
5258 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

Multi-Agent Reinforcement Learning for
Cooperative Coded Caching via

Homotopy Optimization
Xiongwei Wu , Student Member, IEEE, Jun Li , Senior Member, IEEE, Ming Xiao , Senior Member, IEEE,

P. C. Ching , Life Fellow, IEEE, and H. Vincent Poor , Life Fellow, IEEE

Abstract— Introducing cooperative coded caching into small
cell networks is a promising approach to reducing traffic loads.
By encoding content via maximum distance separable (MDS)
codes, coded fragments can be collectively cached at small-cell
base stations (SBSs) to enhance caching efficiency. However, con-
tent popularity is usually time-varying and unknown in practice.
As a result, cached content is anticipated to be intelligently
updated by taking into account limited caching storage and
interactive impacts among SBSs. In response to these challenges,
we propose a multi-agent deep reinforcement learning (DRL)
framework to intelligently update cached content in dynamic
environments. With the goal of minimizing long-term expected
fronthaul traffic loads, we first model dynamic coded caching as
a cooperative multi-agent Markov decision process. Owing to the
use of MDS coding, the resulting decision-making falls into a class
of constrained reinforcement learning problems with continuous
decision variables. To deal with this difficulty, we custom-build a
novel DRL algorithm by embedding homotopy optimization into
a deep deterministic policy gradient formalism. Next, to empower
the caching framework with an effective trade-off between com-
plexity and performance, we propose centralized, and partially
and fully decentralized caching controls by applying the derived
DRL approach. Simulation results demonstrate the superior
performance of the proposed multi-agent framework.

Index Terms— Small cell networks, MDS codes, homotopy
optimization, deep multi-agent reinforcement learning.

Manuscript received June 14, 2020; revised December 30, 2020; accepted
March 5, 2021. Date of publication March 23, 2021; date of current version
August 12, 2021. This work was supported in part by the U.S. National
Science Foundation under Grant CCF-1908308, in part by the EU Marie
Sklodowska-Curie Actions Project entitled “High-reliability Low-latency
Communications with Network Coding,” in part by the Swedish Foundation
for International Cooperation in Research and Higher Education (STINT),
project “Efficient and Secure Distributed Machine Learning with Gradient
Descend,” and in part by the National Natural Science Foundation of China
under Grant 61872184. The associate editor coordinating the review of
this article and approving it for publication was X. Cheng. (Corresponding
authors: Jun Li; Xiongwei Wu.)

Xiongwei Wu and P. C. Ching are with the Department of Electronic
Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
(e-mail: xwwu@ee.cuhk.edu.hk; pcching@ee.cuhk.edu.hk).

Jun Li is with the School of Electronic and Optical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
jun.li@njust.edu.cn).

Ming Xiao is with the School of Electrical Engineering and Computer
Science, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden
(e-mail: mingx@kth.se).

H. Vincent Poor is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
poor@princeton.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3066458.

Digital Object Identifier 10.1109/TWC.2021.3066458

I. INTRODUCTION

IN recent years, there has been a significant surge in
mobile data traffic, which is anticipated to impose a

heavy traffic burden on wireless networks for the foreseeable
future [1], [2]. As a consequence, wireless networks could
become very congested, and thus find it difficult to satisfy user
requests with satisfactory quality of service. To cope with this
challenge, edge caching has been proposed as a promising
solution towards fifth generation (5G) communications and
beyond [2]. By endowing caching units in wireless edge nodes,
e.g., small-cell base stations (SBSs), popular content can be
pre-fetched close to users. Subsequently, the cached content is
able to be delivered to users without duplicated transmissions
in fronthaul and backhaul links [2]. This process significantly
decreases traffic loads, alleviates network congestion, reduces
delay, and thus improves system performance [3]–[5].

In general, caching policies should be designed according
to system features, e.g., users arrivals and content popularity,
to better satisfy user demands. These features, in practice,
usually exhibit unknown and temporal dynamics. For instance,
content popularity is generally time-varying because the most
popular content at the current epoch may not receive the
highest attention in the future; and mobile users could change
locations as time passes [6]. Thus, with a limited caching
storage, it is crucial to learn how to reasonably update caching
content given the real-time observations of system features.
Fortunately, by embedding deep learning into reinforcement
learning (RL), deep RL (DRL) has emerged as an effective
tool to address decision-making in dynamic environments [7].
This artificial intelligence technique can be leveraged to learn
an optimal policy to maximize long-term performance criteria
through interactions with environments [7], [8]. In this way,
utilizing DRL is envisioned to empower “intelligent” caching,
i.e., updating caching resources by tracking and adapting to
dynamic features of wireless networks [9].

A. Related Work

Prior studies have generally investigated the potentials of
edge caching by optimizing average performance criteria. For
instance, the studies in [10]–[12] examined effective caching
strategies to alleviate traffic loads, and to reduce system cost
and download latency. With the aid of caching resources at

1536-1276 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3475-5212
https://orcid.org/0000-0002-6239-2922
https://orcid.org/0000-0002-5407-0835
https://orcid.org/0000-0002-4692-8707
https://orcid.org/0000-0002-2062-131X

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5259

SBSs, the studies in [13], [14] investigated the joint design of
SBS beamforming and clustering. Caching strategies in these
studies were designed to store either entire content items or
uncoded fragments, which is referred to as uncoded caching.

To further improve caching efficiency, coded caching has
recently attracted considerable research attention. The study
in [15] proposed a novel coded caching scheme, which
provides a global caching gain relating to cumulative stor-
age over all caching units. The research in [16], [17]
investigated cooperative coded caching by utilizing max-
imum separable distance (MDS) codes to reduce traffic
loads. MDS coded caching was also examined in [18],
[19] to augment SBS collaboration and thus offers sub-
stantial advantages in terms of lower latency and reduced
power consumption compared with uncoded caching. The
above-mentioned studies mainly investigated offline caching
policies by assuming time-invariant content popularity
distributions.

To exploit dynamic features in wireless networks, extant
works have been devoted to designing caching policies by
using RL. The study in [20] utilized Q-learning to find an
optimal caching policy to minimize network cost. To counter
the curse of dimensionality in conventional RL, DRL-based
caching policies were advocated in [9], [21]–[23] by using
deep neural networks as function approximators. Moreover,
the study in [24] proposed a multi-agent DRL framework to
maximize cache hit ratios for centralized and decentralized
settings. The authors in [25] investigated cache placement by
using cooperative multi-agent multi-armed bandit learning in
small cell networks (SCN). A decentralized caching scheme
was proposed in [26] by utilizing federated deep reinforcement
learning. Nevertheless, the research in [9], [20]–[26] focused
on uncoded caching. That is, each content item is entirely
cached without exploiting SBSs cooperatively fetching coded
fragments of each content item.

B. Contributions

Indeed, cooperatively pre-fetching MDS coded fragments
has been proven to significantly reduce traffic loads, download
delay, and transmission cost over caching uncoded fragments
at SCN [17]–[19]. By distributing MDS coded fragments of
a content item to multiple SBSs, mobile users are allowed
to access a cluster of SBSs simultaneously to download
coded fragments of the desired content item. To date, very
few works have investigated how to “intelligently” update
MDS coded content items under dynamic environments (e.g.,
time-varying content popularity). Unlike uncoded caching
schemes [7]–[9], [20]–[25] addressing binary decision-making,
coded caching essentially entails continuous caching decisions
that are subject to storage constraints. Therefore, the resulting
decision-making for cooperative coded caching is a con-
strained RL problem with a continuous action space. The prior
study in [27] adopted Q-learning to tackle this issue by quan-
tizing continuous actions into discrete values. This method
has been shown to impair performance compared with the
continuous RL approaches such as deep deterministic policy
gradient (DDPG) [27]. Another MDS caching study in [28]

adopted the conventional DDPG for decision making, which
may not be able to efficiently handle the storage constraints
and results in suboptimal decisions. It is worth noting that
the centralized control in [27], [28] could lead to excessive
communication overhead because the cloud processor (CP)
needs frequent communications with SBSs to aggregate infor-
mation and inform SBSs of their caching decisions. As the
number of SBSs increases, the dimension of continuous states
and actions in a centralized control would be very large, and
thus obtaining an optimal caching policy is computationally
prohibitive. As a consequence, it is very challenging, but
essential, to design efficient DRL algorithms for cooperative
coded caching. To bridge the research gap identified above,
in this work, we address the following fundamental issues of
cooperative coded caching: i) how to design efficient DRL
algorithms for a constrained RL problem with continuous
decision variables; and ii) how to develop a multi-agent
DRL-based framework with different levels of controls to
obtain an equitable trade-off between performance and
complexity.

The design recipe of the proposed DRL entails homotopy
optimization, which refers to a class of optimization methods
for non-convex problems by using of homotopy [29]. The
general idea is to develop a continuous transformation of
the original problem and gradually trace the path from the
solution of the transformed problem to the solution of the
original one. The transformed problem could be an easy one,
which inaccurately approximates the original problem, or a
hard one, e.g., by adding some regularizer which penalizes the
solution close to the optimum. In this work, we take the latter
approach and first introduce a cumulative penalty regularizer to
the corresponding RL problem of cooperative coded caching,
which can penalize poor caching decisions that violate the
optimal characterization. Such a transformed problem is found
to admit a structure that still can be addressed by DDPG.
Then, we propose a novel DRL approach by embedding
homotopy optimization into the formalism of DDPG, which
leads to better performance. We also devise its decentralized
adaptations to reduce signaling overhead.

The main contributions of this work are summarized as
follows:

• To the best of our knowledge, this is the first work to
investigate a multi-agent DRL framework for MDS coded
caching under time-varying content popularity. Specifi-
cally, we model cache updating for MDS coded caching
as a cooperative multi-agent Markov decision process
(MDP). With the goal of minimizing long-term expected
cumulative fronthaul traffic loads, we judiciously define
the system state, local observations and action space of
each agent, as well as the caching reward. Our formulated
problem is a continuous RL with action constraints.
We also characterize optimal decisions in a closed
form.

• As a core contribution, we reformulate a general con-
strained RL problem, whose action space is ineffi-
cient to be satisfied using neural networks, into a
tractable form that can be dealt with by utilizing homo-
topy optimization. Then, we custom-build a novel DRL

5260 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

algorithm, i.e., homotopy deep deterministic policy gradi-
ent (HDDPG), by recasting the basic elements of RL and
unfolding the iterative process of homotopy optimization.
The novelty of this approach lies in introducing a reason-
able cumulative penalty into the objective of RL, and then
properly manipulating it by using homotopy optimization.

• To endow the proposed DRL caching framework with
different levels of control, we generalize the proposed
HDDPG from centralized control to partially and fully
decentralized controls. Specifically, in the centralized
control, the CP coordinates SBSs to conduct cache updat-
ing by using global information. To reduce complexity
and communication overhead, we then propose a partially
decentralized control by allowing SBSs to make decisions
locally, while the decentralized policies are learned in
a centralized manner. In the fully decentralized control,
each SBS works as an independent learner and trains its
caching policy independently based on local observations.
The proposed decentralized controls can attain a desirable
trade-off between complexity and performance, and thus
have the potential to handle large-scale wireless networks.

The remainder of this paper is organized as follows. Sec. II
presents the problem statement. Sec. III introduces the pro-
posed DRL approach. Sec. IV develops a centralized coop-
erative coded caching design. Sec. V proposes a partially
decentralized caching design, and Sec. VI proposes a fully
decentralized caching design. Sec. VII presents performance
evaluations, and Sec. VIII concludes the paper.

II. PROBLEM STATEMENT

A. MDS Coded Caching at SCN

As illustrated in Fig. 1, we consider an SCN, in which
a total of B SBSs are densely deployed and thus are capa-
ble of cooperatively providing communication services for
users. Each SBS is endowed with a cache unit, which can
cache popular content from the CP through a capacity-limited
fronthaul. The CP is further connected to the core network
through a backhaul. Suppose that a catalog of F content items
are available at the CP. For ease of discussion, all of the
content items are of the same size s bits, and each cache
unit has a storage of L × s bits. Let B = {1, · · · , B} and
F = {1, · · · , F} denote the indices of SBSs and content items,
respectively.

To reduce traffic loads on the capacity-limited fronthaul and
provide better services for mobile users, SBSs can proactively
cache popular content. By applying MDS codes, each content
item of size s bits is able to be encoded into a sufficiently
long sequence of parity bits, and any s parity bits are sufficient
to reconstruct the original content item [17], [18]. Therefore,
SBSs with limited caching storage can cooperatively cache
these coded parity bits to satisfy user requests locally as much
as possible. More precisely, we define the cache allocation
matrix as L = [lf,b] ∈ R

F×B , where element lf,b ∈ [0, 1]
denotes the proportion of parity bits encoding content item
f that are stored at SBS b, ∀b ∈ B, f ∈ F . Owing to
the storage limit at SBSs, cache allocation needs to satisfy∑

f∈F lf,b ≤ L, ∀b. It is worth noting that, the parity bits of

Fig. 1. A downlink cache-enabled SCN.

a content item available at SBS b should be independent of
that cached at other SBSs; thus, users can always download
distinct coded content items from multiple SBSs [17]. To
guarantee this caching diversity among SBSs, the encoded
information sequence of parity bits of every content item
should be sufficiently long, e.g., larger than Bs.

In what follows, we introduce how SBSs cooperatively
transmit coded content items to mobile users. The operation
time of a SCN is divided into a series of epochs, indexed
by t = 0, 1, · · · . For each epoch t, a number of active users
Kt are randomly distributed in the horizontal plane. We also
assume that the duration of each epoch is relatively short,
such that active users are considered to be quasi-static during
a single epoch. Furthermore, each user k ∈ Kt is able to be
served by the neighboring SBSs, which are specified by the
communication radius [30]. Specifically, we set an indicator
variable et

k,b = 1 to indicate that dt
k,b ≤ r0, where r0 denotes

the communication radius of each SBS, and dt
k,b denotes the

distance between user k and SBS b at epoch t; otherwise,
et

k,b = 0. Accordingly, the neighboring SBSs to serve user k
are given by {b ∈ B|et

k,b = 1}. For notational convenience,
we collect all active users served by SBS b at epoch t as
set Kt

b = {k ∈ Kt|et
k,b = 1}, for ∀b ∈ B. The network

connectivity at epoch t is denoted by Et = {et
k,b}k∈Kt,b∈B. In

addition, every user is assumed to request one content item at
a single epoch. Evidently, if content item f is not fully stored
at the neighboring SBSs associated with user k at epoch t,
i.e., ∑

b∈B
ltf,be

t
k,b < 1, (1)

the missing part (1−∑
b∈B ltf,be

t
k,b)s needs to be transmitted

by the CP via fronthaul. This event is referred to as cache miss,
which introduces additional fronthaul traffic loads. We sum-
marize all of the key notations1 in Table I.

As a result, to mitigate traffic burden on fronthaul, optimized
caching policies depend highly on knowledge of network
connectivity, i.e., Et, and content popularity, i.e., {pf , ∀f},
where pf denotes the probability of content item f being
requested. These elements generally exhibit unknown and
time-varying dynamics in practice. Indeed, caching content

1Without further definition, in this paper, notation (·)t denotes the value of
(·) taken at epoch t.

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5261

TABLE I

SUMMARY OF MAIN NOTATIONS

needs to be temporally updated based on historical observa-
tions in order to provide better download services for future
requests. We thereby introduce a dynamic cooperative coded
caching problem in the following subsection.

B. Cooperative Multi-Agent MDP

In the cooperative coded caching, SBSs are anticipated to
collaboratively cache the coded content items, which can be
specified by optimizing continuous variables {ltf,b}. Therefore,
we formulate the considered cooperative coded caching prob-
lem as a cooperative multi-agent MDP.

Definition 1: A cooperative multi-agent MDP is specified
by a tuple (B,S,A,P , R, γ), where B denotes the set of
agents; S denotes the state space, which aggregates all of the
agent local observations S = ∪b∈B{Sb}; and A denotes the
action space for a joint action A = ∪b∈B{Ab}. Let Ab be
the action space of local action Ab, and then A = ∪b∈B{Ab}.
P collects all of the transition probability Pr{S′|S, A} for
∀S, S′ ∈ S, A ∈ A. All of the agents share a common reward
R after they cooperatively take actions {Ab}b∈B. γ ∈ [0, 1)
denotes a discount factor.

As aforementioned, user requests are expected to be satisfied
by SBSs locally as much as possible; otherwise, the miss-
ing fragments could introduce additional traffic burden and
transmission delay on the fronthaul. Therefore, in this paper,
our goal is to minimize the expected fronthaul traffic loads.
Accordingly, the basic elements in a cooperative multi-agent
MDP are defined as follows.

State: We assume that a user request can be observed by his
or her neighboring SBSs only. Consequently, SBS b has local
observation of the environment, which is defined as follows:

St
b =

[
{f t

k}k∈Kt
b
, {Et

k}k∈Kt
b
, {ltf,b}f∈F

]
, (2)

where f t
k ∈ F denotes the index of the content item requested

by user k at epoch t; and Et
k = {et

k,b′}b′∈B implies the
strategy of SBS collaboration in order to satisfy user k’s
request, which can be inferred through acquiring user location.
By aggregating observations of all SBSs, the system state is
defined as:

St =
[{f t

k}k∈Kt , Et, Lt
]
. (3)

Action: By the end of each epoch t, all SBSs need to update
their cached content. Accordingly, we define the action of SBS
b at the current epoch as At

b = [at
f,b, ∀f ∈ F], where element

at
f,b = lt+1

f,b ; and the corresponding action space is given by:

Ab =
{
At

b|0 ≤ at
f,b ≤ 1, ∀f ∈ F ,

∑
f∈F at

f,b ≤ L
}

. (4)

As such, a joint action can be given by At = [at
f,b,

∀f ∈ F , b ∈ B].
Reward: After executing joint action A, the system state

turns into St+1 with transition probability Pr{St+1|St, At}.
In this cooperative task, all of the agents shall receive a
common reward R(St+1, St, At), which indicates how good
a joint action At is. Therefore, it should be consistent with the
goal of reducing fronthaul traffic loads. The total traffic loads
for updating caching resources and satisfying user requests in
the coming epoch are given by:

Ct+1 =
∑

f∈F ,b∈B
max

{
lt+1
f,b − ltf,b, 0

}

+
∑

k∈Kt+1

max

{
0, 1−

∑
b∈B

lt+1
f,b et+1

k,b

∣∣∣∣
f=ft+1

k

}
. (5)

Accordingly, we design the reward as Rt+1 =
R(St+1, St, At) � −Ct+1/|Kt+1|, which indicates the
normalized traffic loads to satisfy each content request at the
coming epoch.

Toward this end, the goal of this study is to find a cooper-
ative caching policy π∗, which maximizes the total expected
cumulative caching reward, i.e.:

π∗ = argmax
π∈Π

E
[
V

∣∣π]
, (6)

and the cumulative reward is defined as:

V �
∞∑

t=0

(γ)tRt+1, (7)

where π denotes a mapping from state space to action space; Π
denotes the set of feasible caching policies; and the expectation
is over all of the rewards {R(St+1, St, At)}. Furthermore,
a characterization for optimal decisions is presented in the
following proposition.

Proposition 1: Consider that all SBSs are fully loaded at
the initial epoch, i.e.,

∑
f∈F l0f,b = L, ∀b ∈ B. There exists an

optimal decision sequence {(At)∗} satisfying
∑

f∈F(at
f,b)

∗ =
L, ∀b ∈ B, where (At)∗ = [(at

f,b)
∗], for any t ≥ 1.

Proof: See Appendix A.
Remark 1: Proposition 1 implies that optimal caching deci-

sions are likely to be the case where caching units are
fully loaded. This result is reasonable and would provide
further insight for algorithm design. Nevertheless, calculating
an optimal cooperative caching policy offline depends on
knowledge of network dynamics (e.g., transition probabil-
ity Pr{S′|S, A}), which is generally difficult to obtain in
real applications. Even if this knowledge could be obtained,
problem (6) is still intractable due to its no closed-form
expression. In view of this, one can resort to DRL to handle
this problem through utilizing historical experiences without
knowing exact dynamic information. On the other hand,
as previously mentioned, the decision variables {at

f,b} for
cooperative coded caching are continuous. Simply quantizing

5262 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

these variables into discrete values may lead to performance
loss as well as an exponentially large number of actions.

III. A NOVEL HOMOTOPY DDPG

To develop an effective DRL algorithm for the considered
problem, we first introduce a policy-based RL algorithm and
identify the arising challenges. Then, we recast a general
policy based RL problem with constraints into a tractable form,
which is suitable to be addressed by leveraging homotopy
optimization. Finally, we custom-build a novel DRL algorithm
by embedding homotopy optimization into DDPG.

A. Fundamentals of DDPG

DDPG is one of the policy-based RL algorithms, which
is widely used to handle continuous decision-making [31].
Built upon actor-critic architectures, this algorithm employs
deep neural networks as function approximators to learn a
deterministic policy that can map high-dimensional states into
feasible continuous actions. Typically, a DDPG based RL
framework consists of two networks, i.e., critic and actor,
which are detailed as follows.

Actor: The actor network corresponds to a deterministic
policy, which can generate an action A under a given system
state S, i.e., A = πθ(S), and θ is the parameter of the
associated deep neural networks. This parametrized policy
πθ(·) aims to maximize the expected cumulative reward, i.e.:

J(θ) = E
[
V

∣∣πθ

]
. (8)

Critic: The critic network Qφ(S, A) serves as an estimator
to predict an action-value function (also termed as Q-function),
i.e., E [V | S, A, πθ] , and φ denotes the parameter of the
associated deep neural networks. In general, the critic is
designed to fine-tune the actor, which yields

πθ(S) = arg max
A∈A

Qφ(S, A). (9)

By recalling (7), it leads to the following recursive equation:

Qφ(S, A) = ES′,R|S,A

[
R + γQφ

(
S′, πθ(S′)

)]
, (10)

where S′ denotes the subsequent state after taking A under
state S; R denotes the corresponding instant reward; and the
expectation is over all of the possible occurrences of (S′, R).

Learning Algorithm: As a category of policy gradient
approaches, actor parameter θ is updated by using stochastic
gradient descent, where the gradient of the policy can be given
by Deterministic Policy Gradient Theorem [31]; concerning
the critic network, parameter φ is updated according to
Temporal Difference. Readers are referred to [31] for greater
details.

Although DDPG has achieved great success in addressing
many continuous decision-making tasks, the action space in
our problem (defined by (4)) could restrain it from being
efficient. Specifically, to confine the output of the actor to be
feasible, the authors in [28] propose to first use the activation
function SoftMax to normalize the output of the last layer,
which is then multiplied by the caching capacity (e.g., L). In
other words, denoting the output of the neurons in the last

layer by z = [zf,b]f∈F ,b∈B, one can construct the following
activation function:

σf,b(z) = L× exp(zf,b)∑
f ′∈F exp(zf ′,b)

, ∀f ∈ F , ∀b ∈ B. (11)

However, the resulting elements could surpass 1 when L� 1;
directly clipping it to 1 may lead to a very poor caching
decision if an element σf,b(z) = L exists. This practice
contradicts Proposition 1 and may degrade the performance.
In the following subsections, we formally analyze this issue
and propose an efficient approach to overcome this challenge.

B. A Homotopy Optimization Based Approach

For a class of RL problems, the corresponding action space
A could be some constraints inefficient to be directly satisfied
through designing neural networks μθ. More specifically,
we consider the following situation: let μθ(S) be the output
of neural networks μθ given state S. There exists some state
S ∈ S such that μθ(S) /∈ A. We thereby term μθ(S)
as a proto-action. To deal with this issue, a straightfor-
ward approach is to use a mapping function σA(·), which
can project a proto-action μθ(S) into the action space,
i.e., σA [μθ(S)] ∈ A. Thus, a feasible policy function can
be given by πθ(·) = σA[μθ(·)]. Accordingly, the associated
policy-based RL problem is supposed to take the following
form:

max
θ

J(θ|σA) � E
[
V

∣∣μθ, σA
]
. (12)

Nevertheless, for many constrained RL applications, poor
actions are likely to be generated after projection. Like the
example in the previous subsection, mapping a proto-action
with a dominant element at

f,b = L into an one-hot vector
may lead to a very sparse caching vector; this case implies a
very low caching resource available at SBSs. When frequently
encountering this instance during training, using mapping
methods may not guarantee network parameters to be effi-
ciently updated. Thus, it will lead to a suboptimal policy.

To remedy this method, a natural idea is to seek a proper
way to penalize the performance loss caused by mapping a
proto-action μ(St) into a feasible one given any state St.
Let g(·|σA) be a general penalty function, which needs to be
designed according to the corresponding problem. In the coded
caching problem, inspired by Proposition 1, a penalty function
can be given by

g(S|σA) = BL− ‖vec(σA(A))‖1
∣∣
A=μθ(S)

, (13)

where ‖ · ‖1 denotes l1-norm; and this penalty indicates
the remaining storage over all caching units after taking
action σA(A).

The proposed approach is then built upon maximizing a
homotopy function:

max
θ

Jhom(θ|λ, σA) � J(θ|σA) + λG, (14)

where the discount cumulative penalty, i.e., G =
E

[∑+∞
t=0 (γ)tg(St|σA)

]
, is finite due to a discount factor

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5263

γ ∈ [0, 1); and λ ≤ 0 is a homotopy variable, such that:

Jhom(θ|λ, σA) =

{
J(θ|σA), λ = 0,

Jhom(θ|λmin, σA), λ = λmin.
(15)

At this stage, we introduce the following lemma to
address problem (12) through a typical homotopy optimization
method [29].

Lemma 1: On the basis of homotopy optimization, one can
initialize a sequence of positive values, i.e., δi, i = 1, · · · , I ,
subject to:

I∑
i=1

δi = −λmin, (16)

and also initialize a point (θ0, λ0), where θ0 denotes a (local)
optimizer of Jhom(θ|λ0, σA) and λ0 = λmin; and then iterate
the following update:

λi = λi−1 + δi, (17)

and calculate a local optimizer θi of Jhom(θ|λi, σA) by using
gradient descent starting from θi−1. Eventually, this homotopy
approach is able to result in point (θI , 0), where θI is a local
minimizer of problem (12) [29].

The motivation of the homotopy optimization approach is
as follows: Starting with a sufficient small value of λmin < 0,
a very large cumulative penalty |λminG| may penalize the
corresponding policy (parametrized by θ0) to generate desir-
able actions, e.g., caching decisions that fully exploit avail-
able caching storage in the considered problem. Thereafter,
by using homotopy optimization, we attempt to carefully tune
policy parameter θ0 to a (local) optimizer θI of the original
problem (12), which is likely to produce good decisions
despite of applying mapping function σA(·).

C. Proposed DRL Algorithm

In each iteration of homotopy optimization, computing
an optimizer (e.g., θi) of problem (14) offline is somehow
impractical under an unknown temporally evolving environ-
ment. For this reason, we custom-build HDDPG for problem
(12) by recasting the basic elements of DRL and unfolding
the iterative procedure of homotopy optimization introduced
in Lemma 1.

Specifically, as an actor-critic approach, HDDPG maintains
a parametrized critic Qhom,φ(S, A) and actor μθ(S) in addi-
tion to a mapping function σA(·), where a feasible policy
is given by πθ(S) = σA[μθ(S)]. Following the sketch of a
plain DDPG,2 we introduce the proposed algorithm as follows.
Evidently, the objective Jhom(θ|λ, σA) can be equivalently
reformulated as:

Jhom(θ|λ, σA) = E

[
+∞∑
t=0

(γ)t
(
Rt+1 + λg(St|σA)

)]
. (18)

Accordingly, we define the homotopy reward after taking
action At as:

Rt+1
hom = Rhom(St+1, St, At) � Rt+1 + λg(St|σA), (19)

2For clarity, we term the DRL algorithm proposed in [31] as plain DDPG.

which is known at epoch t+1. Then, the homotopy Q-function
can be given by:

Qhom(St, At) = E

[
+∞∑
τ=0

(γ)t+τRt+τ+1
hom

∣∣∣∣St, At, μθ, σA

]
,

which implies the discount cumulative homotopy reward after
taking an action At under state St and thereafter following
policy πθ(·) = σA[μθ(·)]. As a direct deduction of the
Bellman optimality equation [32], we have the following
Homotopy Bellman Optimality Equation.

Lemma 2: An optimal Q∗
hom(S, A) satisfies the following

recursive equality:

Q∗
hom(S, A) = ERhom,S′|S,A

[
Rhom + γ max

A′∈A
Q∗

hom(S′, A′)
]

,

where S′ denotes the subsequent state after taking an optimal
action A; and Rhom denotes the associated homotopy reward.
Accordingly, to estimate an optimal homotopy Q-function,
the critic Qhom,φ(S, A) can be learned by using Lemma 2.
Specifically, we update φ by minimizing the following loss
function:

Loss (φ) = Eξhom

[
(y −Qhom,φ(S, A))2

]
, (20)

where ξhom = (S, A, Rhom, S′); and y denotes the target value:

y = Rhom + γQhom,φ

(
S′,A′) ∣∣

A′=πθ(S′). (21)

Regarding the update of the actor, it depends on the gradient
of the objective Jhom(θ|λ, σA), which brings us to the follow-
ing the Deterministic Policy Gradient Theorem for HDDPG.

Lemma 3: Consider a homotopy deep deterministic policy
with a continuous action space A and a homotopy variable
λ, as well as a mapping function σA. Suppose that σA(·) is
continuous. Then, the deterministic policy gradient exists when
∇θμθ(S) and ∇AQhom,φ(S, A) exist, i.e.:

∇θJhom(θ|λ, σA) � ES

[
∇AQhom,φ(S, A)

∣∣
A=σA[μθ(S)]

∇A′σA(A′)|A′=μθ(S)∇θμθ(S)
]
. (22)

Proof: See Appendix B.
Finally, we leverage inexact gradient descent methods to
update {θ, φ, λ} [33]. In particular, the updates of φ, θ occur
at each epoch, i.e.:

φ ← φ− αc∇φLoss(φ), (23)

θ ← θ + αa∇θJhom(θ|λ, σA), (24)

where αc and αa are the learning rates of the critic and actor,
respectively; and λ can be updated slowly, i.e., after every I0

epochs, one can execute the following:

λiI0 ← λ(i−1)I0 + δi, (25)

where sequence {λi}Ii=1 should meet the equality in (16).
Remark 2: In contrast with plain DDPG, which constitutes

a special case of the proposed HDDPG, i.e., λ = 0, properly
introducing a penalty term into the objective function assists
to infer which actions should be better to take and avoid

5264 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

Fig. 2. Proposed multi-agent DRL-based cooperative coded caching framework.

becoming stuck in suboptimal solutions. More importantly,
we unfold the homotopy optimization approach in Lemma 1
into a DRL, which can be done through interacting with
environments.

In the ensuing sections, we will apply HDDPG to the
cooperative coded caching problem and propose a centralized
caching design, and further generalize HDDPG in decentral-
ized settings to reduce complexity and communication cost.

IV. CENTRALIZED HDDPG BASED

COOPERATIVE CODED CACHING

In this section, we introduce a centralized HDDPG
(C-HDDPG) design for multi-agent cooperative coded
caching. As illustrated in Fig. 2(a), the system operation
is at the level of centralized control. The CP serves as a
centralized agent and coordinates the cooperative caching
policies for all SBSs based on global information. To real-
ize this, the CP maintains a (centralized) critic network
Qφ(S, A) and a (centralized) actor network μθ(S), as well
as a mapping function σA(·). In what follows, we first intro-
duce a detailed implementation of the proposed centralized
design, and then analyze its communication overhead and
complexity.

A. Proposed Centralized HDDPG Based Design

The system operation includes two procedures, i.e., network
training and network evaluation. In general, during network
evaluation, the CP simply leverages the actor and mapping
function to make caching decisions, while the critic is only
necessary during training procedure to fine-tune the actor.
The details of network design and training procedure are
introduced as follows.

Network Design: In general, both networks, i.e., critic and
actor, can be implemented by fully connected neural networks
where each hidden layer has a batch of neurons and an
activation function to perform nonlinear transformations [34].
The output of the critic should be a scalar, which corresponds
to the estimated value of the Q-function. To generate feasible
actions, we elaborate on how to design the actor network μθ

and mapping function σA. It is evident that the number of
neurons in the output layer of μθ should match the dimension
of a joint action, i.e., F × B (and these neurons output a
long vector z = [z1,1, z2,1, · · · , zf,b, · · · , zF,B]). Then, we use
the activation function (e.g., realized by Scaling and SoftMax

in (11)) to refine z, i.e., σf,b(z), which thereafter is filtered
by a mapping function 3 σA(·) = min{1F×B, ·}. Accordingly,
any proto-action μθ(S) can be mapped into a feasible action,
i.e., min{1F×B, μθ(S)}.

Update: To proceed, the technique of Replay Buffer
(RB) Ξ is introduced to store historical experiences
ξt = (St, At, Rt+1

hom , St+1), which serves as the data set for
network training. The buffer size |Ξ| is usually finite, and thus
the most outdated experience should be replaced by the current
one as long as Ξ is fully loaded. Subsequently, at each epoch,
we can randomly sample a mini-batch of N experiences (e.g.,
set ΞN) from RB to update parameters of the critic and the
actor networks. More concretely, parameter φ of the critic
network can be updated by minimizing the following loss
function:

Loss (φ) = Eξt∼ΞN

[(
yt

φ− −Qhom,φ(St, At)
)2

]
, (26)

where the expectation is over all of the sampled experiences;
yt

φ− denotes the target value:

Rt+1
hom + γQhom,φ−

(
St+1, σA[μθ−(St+1)]

)
, (27)

and Qhom,φ−(S, A) and μθ−(S) denote the target critic and
the target actor with parameters φ− and θ−, respectively.
To stabilize training [31], target networks should be slowly
updated, i.e.:

φ− ← τφ + (1− τ)φ−, (28)

θ− ← τθ + (1− τ)θ−, (29)

where τ is a very small step size. With regard to updating
parameter θ, the corresponding homotopy deterministic pol-
icy gradient ∇θJhom can be estimated by (22). In addition,
the homotopy variable should be updated according to (25).

Exploration: To avoid being stuck in suboptimal decisions,
exploration is usually needed during network training. The
purpose of this process is to gather sufficient experiences,
which then are used to infer what actions should be adopted
under different states. In continuous decision-making applica-
tions, a typical method is to add Ornstein-Uhlenbeck random
noise to the action generated by the actor [31], i.e.:

πexplore
θ (St) = σ′

A
(
πθ(St) + βtΔt

)
, (30)

3For instance, min{1, X} is an element-wise operator that executes
max{1, xf,b} for any element xf,b of X.

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5265

Algorithm 1 Proposed C-HDDPG Based Cooperative Coded
Caching
1: Initialize τ , αc, αa, γ, N , I0, λ = λmin, i = 0
2: Initialize parameter φ for critic network and θ for actor

network
3: Initialize parameters φ− ← φ, θ− ← θ for target critic

network and target actor network
4: Initialize RB Ξ and mapping function σA
5: Initialize δ1, δ2, · · · , δI

6: for t = 0, 1, 2, · · · do
7: Input St to actor and output At = πexplore

θ (St)
8: Take action At and observe St+1, Rt+1

9: Calculate Rt+1
hom by (19)

10: Store ξt =
(
St, At, Rt+1

hom , St+1
)

into RB
11: procedure TRAINHDDPG
12: Randomly sample a mini-batch of N experiences

from relay buffer as ΞN

13: Update φ, θ by (23) and (24), respectively
14: Update φ−, θ− by (28) and (29), respectively
15: if t == i× I0 then
16: λ← λ + δi, i← i + 1
17: end if
18: end procedure
19: end for

where σ′
A is a simple mapping function that maps a

noise-perturbed action into a feasible one;; Δt = [δt
f,b] ∈

R
F×B; and each element δt

f,b denotes a sample drawn from a
continuous Ornstein-Uhlenbeck process [31]; and βt ≥ 0 is a
diminishing parameter.

To this end, an entire implementation of this centralized
control is shown in Algorithm 1.

B. Fronthaul Communication Complexity

In the proposed centralized caching design, the CP needs to
frequently communicate with SBSs during network training
and evaluation. Herein, we briefly analyze fronthaul com-
munication complexity of this centralized control, which is
described by the total dimension of variables that are trans-
mitted between the CP and SBSs. We consider the worst case,
in which each SBS is fully loaded and serves a maximum
number of users, e.g., |Kt

b| = K . Specifically, during network
training, the CP needs to obtain information about the system
state [{f t

k}, Et, Lt] at each epoch. The dimension of user
requests should be BK . Network connectivity Et can be
computed by knowing the coordinates of the active users; by
denoting the coordinates as two dimensional vectors, the total
dimension of user positions is 2BK . Clearly, the CP has
the exact information about cache allocation Lt, which is
termed as At−1 in its RB; thus, no fronthaul cost is involved.
Afterwards, the CP uses fronthaul links to inform caching
decisions {At

b}; the total dimension of the involved variables
is given by BF . Regarding reward Rt+1, it can be inferred
from state St+1. Hence, the overall fronthaul communication
complexity during network training is O(3BK +BF). When
the system runs in an evaluation procedure, the CP again

Algorithm 2 Proposed PD-HDDPG Based Cooperative Coded
Caching
1: Initialize τ , αc, αa, γ, N , I0, λ = λmin

2: Initialize parameter φ for the critic and θ = {θb, ∀b ∈ B}
for actors

3: Initialize parameters φ− ← φ, θ− ← θ for target critic
and target actors

4: Initialize RB Ξ and mapping functions {σb, ∀b ∈ B}
5: Initialize δ1, δ2, · · · , δI

6: for t = 0, 1, 2, · · · do
7: for b ∈ B do
8: Observe St

b and compute action At
b through πb with

proper exploration
9: end for

10: Execute {At
b, ∀b} in a real environment and observe

St+1 = {St+1
1 , · · · , St+1

B }, Rt+1

11: Let At = {At
1, · · · , At

B} and calculate Rt+1
hom by (19)

12: The CP pushes ξt =
(
St, At, Rt+1

hom , St+1
)

into RB
13: procedure TRAINHDDPG
14: Randomly sample a mini-batch of experiences ΞN

15: Calculate ∇φLoss(φ) and φ← φ−αc∇φLoss(φ)
16: for b ∈ B do
17: θb ← θb + αa∇θb

Jhom

18: end for
19: φ− ← (1− τ)φ− + τφ, θ− ← (1 − τ)θ− + τθ
20: if t == i× I0 then
21: λ← λ + δi, i← i + 1
22: end if
23: end procedure
24: end for

needs to know the system state and inform each SBS of its
caching decision. Consequently, the corresponding fronthaul
communication complexity is O(3BK + BF).

Moreover, the critic and actor are built upon system states
and joint actions, i.e., (St, At), which is in the order of O(B2)
of local observations and actions, i.e., (St

b, A
t
b). For this

reason, the computational complexity would be excessively
high as the number of agents increases for a continuous RL
problem [35]. To address this issue, we now focus on devel-
oping efficient decentralized algorithms in following sections.

V. PARTIALLY DECENTRALIZED HDDPG
BASED COOPERATIVE CODED CACHING

In this section, to circumvent excessive communication cost
and high complexity in the centralized design, we develop a
partially decentralized (PD)-HDDPG based cooperative coded
caching design. This scheme operates at the level of partially
decentralized control, in the sense that a (centralized) critic
is used to train (local) actors that separately approximate the
caching policy of each SBS.

A. Partially Decentralized Multi-Agent HDDPG

In a PD multi-agent framework, each agent maintains an
actor and mapping function to produce its actions. To augment
collaboration among multiple agents, these actors are trained

5266 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

with the aid of a (centralized) critic. Specifically, agent b
has an actor μb (parametrized by θb) and mapping function4

σb, which are able to map a (local) proto-action μb(Sb) into
the corresponding action space Ab. Accordingly, the policy
function for agent b can be expressed by πb = σb[μb(·)].

On the basis of homotopy optimization, all agents coop-
eratively seek policies to jointly maximize the following
homotopy function:

Jhom(θ1, · · · , θB|λ, σA) = E

[∞∑
t=0

(γ)tRt+1
hom

∣∣μθ, σA

]
, (31)

where we define μθ � {μ1, · · · , μB} and σA � {σ1,
· · · , σB}; and the homotopy reward Rt

hom can
be given by (19). Next, a (centralized) critic
Qhom,φ(St, At

1, A
t
2, · · · , At

B) is leveraged to estimate
E

[∑∞
τ=0(γ)t+τRt+τ+1

hom

∣∣St, At
b, μb, σb, ∀b ∈ B

]
. Similar to

C-HDDPG, parameter φ can be learned by minimizing the
following loss function:

Loss (φ) = Eξt∼ΞN

[(
yt

φ− −Qhom,φ(St, At
1, · · · , At

B)
)2

]
,

(32)

where yt
φ− denotes the target value, i.e., Rt+1

hom + λQhom,φ−(
St+1, A1, · · · , AB

) ∣∣
Ab=σb[μ

−
b (St+1

b)]
, and θ−

b , φ−

are parameters of target actor μ−
b and target critic

Qhom,φ− , respectively. Furthermore, the gradient
∇θb

Jhom(θ1, · · · , θB|λ, σA) can be approximated by:

Eξt∼ΞN

[
∇Ab

Qhom,φ(St, A1, · · · , AB)|Ab=πb(St
b)

∇θb
πb(St

b)
]
. (33)

Similarly, homotopy variable λ should be updated in accor-
dance with (25).

B. Implementation

As depicted in Fig. 2 (b), we propose a PD-HDDPG
based cooperative coded caching design. Specifically, the CP
maintains a centralized (critic), while each SBS has a local
actor and mapping function. In addition, the actor and mapping
function are designed in the same manner as the centralized
scheme to ensure that their outputs are feasible to (4). Par-
ticularly, σb(·) = min{1F , ·}, ∀b ∈ B. During the training
procedure, the critic and (local) actors should be learned in
the CP. We again adopt the techniques of exploration and RB,
and the entire procedure is similar to what we have presented
in Algorithm 1. The detailed implementation is shown in
Algorithm 2. Notably, after all actors are fine-tuned, the CP
needs to send actor parameters (e.g., θb, ∀b) to SBSs, which
thereafter can locally compute actions.

4For simplicity of notation, μb and σb are abbreviations of μθb
and σAb

,
respectively.

Algorithm 3 Proposed FD-HDDPG Based Cooperative Coded
Caching
1: Initialize τ , αc, αa, γ, I0, λ = λmin

2: Initialize parameters φ = {φb, ∀b ∈ B} for critics and
θ = {θb, ∀b ∈ B} for actors

3: Initialize parameters φ− ← φ, θ− ← θ for target critics
and target actors

4: Initialize Ξb, Nb, ∀b ∈ B and {σb, ∀b ∈ B}
5: Initialize δ1, · · · , δI

6: for t = 0, 1, 2, · · · do
7: for b ∈ B do
8: Execute At

b = πb(St
b) with proper exploration and

calculate gb(St
b)← L− ‖At

b‖1
9: end for

10: Observe St+1
b , ∀b ∈ B, and Rt+1

11: Calculate Rt+1
hom by (34)

12: for b ∈ B do
13: SBS b stores ξt =

(
St

b, A
t
b, R

t+1
hom , St+1

b

)
into Ξb

14: end for
15: procedure TRAINHDDPG
16: for b ∈ B do
17: Randomly sample a mini-batch of experiences

Ξb,N

18: φb ← φb − αc∇φb
Loss(φb)

19: θb ← θb + αa∇θb
Jhom

20: φ−
b ← (1− τ)φ−

b + τφb, θ−
b ← (1− τ)θ−

b + τθb

21: if t == i× I0 then
22: λ← λ + δi, i← i + 1
23: end if
24: end for
25: end procedure
26: end for

C. Fronthaul Communication Complexity

During the training procedure, fronthaul communica-
tion complexity is the same as that of C-HDDPG, i.e.,
O(3BK + BF). When the system runs in an evaluation
procedure, each SBS computes its action locally; obviously,
no fronthaul communication is incurred when observing con-
tent requests and positions of local users.

VI. FULLY DECENTRALIZED HDDPG BASED

COOPERATIVE CODED CACHING

To further reduce complexity and fronthaul signaling,
we propose a fully decentralized (FD) control for cooperative
coded caching. Particularly, each SBS serves as an independent
learner to locally train its caching policy. Hereunder, we first
present the FD-HDDPG based caching design, and then briefly
summarize the complexity of all of the proposed designs.

A. Fully Decentralized Cooperative Coded Caching Design

As shown in Fig 2(c), each SBS has a set of critic, actor,
and mapping functions. These basic elements are designed in
the same manner as that of C-HDDPG, but built upon local
observations. More precisely, with an actor μb(·) and mapping

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5267

TABLE II

FRONTHAUL COMMUNICATION COMPLEXITY

function σb, SBS b can obtain a feasible action by mapping a
proto-action μb(Sb) into the action space Ab, i.e., σb[μb(Sb)].
SBSs are encouraged to cooperate with each other and receive
a common reward Rt from the environment as the performance
criterion to evaluate their policies. On the basis of homotopy
optimization, a (local) critic Qhom,φb

(St
b, A

t
b) is designed for

SBS b to estimate E

[∑+∞
τ=0(γ)t+τRt+τ+1

hom |St
b, A

t
b, μb, σb

]
,

where Rt
hom is defined as:

Rt
hom � Rt + λ

∑
b∈B

gb(St−1
b |σb), (34)

and gb(St−1
b |σb) � L − ‖σb(μb(St−1

b))‖1, ∀b. Subsequently,
each agent is envisioned to independently train its critic
and actor. In addition, the training procedure should follow
the same workflow as C-HDDPG, which is presented in
Algorithm 3 in greater detail.

B. Fronthaul Communication Complexity

During network training, although fronthaul communica-
tions are not necessary for SBSs to obtain local observations,
each SBS still needs to know the homotopy reward. SBSs
first locally computes {gb(St

b|σb)}, which are then aggregated
by the CP and subsequently sent back to each SBS. There-
fore, fronthaul communication complexity during training is
given by O (2B). For network evaluation, SBSs can directly
calculate local actions according to their observations; thus,
no fronthaul communication is needed. Finally, we show the
fronthaul communication complexity of all proposed algo-
rithms in Table II.

Remark 3: As a comparison, we summarize the charac-
teristics of all algorithms. Operating in the centralized con-
trol, C-HDDPG incurs the highest fronthaul communication
complexity in either training or evaluation procedure. In this
algorithm, the CP needs to coordinate SBSs by aggregat-
ing local information and distributing individual actions.
To reduce fronthaul communication complexity, PD-HDDPG
is then devised with a partially decentralized manner. That
is, a centralized critic is applied to train local policies
for each SBS, which is capable to produce actions based
on local observation. In this way, fronthaul communication
complexity during the evaluation procedure is as low as that of
FD-HDDPG. In the fully decentralized control, FD-HDDPG
has the lowest fronthaul communication complexity during
training and evaluation procedures, which might compromise
performance. The reason being that each SBS serves as an
independent decision-maker, which trains caching policies
based on local information without the coordination of the CP.
By enabling different levels of control, the proposed caching
framework is envisioned to possess advantages of superior
performance, as well as scalability to large-scale systems.

VII. PERFORMANCE EVALUATIONS

A. Simulation Setup

Unless stated otherwise, we consider the following default
settings: a SCN covers a square area of [0, 1] km × [0, 1] km;
four SBSs are uniformly deployed in the region, each of which
has a communication radius of r0 = 500 m and can provide
service for a maximum of 100 mobile users during each epoch;
and mobile users are randomly distributed by following a
Poisson point process (PPP) with density 9.5 × 10−5 during
each epoch. Moreover, user preferences towards content are
considered to have multiple patterns, i.e., each preference pat-
tern follows a Zipf distribution, i.e., pf = ζ−κ

f /
∑

f ′∈F ζ−κ
f ′ ,

where ζf denotes the popularity rank of content item f ,
which is temporally and randomly evolving as time passes;
κ denotes a skewness factor and randomly takes a value from
{0.5, 1, 1.5, 2}; a catalog of 20 content items are encoded by
MDS codes; and each SBS has a fractional caching capacity
L/F = 0.2, which indicates that each SBS can fetch 20% of
the total content.

B. Convergence Behavior

To analyze the proposed caching framework, we consider
the following baselines:

• Centralized Optimization-Cache Update (CO-CU):
This is a centralized optimization-based design, which
is performed at the CP [17], [18]. Specifically, one can
first estimate the probability of each content item that
could be requested by users under the coverage of SBS b,
i.e., pf,b = Nf,b/

∑
f ′∈F Nf ′,b, ∀f , where Nf,b denotes

how many requests of content item f that SBS b receives
at the current epoch. Similar to the cooperative caching
problem formulated in [17], the joint caching decision
(e.g. At) can be optimized by minimizing the expected
fronthaul traffic loads together with cache updating cost.

• Local Optimization-Cache Update (LO-CU): This
scheme works at a level of decentralized control. Instead
of optimizing joint action At via CP in CO-CU, each SBS
separately calculates its caching decision (e.g, At

b) by
minimizing the expected fronthaul loads corresponding
to local user requests from its communication range.

• Random Cache Update (RCU): At each epoch, every
SBS randomly updates its caching resource until it
reaches storage limits.

• Plain DDPG based Schemes: To assess the effectiveness
of the proposed DRL, we consider to implement plain
DDPG in different levels of controls, i.e., C-DDPG,
PD-DDPG and FD-DDPG, each of which follows a
similar idea to the proposed caching approach.

To implement the proposed algorithms, every critic has three
hidden layers, each of which contains 512 neurons. Each actor
consists of three hidden layers with 256, 128, and 64 neurons,
respectively. All of the networks are trained by the Adam
optimizer with a polynomial learning rate (e.g., readers are
referred to [36] for additional details), where we set initial
learning rates for actors and critics as 0.01 and 0.001, respec-
tively, and the power factor for decay as 0.9. A mini-batch
of 100 experiences are randomly sampled every time from RB

5268 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

Fig. 3. Learning curves of C-HDDPG.

that is capable of storing 5000 past experiences. Every target
critic or target actor is updated by a step size τ = 0.001, and
the discount factor γ = 0.99. To perform policy explorations,
we use an Ornstein-Uhlenbeck process with mean 0 and vari-
ance 1; the associated diminishing parameter β is initialized
as 0.9, and decreased at a rate of 0.995 every epoch until it
reaches 0.0001. Finally, we initialize the following sequence
to update the homotopy variable λ, i.e., {δi = −0.1 × λmin,
i = 1, 2, · · · , 10}, where λmin = −0.005 and we update λ
every I0 = 1000 epochs.

As shown in Fig. 3, we first illustrate the learning curves
of the proposed algorithm under centralized control. Partic-
ularly, we vary parameter λmin to investigate the impact of
penalty. Each result is averaged over N = 5000 epochs,
i.e.,

∑t
τ=t−N+1 Rτ/N . It can be observed that in the first

104 epochs, the curves of HDDPG based algorithms rise
markedly, and notable gaps can be observed between plain
DDPG and HDDPG based algorithms. In subsequent epochs,
the learning curves of these DRL algorithms increase gradually
until convergence. Clearly, when λmin is −0.005 or −0.015,
HDDPG based algorithms achieve higher caching rewards than
those of plain DDPG; when λmin goes down to −0.1, the curve
increases fairly slowly and converges to a level that is very
close to plain DDPG. Therefore, if λminG is significantly
large compared with the objective, it could dominant the
actual objective, eventually leading to a suboptimal policy.
These observations demonstrate that properly introducing the
penalty term to RL (e.g., λminG in (14)) could assist agents
to infer better actions and speed-up convergence behav-
ior. Furthermore, we propose to implement HDDPG (with
λmin = −0.005) by initializing RB with 10% warm-up
experiences via optimization baselines (e.g., CU-CO) rather
than the conventional exploration method used in plain
DDPG, i.e., only utilizing Ornstein-Uhlenbeck random noise
to explore action spaces. In this way, the proposed imple-
mentation can further improve performance compared with
the conventional exploration under the same λmin = −0.005.
This result implies that taking advantage of a good baseline
improves the efficiency of exploration in DRL.

Fig. 4 and 5 show the learning curves of the proposed
algorithms under partially and fully decentralized scenarios.
As anticipated, the proposed PD-HDDPG and FD-HDDPG

Fig. 4. Learning curves of PD-HDDPG.

Fig. 5. Learning curves of FD-HDDPG.

respectively outperform plain DDPG in both scenarios. It is
worthing noting that, the shaded region around each learning
curve shows reward deviations, which measure the robustness
of each policy. Obviously, the DRL-based designs exhibit
more centered results while the rewards, achieved by the
optimization baseline, spread out over quite a broad range.
This observation demonstrates the effectiveness of HDDPG to
track and adapt to dynamic features of wireless networks.

C. Impact of System Parameters

In this subsection, we study the impacts of system parame-
ters on the proposed caching framework. All of the results are
obtained by averaging over 104 epochs. We first investigate
the impact of caching capacity under a larger content catalog
size (e.g., F = 50). Clearly, as shown in Fig. 6, C-HDDPG is
always superior to other algorithms. When fractional caching
capacity (e.g., L/F) is 10%, C-HDDPG achieves the lowest
fronthaul traffic loads, e.g., 0.47, in contrast with PD-HDDPG
and FD-HDDPG, e.g., 0.52. The superiority of C-HDDPG
demonstrates the effectiveness of using global information to
enhance SBS collaboration. As fractional caching capacity
grows larger, the gap between PD-HDDPG and FD-HDDPG
becomes bigger. Indeed, with the aid of a centralized critic
to train local policies, PD-HDDPG can allow SBSs to tightly
collaborate in comparison to the fully decentralized scheme.
Although FD-HDDPG depends on local observations only,

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5269

Fig. 6. Impact of fractional caching capacity.

it still outperforms CO-CU and LO-CU by 6.11% and 11.51%
respectively, under the scenarios being studied. This observa-
tion demonstrates the remarkable advantages of using DRL
algorithms to learn policies under dynamic environments over
conventional optimization-based algorithms.

Hereunder, we conduct experiments to investigate the
impacts of content popularity by varying the skewness factor
of Zipf distribution. Moreover, under each scenario being
investigated, the corresponding skewness factor is fixed as a
constant, in which a larger skewness factor indicates a more
concentrated content popularity. As can be seen, fronthaul
traffic loads decrease as the skewness factor becomes larger
for all of the algorithms except for RCU. The reason for this
is that user requests are more likely to be accessed in local
SBSs if their preferences are more centered. Furthermore,
PD-HDDPG achieves comparable fronthaul traffic loads in
contrast with C-HDDPG when the skewness factor is smaller
than 1; after that, using centralized control only produces a
marginal performance gain over decentralized control, yet with
a significant implementation cost. This finding demonstrates
that PD-HDDPG can efficiently obtain a satisfactory trade-off
between complexity and performance.

To investigate the scalability of the proposed algorithms,
we carry out experiments by varying the content catalog size.
As depicted in Fig. 8, PD-HDDPG obtains a comparable
performance to C-HDDPG when the content catalog size
is smaller than 50; as more content items are considered,
C-HDDPG achieves better performance due to utilization of
global information. It is worth noting that, vast gaps can
be observed between the proposed algorithms and baselines
under either centralized or decentralized scenarios. More
specifically, over the entire horizontal axis, C-HDDPG and
PD-HDDPG can decrease fronthaul traffic loads by 10.54%
and 7.68% respectively in comparison to CO-CU; whereas
FD-HDDPG can reduce fronthaul traffic loads by 10.40%
compared with LO-CU. All of these results corroborate the
scalability of the proposed algorithms. Notably, the curve
of RCU increases greatly and eventually surpasses 1 as the
content catalog size grows larger. This is because the cache
updating cost introduced by RCU could overtake fronthaul
traffic loads arising from satisfying user requests under large
scenarios.

Fig. 7. Impact of content popularity.

Fig. 8. Impact of content catalog size.

Fig. 9. Impact of number of SBSs.

We further investigate how the number of agents (i.e., SBSs)
impacts the proposed multi-agent algorithms. In these settings,
we vary the number of SBSs, and set the distance between
two adjacent SBSs as 300 m. As shown in Fig 9, traffic
loads exhibit a decreasing trend as more SBSs are available to
participate in cooperative coded caching. In addition, all of the
curves decrease relatively slowly when more than 15 SBSs are
deployed, which implies that most users might already be able
to access a maximum number of local SBSs, that is usually
limited by communication coverage. More importantly, when
the number of agents becomes large, PD-HDDPG always
achieves comparable results to C-HDDPG with significant
reductions of signaling overhead and complexity. Concerning

5270 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

Fig. 10. Impact of SBS geometry.

FD-HDDPG, it achieves slightly larger traffic loads than
those of C-HDDPG and PD-HDDPG by at most 3.23% and
2.34%, respectively. These results demonstrate the potentials
of utilizing decentralized controls as a large number of SBSs
are deployed. Finally, Fig 10 illustrates the impact of SBS
geometry on fronthaul traffic loads. We consider six SBSs and
vary the distance of any two adjacent SBSs. As anticipated,
the average traffic fronthaul loads become higher when SBSs
are installed farther from each other. This is because, given a
fixed communication range at SBSs, a larger SBS distance
scenario provides less opportunity for SBS collaboration.
Moreover, we can observe that PD-HDDPG generally per-
forms pretty close to the centralized control, which again
corroborates the effectiveness of utilizing the centralized critic.
Indeed, PD-HDDPG operates with the least signaling overhead
yet at the cost of slight performance degradation.

VIII. CONCLUSION

We have proposed a deep multi-agent reinforcement learn-
ing framework for dynamic cooperative coded caching at
small cell networks. Particularly, we have developed a novel
deep reinforcement learning algorithm, i.e., homotopy DDPG,
to address the challenges arising from the resultant contin-
uous decision-making with constraints. From an engineering
perspective, we have proposed centralized, partially decentral-
ized, and fully decentralized controls to balance complexity
and performance. Simulation results have confirmed that the
proposed DRL outperforms plain DDPG under different lev-
els of controls; and the proposed decentralized designs also
achieve satisfactory performance compared with the central-
ized design.

APPENDIX

A. Proof of Proposition 1

Consider an optimal decision sequence {At}, which results
in an optimal value J∗ =

∑
t(γ)tRt+1. Suppose that there

exists t′, b′ such that
∑

f at′
f,b′ = L′ and L′ < L; in

addition, the corresponding decision At′ is anticipated to
impact rewards Rt′+1 and Rt′+2. To proceed, we first denote
F ′ = {f |at′

f,b′ − lt
′

f,b′ > 0}. Accordingly, one can create

a sequence {of , ∀f ∈ F} where 0 ≤ of ≤ lt
′

f,b′ − at′
f,b′ ,

∀f ∈ F\F ′, and of = 0, ∀f ∈ F ′, such that
∑

f∈F of =
L − L′. Then, we consider a new decision At′ = [at′

f,b] for
epoch t′, where at′

f,b = at′
f,b for ∀b �= b′, and at′

f,b′ = at′
f,b′ +of ;

clearly, this gives rise to
∑

f∈F at′
f,b′ = L. By checking

the traffic loads in (5), one can verify that Rt′+1 ≥ Rt′+1

and Rt′+2 ≥ Rt′+2. We thereby claim that {At} is also an
optimal decision sequence where At = At for ∀t �= t′. Hence,
Proposition 1 holds.

B. Proof of Lemma 3

This proof follows similar procedures to the Deterministic
Policy Gradient Theorem in [37]. Accordingly,
∇Jhom,θ = ∇θ

∫
S p0(S)Qhom,φ(S, A)|A=σA[μθ(S)]dS,

where p0(·) denotes probability density of state at epoch 0.
Then, following the standard steps in [37] yields the following

∇θQhom,φ(S, A)|A=σA[μθ(S)]

= ∇AQhom,φ(S, A)|A=σA[μθ(S)]∇A′σA(A′)|A′=μθ(S)

∇θμθ(S) +
∫
S

γp(S → Ŝ, 1)

∇θQhom,φ(Ŝ, Â)|Â=σA[μθ(Ŝ)]dŜ, (35)

where p(S → Ŝ, t0) denotes the probability density of state
S transiting to state Ŝ after t0 epochs; thereafter, one can
continue to unfold (35), resulting in

∇θQhom,φ(S, A)|A=σA[μθ(S)]

=
∫
S

∞∑
t=0

γ(t)p(S → Ŝ, t)∇AQhom,φ(Ŝ, Â)|Â=σA[μθ(Ŝ)]

·∇A′σA(A′)|A′=μθ(Ŝ)∇θμθ(Ŝ)dŜ. (36)

Now, by using (36), we can obtain

∇Jhom,θ =
∫
S

ρ(S)∇AQhom,φ(S, A)|A=σA[μθ(S)]

∇A′σA(A′)|A′=μθ(S)∇θμθ(S)dS, (37)

where ρ(S) denotes the discounted state distribution [37]. This
completes the proof.

REFERENCES

[1] C. V. N. Index. (2017). Cisco Visual Networking Index: Global
Mobile Data Traffic Forecast Update, 2016–2021. [Online]. Available:
http://goo.gl/ylTuVx

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[3] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless
edge: Design aspects, challenges, and future directions,” IEEE Commun.
Mag., vol. 54, no. 9, pp. 22–28, Sep. 2016.

[4] J. Li, Y. Chen, Z. Lin, W. Chen, B. Vucetic, and L. Hanzo, “Distrib-
uted caching for data dissemination in the downlink of heterogeneous
networks,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3553–3568,
Oct. 2015.

[5] J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic, and L. Hanzo, “Pricing
and resource allocation via game theory for a small-cell video caching
system,” IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2115–2129,
Aug. 2016.

[6] C. Bettstetter, “Mobility modeling in wireless networks: Categorization,
smooth movement, and border effects,” ACM SIGMOBILE Mobile
Comput. Commun. Rev., vol. 5, no. 3, pp. 55–66, Jul. 2001.

WU et al.: MULTI-AGENT RL FOR COOPERATIVE CODED CACHING 5271

[7] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[8] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

[9] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement
learning for adaptive caching in hierarchical content delivery networks,”
IEEE Trans. Cognit. Commun. Netw., vol. 5, no. 4, pp. 1024–1033,
Dec. 2019.

[10] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 3358–3363.

[11] X. Li, X. Wang, S. Xiao, and V. C. M. Leung, “Delay performance
analysis of cooperative cell caching in future mobile networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 1–6.

[12] X. Li, X. Wang, and V. C. M. Leung, “Weighted network traffic
offloading in cache-enabled heterogeneous networks,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[13] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multicast
beamforming for cache-enabled cloud RAN,” IEEE Trans. Wireless
Commun., vol. 15, no. 9, pp. 6118–6131, Sep. 2016.

[14] X. Wu, X. Li, Q. Li, V. C. M. Leung, and P. C. Ching, “Latency
driven fronthaul bandwidth allocation and cooperative beamforming for
cache-enabled cloud-based small cell networks,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2019, pp. 4594–4598.

[15] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[16] V. Bioglio, F. Gabry, and I. Land, “Optimizing MDS codes for caching
at the edge,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2015, pp. 1–6.

[17] J. Liao, K.-K. Wong, Y. Zhang, Z. Zheng, and K. Yang, “Coding, mul-
ticast, and cooperation for Cache- enabled heterogeneous small cell net-
works,” IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6838–6853,
Oct. 2017.

[18] X. Wu, Q. Li, X. Li, V. C. M. Leung, and P. C. Ching, “Joint long-term
cache updating and short-term content delivery in cloud-based small
cell networks,” IEEE Trans. Commun., vol. 68, no. 5, pp. 3173–3186,
May 2020.

[19] X. Wu, Q. Li, V. C. M. Leung, and P. C. Ching, “Joint fronthaul
multicast and cooperative beamforming for cache-enabled cloud-based
small cell networks: An MDS codes-aided approach,” IEEE Trans.
Wireless Commun., vol. 18, no. 10, pp. 4970–4982, Oct. 2019.

[20] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5G using reinforcement learning of space-time
popularities,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1,
pp. 180–190, Feb. 2018.

[21] Y. He et al., “Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks,” IEEE
Trans. Veh. Technol., vol. 66, no. 11, pp. 10433–10445, Nov. 2017.

[22] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor–
critic deep reinforcement learning,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2061–2073, Apr. 2019.

[23] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,” IEEE
Commun. Lett., vol. 23, no. 10, pp. 1773–1777, Oct. 2019.

[24] C. Zhong, M. Cenk Gursoy, and S. Velipasalar, “Deep reinforcement
learning-based edge caching in wireless networks,” IEEE Trans. Cognit.
Commun. Netw., vol. 6, no. 1, pp. 48–61, Mar. 2020.

[25] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-
armed bandit learning for small-cell caching,” 2020, arXiv:2001.03835.
[Online]. Available: http://arxiv.org/abs/2001.03835

[26] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for Internet of Things with decentralized
cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10,
pp. 9441–9455, Oct. 2020.

[27] S. Gao, P. Dong, Z. Pan, and G. Y. Li, “Reinforcement learning based
cooperative coded caching under dynamic popularities in ultra-dense
networks,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5442–5456,
May 2020.

[28] Z. Zhang and M. Tao, “Accelerated deep reinforcement learning for
wireless coded caching,” in Proc. IEEE/CIC Int. Conf. Commun. China
(ICCC), Aug. 2019, pp. 249–254.

[29] D. M. Dunlavy and D. P. O’Leary, “Homotopy optimization methods for
global optimization,” Sandia Nat. Lab., Albuquerque, NM, USA, Tech.
Rep. SAND 2005-7495, 2005.

[30] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” IEEE Trans.
Commun., vol. 64, no. 4, pp. 1674–1686, Apr. 2016.

[31] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, pp. 1–14, Jul. 2015.

[32] R. S. Sutton et al., Introduction to Reinforcement Learning, vol. 135.
Cambridge, MA, USA: MIT Press, 1998.

[33] A. Cassioli, D. Di Lorenzo, and M. Sciandrone, “On the convergence of
inexact block coordinate descent methods for constrained optimization,”
Eur. J. Oper. Res., vol. 231, no. 2, pp. 274–281, Dec. 2013.

[34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[35] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[36] P. Mishra and K. Sarawadekar, “Polynomial learning rate policy with
warm restart for deep neural network,” in Proc. IEEE Region 10 Conf.
(TENCON), Oct. 2019, pp. 2087–2092.

[37] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Int. Conf.
Mach. Learn., Mar. 2014, pp. 387–395.

Xiongwei Wu (Student Member, IEEE) received
the B.Eng. degree in electronic information engi-
neering from the University of Electronic Science
and Technology of China, Chengdu, China, in 2016.
He is currently pursuing the Ph.D. degree with
The Chinese University of Hong Kong (CUHK),
Hong Kong, SAR, China. From August 2018 to
December 2018, he was a Visiting International
Research Student with The University of British
Columbia (UBC), Vancouver, BC, Canada. From
July 2019 to January 2020, he was a Visiting Student

Research Collaborator with Princeton University, Princeton, NJ, USA. His
research interests include signal processing and resource allocation in wireless
networks, decentralized optimization, and machine learning.

Jun Li (Senior Member, IEEE) received the Ph.D.
degree in electronic engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2009. From
January 2009 to June 2009, he worked with the
Department of Research and Innovation, Alcatel
Lucent Shanghai Bell, as a Research Scientist. From
June 2009 to April 2012, he was a Post-Doctoral
Fellow with the School of Electrical Engineering
and Telecommunications, University of New South
Wales, Australia. From April 2012 to June 2015,
he was a Research Fellow with the School of Elec-

trical Engineering, The University of Sydney, Australia. Since June 2015,
he has been a Professor with the School of Electronic and Optical Engineering,
Nanjing University of Science and Technology, Nanjing, China. He was
a Visiting Professor with Princeton University from 2018 to 2019. His
research interests include network information theory, game theory, distributed
intelligence, multiple agent reinforcement learning, and their applications in
ultra-dense wireless networks, mobile edge computing, network privacy and
security, and industrial Internet of Things. He has coauthored more than
200 papers in IEEE journals and conferences, and holds one U.S. Patent and
more than ten Chinese Patents in these areas. He served as a TPC member
for several flagship IEEE conferences. He received an Exemplary Reviewer of
IEEE TRANSACTIONS ON COMMUNICATIONS in 2018 and the Best Paper
Award from the IEEE International Conference on 5G for Future Wireless
Networks in 2017. He served as an Editor for IEEE COMMUNICATIONS

LETTERS

5272 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

Ming Xiao (Senior Member, IEEE) received the
bachelor’s and master’s degrees in engineering from
the University of Electronic Science and Technology
of China, Chengdu, in 1997 and 2002, respectively,
and the Ph.D. degree from the Chalmers University
of Technology, Sweden, in November 2007. From
1997 to 1999, he worked as a Network and Software
Engineer with China Telecom. From 2000 to 2002,
he also held a position with the Sichuan Com-
munications Administration. Since November 2007,
he has been with the Department of Information

Science and Engineering, School of Electrical Engineering and Computer
Science, Royal Institute of Technology, Sweden, where he is currently
an Associate Professor. He was an Editor of IEEE TRANSACTIONS ON
COMMUNICATIONS from 2012 to 2017 and IEEE WIRELESS COMMU-
NICATIONS LETTERS from 2012 to 2016. He has been a Senior Editor
of IEEE COMMUNICATIONS LETTERS since January 2015 and an Editor
of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS since 2018.
He was the lead Guest Editor of IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS Special Issue on “Millimeter Wave Communications
for future mobile networks” in 2017. He has been an Area Editor of IEEE
OPEN JOURNAL OF THE COMMUNICATION SOCIETY since 2019.

P. C. Ching (Life Fellow, IEEE) received the B.Eng.
(Hons.) and Ph.D. degrees from the University of
Liverpool, U.K., in 1977 and 1981, respectively.
From 1981 to 1982, he was a Research Officer with
the University of Bath, U.K. In 1982, he returned
to Hong Kong and joined The Hong Kong Poly-
technic University as a Lecturer. Since 1984, he has
been with the Department of Electronic Engineering,
The Chinese University of Hong Kong (CUHK),
where he is currently a Choh-Ming Li Professor
of Electronics Engineering. He was the Department

Chairman from 1995 to 1997, the Dean of Engineering from 1997 to 2003,
and the Head of Shaw College from 2004 to 2008. He became the Director
of the Shun Hing Institute of Advanced Engineering in 2004. From 2006 to
2014, he was appointed as a Pro-Vice-Chancellor/a Vice-President of CUHK.
From 2013 to 2014, he also took up the Directorship of The CUHK Shenzhen
Research Institute. He is very active in promoting professional activities, both
in Hong Kong and overseas. He was a member of the Technical Committee of
the IEEE Signal Processing Society from 1996 to 2004, a Council Member
of the Institution of Electrical Engineers (IEE), and the Past Chairman of
the IEEE Hong Kong Section. He has been an Honorary Member of the
editorial committee of the Journal of Data Acquisition and Processing since
2000. He is currently the Chairman of the Board of Directors of the Nano
and Advanced Materials Institute Limited, a Council Member of the Shaw
Prize Foundation, and a Member of the Museum Advisory Committee (MAC)
and the Chairperson of its Science Sub-committee. He has been instrumental
in organizing many international conferences in Hong Kong, including the
1997 IEEE International Symposium on Circuits and Systems, where he was
the Vice-Chairman. He was awarded the Silver Bauhinia Star (SBS) and the
Bronze Bauhinia Star (BBS) from the HKSAR Government, in 2017 and
2010, respectively, in recognition of his long and distinguished public and
community services, the IEEE Third Millennium Award in 2000, and the
HKIE Hall of Fame in 2010. He is also plays an active role in com-
munity services. He also served as a Technical Program Co-Chair for the
2003 and 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing. He is elected as the President of the Hong Kong Academy
of Engineering Sciences (HKAES) in 2018. He was an Associate Editor of
the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 1997 to 2000 and
IEEE SIGNAL PROCESSING LETTERS from 2001 to 2003, and the Editor-
in-Chief of the HKIE Transactions from 2001 to 2004.

H. Vincent Poor (Life Fellow, IEEE) received the
Ph.D. degree in EECS from Princeton University
in 1977.

From 1977 to 1990, he was on the faculty of the
University of Illinois at Urbana–Champaign. Since
1990, he has been on the faculty at Princeton, where
he is currently the Michael Henry Strater University
Professor. From 2006 to 2016, he served as the
Dean of the Princeton’s School of Engineering and
Applied Science. He has also held visiting appoint-
ments at several other universities, including most

recently at Berkeley and Cambridge. His research interests include information
theory, machine learning, and network science, and their applications in
wireless networks, energy systems, and related fields. Among his publications
in these areas is the forthcoming book Machine Learning and Wireless
Communications (Cambridge University Press, 2021). He is a member of the
National Academy of Engineering and the National Academy of Sciences, and
a foreign member of the Chinese Academy of Sciences, the Royal Society,
and other national and international academies. Recent recognition of his work
includes the 2017 IEEE Alexander Graham Bell Medal and a D.Eng. honoris
causa from the University of Waterloo awarded in 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

