data analytics and algorithms results in faster 
process approval and in-line continuous process validation 
after process reconfiguration. 

The i4Q Manufacturing Line Quality Diagnosis and 
Smart Alerting tools provide the diagnosis of the condition of 
the manufacturing line by evaluating data fidelity, product­
quality, and process condition. The smart alerting system 
includes auto alerting systems and data visualisation tools to 
achieve zero defect manufacturing. Based on the diagnosis, 
action recommendations are provided, such as sensor/data 
processing recalibrations, process line/machine 
reconfiguration, or maintenance actions. 

The i4Q Prescriptive Analysis Tools use simulation 
strategies to investigate whether small changes in the control 
can reduce or even eliminate the defects on the production, 
taking as input the identified process condition, available 
resources and current production planning, and proposing 
process configuration parameters. This would open the way 
to an opportunistic process handling strategy. The Digital 
Twin's models used in this strategy should be updated as 
often as possible to ensure that they properly reflect the 
current process condition. Another key aspect is to consider 
intelligibility of the proposed upgrades, ensuring that non­
simulation experts may also exploit the prescriptive analyses. 
Thus, this task will result in a micro-service consisting of 
simulation models as a service. 

The i4Q Manufacturing Line Reconfiguration tools are 
optimisation microservices that use simulation to evaluate 
different possible scenarios and propose changes in the 
configuration of the manufacturing line to achieve improved 
quality targets. After the proposed configuration parameters 
are confirmed, these optimisation microservices evaluate the 
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new process output characteristics to validate the success of 
the optimisation and/or adapt its reasoning rules according to 
the achieved results. Based on this learning approach, the 
tools develop strategies for machine parameter calibration, 
line setup and line reconfiguration in order to increase 
productivity and reduce the efforts for line reconfiguration 
through AI, considering both automated approaches and 
collaboration with humans. 

The i4Q Manufacturing Line Data Certification 
Procedure provides a certification and audit procedure to be 
applied to the manufacturing resources (machine, cell or 
manufacturing line) to ensure that the data resulting from the 
manufacturing processes are accurate and reliable. In 
addition, it provides recommendations for process 
reconfiguration, audit strategies, certificates and regulations. 
The procedure describes the logical sequence of the activities 
to be performed, elements of the manufacturing resources to 
be audited (sensors, controls, software, etc.), calibration 
devices to be used and tests to be performed as well as the 
frequency with which the procedure is to be performed. This 
procedure also serves as a basis to complement existing 
quality certifications (i.e . ,  ISO 9000) introducing as a new 
factor to consider: the quality of the data generated during 
manufacturing processes. The procedure addresses: 
definition and vocabulary, frame and application areas, 
prerequisites, planning, implementation, controlling, 
improvement and documentation of data driven qualification, 
reconfiguration, and quality control. 

IV. DISCUSSION AND POTENTIAL IMP ACT 

The i4Q loT-based Reliable Industrial Data Services 
(RIDS) focuses on the prescriptive analytics challenge, which 
entails several smaller challenges, such as close-loop 
integration between data analytics and simulation processes 
(in order to bring simulation and digital twin models closest 
to reality and to capitalise on the insights gathered from such 
models) and by leveraging data analytics workloads between 
edge and cloud computing (so as to implement a hybrid 
cloud/edge computing scheme, to not only exploit the 
strength of cloud computing to process the complicated tasks 
but also harness the benefit of edge computing in short 
latency, consequently obtaining the better performance). 

Data quality is also more pervasive thanks to the i4Q 
Rapid Manufacturing Line Qualification and Reconfiguration 
tools, in particular in the context of Manufacturing Line 
Quality Diagnosis and Certification and Auditing. i4Q RIDS 
covers the wider, strategic and the more narrow, operational 
aspects of manufacturing data quality with the systematic 
identification of the various factors that influence data quality 
in manufacturing. This ranges from the hardware-related 
aspects, such as measurement system characteristics, to the 
analytics processes including AI methods, and organisational 
procedures that drive manual data collection. The i4Q 
Ontology makes the identified knowledge accessible to 
organisations and serves as a basis for a public knowledge 
base about the factors that influence data quality in 
manufacturing. 

Furthermore, the i4Q RIDS enhances blockchain 
technologies, including placing the necessary smart contracts 
in place, to enable full control over data. Access to specific 
data is governed by the blockchain itself, using appropriate 
smart contracts, by which evidence of the data to enable 
traceability, provenance and verification is kept in the 
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blockchain itself, providing full control to the data owner. It 
is supported a direct interaction from the manufacturing 
devices to the blockchain application to maintain a high level 
of trust in the data. The blockchain is used as a source of trust 
and integrity between multiple parties. In addition, there are 
aspects of privacy and confidentiality, whereas there might 
be data which only a defined set of participants could be 
eligible to access, therefore this might require exploration of 
encryption techniques to be able to grant access based on a 
given access policies list. 

One of the major challenges in Manufacturing Process 
Qualification is the reconsideration and adaptation of the 
classical approaches and methods for process validation to 
the new technologies. This step change would allow 
manufacturers to automatically collect real time data and use 
advanced statistical procedures for evaluation of process 
stability and process performance. To this end i4Q RIDS 
provides an automated manufacturing process qualification 
method enable to manage real-time data provided by 
architectures, algorithms and smart data analytics to faster the 
continuous process validation after process reconfiguration, 
monitoring the stability, capability and performance of 
manufacturing processes. 

Although the idea of the Digital Twin (DT) has received 
considerable attention in the last years, few real cases in 
manufacturing environment have successfully implemented 
this concept. The i4Q RIDS integrates the DT concept into 
existing production lines and legacy components, using it as 
a driver for line reconfiguration. Among others, the DT is 
used to obtain virtual sensors that increase available data, to 
supply Key Performance Indicators of the product quality, 
and to simulate potential line reconfigurations aimed at 
correcting deviations on the process. Thus, it will aid in 
moving towards intelligent automatic production line 
reconfiguration. 

V. CONCLUDING REMARKS AND FUTURE WORK 

This paper presents the i4Q RIDS (Reliable Industrial 
Data Services), integrating a set of 22 i4Q Solutions, 
targeting the manufacturing sector and aimed at improving 
the digital manufacturing through more reliable and effective 
data. It is founded on a unified yet modular Framework, 
rooted in a consistent Reference Architecture which 
encompasses the following core layers: physical, network, 
middleware, database, and application. The i4Q Reference 
Architecture is based on current standards in manufacturing 
(e.g., liRA, RAMI4.0, IDSA, and IMSA) and incorporates all 
fundamental viewpoints involved in the process: business, 
usage, functional and implementation. The i4Q RIDS, 
therefore, aims to support the complete flow of industrial 
data, starting from data collection to data analysis, simulation 
and prediction. It provides solutions to ensure data quality, 
security and trustworthiness, especially tailored for 
manufacturing, such as blockchain-based data services and 
distributed storage. 

The i4Q RIDS also includes a set of services for data 
integration and fusion, data analytics and data distribution. 
Execution of AI workloads (including at the edge) is enabled 
and effectively managed through dedicated services which 
enable the dynamic deployment scenarios based on a 
cloud/edge architecture. Monitoring at various levels is 
provided in the i4Q RIDS through scalable monitoring tools 
and the collected monitoring data are used for a variety of 
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activities including resource monitoring and management, 
workload assigmnent, smart alerting, predictive failure and 
model (re)training. 

Digital Twins are extensively used, enabling full 
digitisation of the manufacturing process and providing 
simulation and modelling capabilities. Digital twins are used 
for process qualification, in particular, to analyse how 
process parameters affect final product quality and obtain 
virtual sensors, as well as to explore potential upgrade actions 
and extend existing process data. Additionally, digital twins 
support quality diagnosis of the manufacturing line. Typical 
process qualification methods are improved in the i4Q RIDS 
thanks to automated continuous process qualification and the 
use of real-time data. 

In order to facilitate wide and agile deployment, the i4Q 
RIDS adopts a modular, microservices-based approach, 
allowing the framework (and individual components) to be 
adapted and integrated in different manufacturing scenarios, 
for diverse companies and at varying maturity levels. 

Future work will be dedicated to the implementation and 
validation of the i4Q RIDS into real use cases of different 
industrial sectors (white goods, wood equipment, metal 
machining, ceramics pressing, plastic injection and metal 
equipment), in order to demonstrate the applicability and the 
impact of the i4Q Solutions and its results in the market 
environment under real-world conditions, and the creation of 
a start-up for the commercialisation of the i4Q RIDS. 
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