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ABSTRACT
Technological innovations like social networks, personal devices
and cloud computing, allow users to share and store online a huge
amount of personal data. Sharing personal data online raises sig-
nificant privacy concerns for users, who feel that they do not have
full control over their data. A solution often proposed to allevi-
ate users’ privacy concerns is to let them specify access control
policies that reflect their privacy constraints. However, existing ap-
proaches to access control often produce policies which either are
too restrictive or allow the leakage of sensitive information. In this
paper, we present a novel access control model that reduces the risk
of information leakage. The model relies on a data model which
encodes the domain knowledge along with the semantic relations
between data. We illustrate how the access control model and the
reasoning over the data model can be automatically translated in
XACML. We evaluate and compare our model with existing access
control models with respect to its effectiveness in preventing leak-
age of sensitive information and efficiency in authoring policies.
The evaluation shows that the proposed model allows the defini-
tion of effective access control policies that mitigate the risks of
inference of sensitive data while reducing users’ effort in policy
authoring compared to existing models.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection; D.2.8 [Software Engineering]:
Metrics—complexity measures, performance measures

General Terms
Security, Theory
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Inference control; information leakage; semantic approach; XACML;
comparison study
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1. INTRODUCTION
Today individuals live in a digital world where everything they

do happens online: they use their personal devices to check their
email, read their favorite blogs, look for restaurants and jobs, read
their friends’ social network profiles, buy services and goods, tweet
their locations, and more. However, everything individuals do on-
line leaves a huge amount of information about them online. This
makes it easy for companies and government agencies to collect
this information as well as use analytic models to infer who a user
is and what he does. For example, it is possible to discover the
dietary preferences of an individual from the recipes she searches
online; or to predict if she is pregnant based on her purchase habits.
This information is considered highly sensitive, and an individual
might want to disclose this information only to a restrict audience.
Thus, the online proliferation of personal information raises signif-
icant privacy concerns for individuals.

Several studies have shown that individuals’ privacy concerns are
alleviated when they have a greater sense of control over the disclo-
sure and subsequent use of their personal information [2, 13, 30].
A solution proposed to empower individuals with control over their
personal information is to let them specify fine-grained policies that
define which personal information they are willing to disclose and
to whom it can be disclosed [4, 11, 16, 17, 39].

However, policy authoring has been proven to be a time con-
suming and error prone task [16, 20]. This is mainly due to the
significant cognitive burden required by existing languages for pol-
icy authoring. In fact, in order to specify a policy, users need to
have a deep and comprehensive knowledge of the application do-
main. To illustrate this issue, imagine a patient defining a policy to
protect her Electronic Healthcare Record (EHR). Suppose that the
patient wants to reveal that she is HIV-positive only to her treating
doctor. To this end, she defines a policy explicitly restricting the
access to this information, leaving other information in her EHR
unrestricted. Based on this policy, no one except her treating doc-
tor can read the HIV status in the patient’s EHR. However, despite
this policy, a nurse can read information concerning AIDS in the
patient’s EHR and, thus, infer that the patient is HIV-positive.

The main problem is that the disclosure of data, which a user
may not consider sensitive and thus he leaves unrestricted, can al-
low the inference of sensitive information that the user wants to
keep private [1, 3, 7, 18, 37]. A cause of this undesirable behavior
is that users often ignore the semantic relation between data when
specifying their policies [12, 34, 41]. Without such a knowledge,
users can end up with policies that do not reflect their privacy in-
clinations: policies can be either too restrictive or expose them to
the risk of disclosing their personal information to a much wider
audience than intended. However, users often have only a limited
knowledge of the application domain. For instance, an “average”



patient unlikely has knowledge of all medical terms and the re-
lations between them, which is necessary to specify accurate and
effective access control policies to protect information in an EHR.

This observation motivates our research question: How to facil-
itate users in the specification of access control policies that effec-
tively protect them against inference of sensitive information?

In this paper we make three contributions to the authoring and
enforcement of access control policies able to capture users’ pri-
vacy constraints. First, we propose an access control model that
prevents inference of sensitive information caused by the seman-
tic relations between data. In particular, the access control model
is based on a semantic approach which leverages knowledge about
the application domain for access decision making. We represent
domain knowledge along with the semantic relations between data
in a data model. Intuitively, the data model organizes data within
an application domain in a hierarchical structure as well as it makes
semantic inference relations between data explicit. Based on these
relations, it is possible to reason on situations in which access con-
trol policies grant access to data which make it possible to infer
sensitive information a user would like to keep private. To this end,
we study how information can be inferred through semantic rela-
tions between data and define authorization propagation rules that
prevent the inference of information to be protected. These prop-
agation rules form an inference control mechanism. Such a mech-
anism mitigates the impact of mistakes that users can make in the
specification of their policies due to inaccurate or partial knowl-
edge they have about the application domain. The access control
model does not require users to define the data model and, thus, to
have a deep knowledge of the application domain. We show how
existing domain specific ontologies can be leveraged for the repre-
sentation of domain knowledge, relieving users of the burden of its
definition.

Second, we demonstrate that the proposed access control model
can be implemented using existing access control mechanisms. In
particular, we show that the model can be automatically translated
in XACML [33], the de facto standard for the specification and
enforcement of access control policies. To this end, we provide an
encoding of the access control model and reasoning over the data
model in XACML.

Last, we compare the effectiveness and efficiency of existing ac-
cess control models with respect to our model. Our findings show
that access control models that do not consider semantic relations
between data as the basis for authorization decision making do not
fully protect users from inference of sensitive information and re-
quire significant efforts in writing policies. In contrast, our access
control model prevents semantic inference of sensitive information
while reducing users’ effort in policy authoring in that it minimizes
the number of policy statements a user has to specify.

The remainder of the paper is structured as follows. Section 2
introduces the basic notation used to formalize the proposed model.
Section 3 reviews existing access control models and presents their
formalization using the notation introduced in Section 2. Then,
Section 4 presents the proposed access control model. Section 5
illustrates how the policies and the reasoning on the data model
can be encoded in XACML. Section 6 compares the effectiveness
and efficiency of various access control models. Finally, Section 7
reviews related work, and Section 8 concludes the paper providing
directions for future work.

2. BASIC NOTATION
In this section we introduce the basic concepts underlying our

approach. First, we present a simple notation for the representation

of access control policies that suffices for the purpose of this work.
Then, we introduce a formal definition of access control model.

An access control policy specifies the permissions that are granted
or denied for each subject, i.e. which actions a subject can perform
on an object. Our notation distinguishes positive authorizations and
negative authorizations to allow easy management of exceptions in
policy definition.

DEFINITION 1. Let S be a set of subjects, A a set of actions,
D a set of data elements and R = {+,−} the set of rulings. An
access control policy is a tuple 〈s, a, d, r〉 with s ∈ S, a ∈ A,
d ∈ D, and r ∈ R. We refer to access control policies of the
form 〈s, a, d,+〉 as positive policies and to policies of the form
〈s, a, d,−〉 as negative policies.

The first three elements of a policy (i.e., subject, action and object)
define the target of the policy. Intuitively, the target of a policy
represents the applicability space of the policy, i.e. to which access
requests the policy is applicable. The ruling defines the effect of the
policy where + indicates Permit and− indicates Deny. A positive
policy 〈s, a, d,+〉 states that subject s is allowed to execute action
a on data element d. Similarly, a negative policy 〈s, a, d,−〉 states
that subject s is not allowed to execute action a on data element d.
Hereafter, we denote P the set of access control policies, P+ ⊆ P
the set of positive policies in P , and P− ⊆ P the set of negative
policies in P .

EXAMPLE 1. An example of positive policy is

〈doctor , read ,medical record ,+〉

with subject “doctor”, action “read”, object “medical record” and
ruling “+”. The policy should be read: “a doctor is allowed to
read a medical record”.

The effectiveness of a policy depends on the access control model
used for its evaluation. In fact, an access control model determines
how policies are evaluated based on the data structures used to or-
ganize and reason on the policy elements in the target. We define
formally an access control model as follows. Note that, as the focus
of this work is on information inference, in the definition we only
consider the data structure used to represent data elements. How-
ever, the definition can be easily extended to consider data struc-
tures for subjects (e.g., role hierarchies) and actions.

DEFINITION 2. An access control model is a tuple 〈Q,P,DS,
J·KDS〉 where Q ⊆ S × A × D is a set of access requests, P is
a set of policies, DS is a data structure encoding the relationships
between data elements, and J·KDS : Q×℘(P)→ {Permit,Deny,
NotApplicable} is an evaluation function mapping an access re-
quest to an access decision based on P and DS.

An evaluation function should determine the applicability of poli-
cies for a given access request and, based on the applicable poli-
cies, map the request to an access decision. We use the predicate
match(q,P) to denote that there is a policy P ∈ P that directly
matches a request q ∈ Q, i.e. the elements in the request match
the elements in the policy. The predicate match can be defined in
the straightforward way over the target of a policy. In this work,
we are mainly interested to study the behavior of access control
models with respect to data elements. Thus, abusing notation, we
will write Jd,PKDS to represent the evaluation of an access request
for data element d against a set of policies P , and match(d,P) to
represent there exists a policy P ∈ P that matches a request for d.

The combined use of both positive and negative authorizations
can lead to conflicts when conflicting policies are applicable for



Reference Model Data Structure Evaluation Function Existing Models

ACNR = 〈Q,P,NR, J·KNR〉 NR: No relations Jd,PKNR =

 Deny if match(d,P−)
Permit if match(d,P+) ∧ Jd,PKNR 6= Deny
NotApplicable otherwise

System R [6]

ACDH1
= 〈Q,P,DH, J·KDH1

〉 DH: Data Hierarchy Jd,PKDH1
=


Deny if ∃di ∈ D s.t. di ∈ d↑ ∧match(d,P−)
Permit if

(
∃di ∈ D s.t. di ∈ d↑ ∧match(d,P+)

)
∧ Jd,PKDH1

6= Deny
NotApplicable otherwise

FAF [23]
WDAP [36]
PBAC [11]
Lee et al. [27]
Masoumzadeh et al. [28]

ACDH2
= 〈Q,P,DH, J·KDH2

〉 DH: Data Hierarchy Jd,PKDH2
=


Deny if ∃di ∈ D s.t. di ∈ d↓ ∧match(d,P−)
Permit if

(
∃di ∈ D s.t. di ∈ d↑ ∧match(d,P+)

)
∧ Jd,PKDH2

6= Deny
NotApplicable otherwise

Rabitti et al. [35]

ACDH3
= 〈Q,P,DH, J·KDH3

〉 DH: Data Hierarchy Jd,PKDH3
=


Deny if ∃di ∈ D s.t. di ∈ dl ∧match(d,P−)
Permit if

(
∃di ∈ D s.t. di ∈ d↑ ∧match(d,P+)

)
∧ Jd,PKDH3

6= Deny
NotApplicable otherwise

EPAL [4]
DPAL [5]

ACDM = 〈Q,P,DM, J·KDM〉 DM: Data Model Jd,PKDM =


Deny if

(
∃di ∈ D s.t. di ∈ d↓ ∧match(di,P−)

)
∨(

∃di ∈ D s.t. di ∈ d∞ ∧match(di,P−)
)

Permit if ∃di ∈ D s.t.
(
di ∈ d↑ ∧match(di,P+)

)
∧ Jd,PKDM 6= Deny

NotApplicable otherwise

this work

Table 1: Overview of access control models

the same data element. Several conflict resolution strategies have
been proposed in the literature [4, 23, 29]. As our goal is to prevent
leakages of sensitive information, we assume that an evaluation
function combines conflicting (applicable) policies using a deny-
overrides strategy, where negative authorizations override positive
authorizations.

3. REVIEW OF ACCESS CONTROL MOD-
ELS

Several access control models have been proposed in the litera-
ture to regulate the access to sensitive information. Access control
models use an evaluation function to determine the policies that ap-
ply to a given access request and, based on the applicable policies,
make an authorization decision. The definition of such an evalua-
tion function depends on the data structure used by the access con-
trol model to reason on the elements in the target of a policy. In the
remainder of this section, we review a number of existing access
control models, focusing on the data element as the main decision
criterion. An overview of the considered models is presented in
Table 1. Note that, for the sake of comparison, we limit our study
to access control models that explicitly support both positive and
negative authorizations.

Early access control models like the one presented in [6] do not
consider relationships between data elements for decision making.
In these models, a policy is applied to an access request for a data
element only if the policy has been explicitly specified for that data
element. Hereafter, J·KNR denotes a policy evaluation function
that does not use relations between data elements to make access
decision, andACNR access control models that use such a function
(a formal definition of J·KNR and ACNR is given in Table 1).

To effectively reduce the number of permission assignments (and
thus reducing the cost of policy administration), several access con-
trol models [4, 11, 23, 38, 35] represent and reason on data ele-
ments in a policy using hierarchical structures.

DEFINITION 3. A data hierarchy DH is a pair 〈D, ↑〉 where

• D is a set of data elements;
• ↑⊆ D ×D a partial order on D.

A data hierarchy DH organizes data elements in direct acyclic
graph (DAG). Hierarchy relations represent a specialization rela-
tionship between data elements, i.e. (d′, d) ∈↑ denotes that d′ is

a specialization of d. Based on hierarchy relations we define the
descendants and ancestors of a node d. A data element d′ is a
descendant of a data element d if d′ is either a child of d (i.e.,
(d′, d) ∈↑) or the child of some descendants of d. A data element
d′ is an ancestor of a data element d if d′ is either a parent of d
(i.e., (d, d′) ∈↑) or the parent of some ancestors of d. The set of
descendants of a data element d, including the data element itself, is
denoted d↓. The set of ancestors of a data element d, including the
data element itself, is denoted d↑. dl denotes the set of ancestors
or descendants of d, i.e. dl = d↓ ∪ d↑.

Different propagation rules over data hierarchies have been pro-
posed for policy evaluation. Some access control models (e.g., [23,
27, 28, 36]) assume that both positive and negative authorizations
are propagated down the data hierarchy.1 Intuitively, positive and
negative authorizations propagate to the descendants of the data
element specified in a policy. Byun and Li [11] annotate data ele-
ments with intended purpose labels (representing the allowed and
prohibited intended usage of data), and use these labels to con-
trol access to data elements. To determine the effective intended
purpose of data elements, they present a purpose inference mech-
anism that propagates the intended purpose of a data element to
its child elements, thus propagating authorizations down the data
hierarchy.2 We use J·KDH1 to denote the evaluation function us-
ing these propagation rules and ACDH1 the corresponding access
control models (see Table 1 for their formalization).

Other access control models (e.g., [35]) use different propaga-
tion rules for negative authorizations. In particular, these models
propagate negative authorizations up the data hierarchy, i.e. nega-
tive authorizations are propagate to the ancestors of the data ele-

1Note that a number of propagation policies are presented in [23],
namely no propagation, no overriding, most specific overrides and
path overrides. In this work, we consider the no overrides pol-
icy in which all the authorizations of a node are propagated to its
child nodes, regardless of the presence of other contradicting au-
thorizations. However, it is worth noting that the other policies
also propagate authorizations down the data hierarchy.
2The work in [11] also uses propagations rules which support the
inheritance of negative authorizations up the hierarchy like in [4, 5].
However, these rules are limited to the reasoning over the purpose
hierarchy and are not used to reason over the data hierarchy.



ments for which a negative policy is defined.3 In the remainder, we
denote J·KDH2 the evaluation function based on these propagation
rules and ACDH2 the corresponding access control models. Their
formalization is given in Table 1.

Some access control models like EPAL [4] and DPAL [5], com-
bine the propagation rules underlying ACDH1 and ACDH2 . These
models propagate positive authorizations down the data hierarchy.
On the other hand, negative authorizations are inherited both up
and down the data hierarchies. Intuitively, negative authorizations
are propagated to the ancestors and descendants of the data ele-
ment for which a negative policy is defined. In the remainder, we
denote J·KDH3 the evaluation function based on these propagation
rules and ACDH3 the corresponding access control models. Their
formalization is given in Table 1.

4. PREVENTING INFORMATION INFER-
ENCE

The access control models discussed in the previous section are
not able to protect end-users from situations in which other users
can infer sensitive information from information to which they have
legitimate access. The main reason is that they do not account for
the semantic relations between data elements when making autho-
rization decisions. For example, it is possible to infer whether a
patient is HIV-positive by knowing that the patient has AIDS or the
T-helper cell count4. Thus, an access control model that does not
rely on the semantic relation between data elements, will inevitably
lead to information leakage.

To address these issues, we propose a semantic approach which
enables to reason on the information that can be inferred from the
disclosure of a data element. The approach is based on a data model
that augments a data hierarchy with inference relations between
data elements.

DEFINITION 4. A data model DM is a tuple 〈D, ↑,→〉 where

• D is a set of data elements;
• ↑⊆ D ×D is a partial order on D;
• →⊆ D ×D represents an inference relation on D.

Intuitively, a data model encodes the domain knowledge, making
the semantic relation between data elements within the application
domain explicit. As discussed in Section 3, hierarchy relations rep-
resent the specialization relation between data elements. Inference
relations (d′, d) ∈→ indicate that by knowing a data element d′,
a user knows data element d. We denote →R the reflexive clo-
sure of →. We say that a data element d′ is reachable from a
data element d, denoted (d, d′) ∈;, if and only if ∃di ∈ d↑ s.t.
(di, d

′) ∈→R. We denote ;∗ the transitive closure of ;. d∞ de-
notes the set of data elements that are reachable from a data element
d, i.e. d∞ =

⋃
(d,di)∈;∗

d↑i .

It is worth noting that our approach does not require policy au-
thors to define the data model and thus to have a deep knowledge
of the application domain. Domain knowledge is often represented
using an ontology, and several ontologies are currently available
for a large range of application domains, e.g. FOAF5 for social net-
works, GoodRelations [19] and CContology [24] for e-commerce,
3The access control model in [35] uses special actions, e.g. Read
Definition, for which positive authorizations are propagated up the
data hierarchy and negative authorizations are propagated down the
hierarchy. We do not consider these actions in our model.
4The HIV virus attacks T-helper cells, destroying them.
5http://www.foaf-project.org
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Figure 1: Data model instantiation in the healthcare domain.

and many others. These ontologies can be used as a representa-
tion of the data model. Next, we show an exemplification of how
the data model can be implemented through an ontology within the
healthcare domain.

EXAMPLE 2. Let us illustrate how the proposed data model
can be instantiated in the healthcare domain using SNOMED Clin-
ical Terms (SNOMED-CT) [21], one of the most complete and used
medical ontologies. SNOMED-CT provides a comprehensive and
structured collection of medical terms often used in electronic health
records along with relations between them. SNOMED-CT includes
terms related to clinical findings, symptoms, diagnoses, procedures,
body structures, organisms and other etiologies, substances, phar-
maceuticals, devices and specimen. Fig. 1a presents a fragment
of SNOMED-CT, and Fig. 1b the mapping of the data model to
SNOMED-CT. In SNOMED-CT a concept is a clinical meaning
identified by a unique identifier. The meaning of concepts is de-
fined in terms of the relationships with other concepts. SNOMED-
CT uses the IS-A relationship to represent hierarchical associa-
tions between entity types (i.e., generalization/specialization rela-
tionship). In particular, this relationship organizes concepts into
DAGs where concepts can have multiple parent nodes. For in-
stance, the term Acquired Immune Deficiency Syndrome (AIDS)
is child of both terms Secondary Immune Deficiency Disorder and
Viral Infection by site. SNOMED-CT also provides a number of
attribute relationships which define interrelationships between con-
cepts. In particular, an attribute relationship is an association be-
tween two concepts describing an intrinsic property of the con-
cepts. Attribute relationships can be used to infer additional in-
formation about a data element. For instance, SNOMED-CT re-
lates the term Acquired Immune Deficiency Syndrome to the term
Human Immunodeficiency Virus (HIV) using attribute relationship
Causative Agent; knowing that a patient has AIDS reveals that she
is HIV-positive.



Given a data model DM, we are interested in an access control
model 〈Q,P,DM, J·KDM〉 which uses DM to make authoriza-
tion decisions. To this end, we have to define an evaluation function
J·KDM which allows propagation of positive and negative autho-
rizations along with hierarchical and inference relations in the data
model. For the propagation through data hierarchies, we adopt the
approach proposed in [4, 5]. As shown in Section 6, other prop-
agation rules over data hierarchies do not capture user intention
properly and/or require additional effort for policy authoring.

Inference relationships only propagate negative authorizations
(in the opposite direction of the inference). The reason is that
by explicitly denying the access to a data element a policy author
intends to restrict the access to such a data element. Therefore,
the access to all data elements that allow its inference should be
restricted. On the other hand, allowing the access to a data ele-
ment does not imply that the access to data elements from which
it can be inferred should be allowed. We can observe that the set
of data elements that can be inferred by a data element is the set
of data elements reachable from that data element. Indeed, by def-
inition, a data element is reachable from another data element if
the former can be inferred by the latter. Moreover, reachability
is defined over bottom-up propagation of negative authorizations
through data hierarchies. This is motivated by the fact that knowl-
edge of a data element makes it possible to infer information on
the ancestors of that data element. Conversely, knowledge of a data
element does not imply a leakage of information about the descen-
dants of that data element. For instance, knowing that a patient has
Disorder of Immune function does not allow a nurse to infer that
the patient has Acquired Immune Deficiency Syndrome. Indeed
the patient might be affected by Drug-induced Immunodeficiency
or other diseases (not represented in Fig. 1a).

The following definition formally defines the evaluation function
J·KDM.

DEFINITION 5. Let DM = 〈D, ↑,→〉 be a data model and
〈Q,P,DM, J·KDM〉 an access control model using DM for de-
cision making. Given a request for data element d ∈ D, the evalu-
ation function J·KDM is

Jd,PKDM =



Deny if match(d,P−) ∨(
∃di ∈ D s.t. di ∈ dl ∧
match(di,P−)

)
∨(

∃di ∈ D s.t. di ∈ d∞ ∧
match(di,P−)

)
Permit if

[
match(d,P+) ∨
∃di ∈ D s.t.

(
di ∈ d↑ ∧

match(di,P+)
)]
∧

Jd,PKDM 6= Deny
NotApplicable otherwise

The definition of the evaluation function J·KDM explicitly en-
codes the propagation rules discussed above. It is worth noting
that such a definition is redundant. For instance, by definition d↓,
dl and d∞ include data element d. Moreover, dl and d∞ are not
disjoint, i.e. dl ∩ d∞ = d↑. Based on these observations, the
evaluation function J·KDM can be rewritten as shown at the end of
Table 1.

EXAMPLE 3. Consider an Electronic Healthcare Record (EHR)
whose fields and entries are defined over SNOMED-CT. Let us sup-
pose that the record belongs to a patient named Alice who is af-
fected by AIDS. Alice is highly concerned about revealing she has
contracted a virus in the primate lentivirus group. Thus, she defines
a negative authorization stating that access to her status concern-
ing Primate Lentivirus Group in her EHR is denied to any nurse.

At the same time, Alice allows nurses working in the hospital where
she is hospitalized to access information about Immunodeficiency
Disorder in order to receive proper treatment. These authorizations
are represented by the following policies

P1 = 〈nurse, read ,Primate Lentivirus Group,−〉
P2 = 〈nurse, read , Immunodeficiency Disorder,+〉

If only data hierarchies are used to evaluate access requests, a
nurse is allowed to know that the patient has AIDS. Indeed, the
positive authorization defined by policy P2 is propagated to the de-
scendants of Immunodeficiency Disorder and, thus, to Acquired
Immune Deficiency Syndrome. This, however, allows the nurse
to infer that Alice has contracted a virus in the primate lentivirus
group, violating policy P1. Reasoning over inference relationships
makes it possible to propagate the negative authorization associ-
ated with Primate Lentivirus Group to Acquired Immune Deficiency
Syndrome. As authorizations are combined using deny-overrides,
the access to Acquired Immune Deficiency Syndrome is denied
and, thus, the actual permissions on the data element comply with
Alice’s privacy constraints.

We remark that the aim of this work is the design of an access
control model that prevents inference of sensitive information due
to explicit inference relations between data elements. In this set-
ting, the absence of an inference relation does not necessarily in-
dicate that a data element cannot be inferred, for instance using
statistical methods.

5. POLICY ENCODING AND ENFORCING
IN XACML

In this section we demonstrate how the proposed access control
model can be implemented using existing access control mecha-
nisms. In particular, we present an encoding of the access control
model in eXtensible Access Control Markup Language (XACML)
[33], the de facto standard for the specification and enforcement
of access control policies. The advantage of encoding the access
control model in XACML is that there exist several XACML pol-
icy engines, many of which are free to use. These engines usually
support basic functionalities needed for policy evaluation like the
matching of access requests against policies.

Next, we first present the encoding of authorization policies de-
fined using the notation presented in Section 2; then, we present
how these policies are combined to support the reasoning on the
data model presented in Section 4.

5.1 Encoding Policies in XACML
We show here how authorization policies written in the notation

introduced in Section 2 can be easily transformed into enforceable
policies written in XACML. Here we only discuss the elements
needed to encode our access control model and refer to [33] for the
complete XACML policy language specification.

Positive and negative authorizations are represented using the
<Rule> element whose Effect attribute is set respectively to
Permit and Deny. Intuitively, the Effect attribute encodes the
ruling of a policy (Definition 1). The subject s and action a are
represented as attributes and, thus, mapped to <Match> elements
in <Target> of the <Rule> element. The encoding of data ele-
ment d requires considering the propagation rules; its encoding is
presented in the next section.

Rules, however, are not intended to be evaluated in isolation by
the policy decision point (PDP) in XACML. The basic unit of pol-
icy used by the PDP for evaluation is the <Policy> element [33,
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Section 2.2]. To this end, we wrap each <Rule> element into a
<Policy> element (with an empty <Target>). In the next sec-
tion, we discuss how these policies are combined.

5.2 Encoding the Data Model in XACML
A natural choice to represent data hierarchies in XACML would

be to adopt the XACML Hierarchical Resource Profile [32], which
illustrates how to specify XACML policies for resources that are
structured as hierarchies. However, this profile does not distinguish
the propagation of positive and negative authorizations, which is
necessary to implement the propagation strategy over the data model.
To this end, we represent the data model in terms of the policy
structure along the lines suggested in the XACML RBAC Profile
[31] to deal with role hierarchies. This profile distinguished be-
tween Permission <PolicySet>, which contains the actual per-
missions associated with a role, and Role <PolicySet>, which
associates the role with the corresponding permissions. A Per-
mission <PolicySet> can contain references to the Permission
<PolicySet> elements associated with other roles, thus enabling
permission propagation through role hierarchies.

We use a similar approach to enable the permission propaga-
tion over the data model. Every data element in the data model is
associated with a XACML policy encoding all the policies speci-
fied for the data element. These XACML policies consist of four
parts (Fig. 2): a Concept <PolicySet> element, a Permission
<PolicySet> element, Propagation <PolicySet> elements,
and Authorization <Policy> elements. The Concept <PolicySet>
specifies the data element to which the policy applies, while the
Permission <PolicySet> is used to manage the actual autho-
rizations over such a data element. The data element is specified
as an attribute (i.e., a <Match> element) in the <Target> ele-
ment of a Concept <PolicySet>; the Concept <PolicySet>
element references a single Permission <PolicySet>, which in
turn contains references to Propagation <PolicySet> elements.
In turn, Propagation <PolicySet> elements reference Autho-
rization <Policy> elements which encode the actual authoriza-
tions over the data element as described in Section 5.1. The extra
layer given by the Propagation <PolicySet> elements is needed
to prevent loops in the policy structure due to up and down inheri-
tance through data hierarchies and thus to properly implement the
evaluation function J·KDM.

The XACML policy associated with a data element contains three
Propagation <PolicySet> elements, one for top-down inheri-
tance over data hierarchies, one for bottom-up inheritance over data
hierarchies and one for inference (defined in terms of reachability).
The top-down Propagation <PolicySet> contains references to

the positive Authorization <Policy> elements, i.e. to <Policy>
elements that only contain a Permit rule.6 In addition, it contains
a policy reference to the top-down Propagation <PolicySet> as-
sociated with the parent node(s) in the data model. This way, the
data element inherits the (positive) policies of the parent node(s).
The bottom-up and inference Propagation <PolicySet> elements
are only linked to negative Authorization <Policy> elements, i.e.
to <Policy> elements that only contain a Deny rule. This con-
struction guarantees that only the propagation of negative autho-
rizations can occur up a hierarchy or through inference relations. To
inherit the negative authorizations of the child node(s), the bottom-
up Propagation <PolicySet> also contains a policy reference
to the bottom-up Propagation <PolicySet> of the child node(s)
in the data model. Inference relations and top-down propagation
of negative authorizations are encoded in a similar way. Let x
be the node for which the policy is defined. For each inference
relation (x, y) ∈→, a policy reference to the inference Propaga-
tion <PolicySet> associated with the node y is added to the
inference Propagation <PolicySet> associated with x. The in-
ference Propagation <PolicySet> also contains a reference to
the inference Propagation <PolicySet> of the parent node(s).
This combination of inference and hierarchical relations captures
the notion of reachability, thus allowing the inheritance of the (neg-
ative) authorizations associated with the data elements that can be
inferred from the disclosure of the data element.

To enable propagation through data hierarchies and inference re-
lations, the <Target> element of Permission <PolicySet> el-
ements should not constraint the data element to which the policy
element applies. Consequently, Permission <PolicySet>, Prop-
agation <PolicySet> and Authorization <Policy> elements
cannot be root policies, i.e. they cannot be directly evaluated by the
PDP. Policy elements are combined using the deny-overrides
combining algorithm. Intuitively, if one of these policies evaluates
Deny, the access to the data element is denied.

Encoding the evaluation function within the policy structure makes
it possible to build a simple and automated procedure for the con-
struction of XACML policies implementing the evaluation function
J·KDM. In addition, this approach provides the flexibility necessary
to support the adoption of different strategies for policy evaluation.
For instance, it allows the implementation of an evaluation strat-
egy based on the specificity level of policies [23, 29]. Intuitively,
this strategy gives higher priority to policies that are more specific.
Specificity can be implemented using the first-applicable
combining algorithm. In particular, the policies associated with a
data element and with the data elements that can be inferred from
it can be combined using deny-overrides. The resulting pol-
icy can be combined with the policies of the parent node(s) us-
ing first-applicable. This ensures that the policy of parent
node(s) is evaluated only if the policies specific for the data element
are not applicable.

It is worth noting that, although the proposed encoding requires
the definition of a XACML policy for each data element in the
application domain, only the Concept <PolicySet> concerning
the requested data element is applicable. Thus, only the applicable
Concept <PolicySet> and the policy elements reachable from it
are evaluated, making policy evaluation independent from the size
of the application domain in terms of data elements.

6Remark that in our construction Authorization <Policy> ele-
ments contain a single rule.



6. EVALUATION AND COMPARISON
In this section we analyze the effectiveness and efficiency of the

access control models in Table 1 with respect toACDM. In partic-
ular, we study the impact of using inference relations on the specifi-
cation and evaluation of access control policies. Effectiveness char-
acterizes the completeness and accuracy of access control policies,
while efficiency characterizes the effort (in relation to the complete-
ness and accuracy) needed to specify the policies [22].

Evaluation Framework.
To measure the effectiveness and efficiency of an access con-

trol model, we introduce an evaluation framework consisting of a
number of metrics. These metrics are defined in terms of explicitly
protected data and intended protected data. To formally define the
metrics, we introduce the following notation.

Let DM = 〈D, ↑,→〉 be a data model and P a set of poli-
cies. The set of data elements explicitly protected by P is the set of
data elements for which a policy is defined. Specifically, we have
DP+

Exp = {d :match(d,P+)} and DP
−

Exp = {d :match(d,P−)}.
The set of intended protected data is the set of data elements whose
access needs to be regulated in order to capture a user’s privacy
constraints according to the domain knowledge encoded in DM.
Specifically, we have DP

−
Int = {di :di ∈ d↓ ∧ d ∈ DP

−
Exp} ∪ {di :

di ∈ d∞ ∧ d ∈ DP
−

Exp} and DP
+

Int = {di : di ∈ d↑ ∧ d ∈
DP

+

Exp} \ DP
−

Int . In other words, the set of intended protected data
correspond to the evaluation function J·KDM.

Let AC = 〈Q,P,DS, J·KDS〉 be an access control model. The
accuracy of AC is assessed using the following metrics:

(M1) Number of cases where a user intends to deny the access
to a data element, while access is not denied by the access
control model.

M1 =
∣∣DP−Int \ {d ∈ D : Jd,PKDS = Deny}

∣∣
(M2) Number of cases where a user intends to permit the access

to a data element, while access is not granted by the access
control model.

M2 =
∣∣DP+

Int \ {d ∈ D : Jd,PKDS = Permit}
∣∣

(M3) Number of cases where data elements could be leaked.

M3 =
∣∣DP−Int ∩ {d ∈ D : Jd,PKDS = Permit}

∣∣
(M4) Number of cases where the availability of data elements is

not guaranteed.

M4 =
∣∣DP+

Int ∩ {d ∈ D : Jd,PKDS = Deny}
∣∣

These metrics aims to verify to what extent a policy evaluated with
respect to a given access control model is able to capture a user’s
intention. In particular, M1 checks whether a policy is less restric-
tive than what the user wants, while M2 checks whether a policy
is more restrictive than what the user wants. M3 refines M1 by
checking whether access that should be denied is instead permitted.
Similarly, M4 refines M2 by checking whether access that should
be permitted is instead denied. In order to achieve accuracy, the
objective of an access control model is to minimize these metrics.

The completeness of AC is assessed by measuring the coverage
of P . Coverage is evaluated using the following metric:

(M5) Fraction of data elements that are correctly protected by P
over the set of intended protected data.

M5 =

∣∣∣(DP+

Int ∩{d∈D:Jd,PKDS=Permit}
)
∪
(
DP
−

Int ∩{d∈D:Jd,PKDS=Deny}
)∣∣∣∣∣DP+

Int ∪D
P−
Int

∣∣
Intuitively, coverage determines to what extent a policy evaluated
in a given access control model is able to capture the set of intended
protected data. In order to achieve completeness, the objective of
an access control model is to maximize this metric.

The efficiency of AC is measured by the following metric:

(M6) Number of policies to be specified by a user in order to
capture her intention.

M6 = min
{
| DP

+

Ext | + | DP
−

Ext | s.t. M5 = 1
}

The number of policies explicitly specified by a user quantifies the
effort that the user has to spend to cover the set of intended pro-
tected data. Higher is the number of policies, higher is the com-
plexity of specifying policies for the user. Therefore, in order to
achieve efficiency, the objective of an access control model is to
minimize this metric.

Evaluation Settings.
We have compared a number of existing access control mod-

els with ACDM. In particular, we have analyzed the impact of
the data model on the specification and evaluation of access con-
trol policies with respect to other data structures and propagation
rules (Table 1). Recall that ACNR is representative of access con-
trol models that do not use relations between data elements, while
ACDH1 , ACDH2 and ACDH3 are representative of models which
use data hierarchies. As discussed in Section 3, these models differ
in the way negative authorizations are propagated.

The access control models in Table 1 and the evaluation frame-
work have been implemented in Datalog. In particular, the Data-
log program encodes the evaluation function (i.e., propagation rules
and combining algorithm) for each access control model as well as
the metrics M1 to M6.

To evaluate and compare the completeness, accuracy and effi-
ciency of the access control models, we generated three sets of
policies P1, P2, P3 protecting access to an EHR specified over a
vocabulary consisting of 100 terms (taken from the SNOMED-CT
ontology). Each set of policies Pi (i = 1, . . . , 3) defines the set of

data elements to which access is explicitly permitted (i.e., D
P+

i
Ext )

and denied (i.e., D
P−i
Ext ) by a user. From these sets, we computed

the sets of intended protected data D
P+

i
Int and D

P−i
Int . Sets D

P+
i

Int and

D
P−i
Int have been used as a reference model for the evaluation.
To study the efficiency of access control models and their ability

to capture user intention, for every set of policies Pi (i = 1, . . . , 3)
and access control modelACj (j = NR,DH1,DH2,DH3,DM),

we specified a policy setPj
i that captures D

P+
i

Int and D
P−i
Int using the

minimal number of policy statements with respect to ACj . When

an access control model is not able to fully cover both D
P+

i
Int and

D
P−i
Int , we defined the minimal policy set that fully cover D

P−i
Int

while maximizing the coverage of D
P+

i
Int . This represents the min-

imal policy set that prevent the risk of data leakage with respect to
the access control model.

The three policy sets were passed as an input to the Datalog pro-
gram which evaluated them with respect to the access control mod-
els in Table 1 and returned the metrics M1 to M6 for each access
control model.



ACNR ACDH1
ACDH2

ACDH3
ACDM

Pi M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

PDM1 56 5 1 0 0.13 29 0 12 0 0.58 51 0 13 0 0.27 24 0 12 0 0.66 0 0 0 0 1 10

PDH3
1 42 5 1 0 0.33 4 0 0 0 0.94 38 2 7 2 0.43 0 2 0 2 0.97 24 – – – – – –

PDH2
1 12 5 0 0 0.76 6 0 0 0 0.91 0 2 0 2 0.97 64 – – – – – – – – – – – –

PDH1
1 39 5 1 0 0.37 0 4 0 4 0.94 27 38 2 7 2 0.43 – – – – – – – – – – – –
PNR1 0 0 0 0 1 70 – – – – – – – – – – – – – – – – – – – – – – – –
PDM2 64 14 2 0 0.11 27 0 24 0 0.69 60 0 26 0 0.32 23 0 22 0 0.74 0 0 0 0 1 12

PDH3
2 57 14 1 0 0.19 2 0 0 0 0.97 54 3 21 3 0.35 0 3 0 3 0.97 19 – – – – – –

PDH2
2 16 14 2 0 0.66 6 0 4 0 0.93 0 3 0 3 0.97 62 – – – – – – – – – – – –

PDH1
2 55 14 1 0 0.21 0 11 0 11 0.88 21 54 3 21 3 0.35 – – – – – – – – – – – –
PNR2 0 0 0 0 1 88 – – – – – – – – – – – – – – – – – – – – – – – –
PDM3 75 13 6 0 0.08 47 0 31 0 0.51 69 0 35 0 0.28 41 0 27 0 0.57 0 0 0 0 1 14

PDH3
3 58 13 4 0 0.26 6 0 4 0 0.94 46 2 15 2 0.50 0 2 0 2 0.98 31 – – – – – –

PDH2
3 22 13 4 0 0.64 6 0 4 0 0.94 0 2 0 2 0.98 70 – – – – – – – – – – – –

PDH1
3 55 13 3 0 0.29 0 7 0 7 0.93 34 46 2 15 2 0.50 – – – – – – – – – – – –
PNR3 0 0 0 0 1 96 – – – – – – – – – – – – – – – – – – – – – – – –

Table 2: Comparison of Access Control Models

Results.
Table 2 provides an overview of the results. For each policy set
Pj

i (with i ∈ {1, . . . , 3} and j ∈ {NR,DH1,DH2,DH3,DM}),
the table reports the metrics M1 to M6 computed when the policy
set is evaluated with respect toACNR,ACDH1 ,ACDH2 ,ACDH3

and ACDM. Note that we did not evaluate PDH3
i within ACDM;

PDH1
i and PDH2

i within ACDH3 and ACDM; and PNRi within
ACDH1 , ACDH2 , ACDH3 and ACDM. This is because ACDM
has full coverage (i.e., M5 = 1) for PDMi , ACDH3 has full cov-

erage of D
P−i
Int for PDH3

i , ACDH2 has full coverage of D
P−i
Int for

PDH2
i , and ACDH1 has full coverage of D

P−i
Int for PDH1

i .
We can observe in the table that ACDM achieves the best trade-

off between coverage (M5) and efficiency (M6). In fact, ACDM
covers the set of intended protected data with a significantly less
number of policies than ACNR, ACDH1 , ACDH2 and ACDH3 .
For instance, PNR1 consists of 70 policy statements, PDH1

1 of 27
statements, PDH2

1 of 64 statements and PDH3
1 of 24 statements,

while PDM1 is formed by only 10 policy statements. In particu-
lar, to define a policy that covers the full set of intended protected
data in ACNR, a user has to define a policy for each data element
in the set. However, the user can only do that if he has a deep
knowledge of the application domain, which is rarely the case for
an average user. In contrast, ACDM relieves users of this burden
by relying on a data model encoding the domain knowledge for de-
cision making. Moreover, the results show that ACDH2 requires
the specification of a policy for a larger number of data elements
compared to ACDH1 and ACDH3 in order to prevent the leakage
of sensitive information. This is due to the fact that, when using
ACDH2 , policies have to be defined for leaf nodes, and in a data
hierarchy the number of nodes in a stratum is usually larger than
the number of nodes in the stratum immediately above it.

It is worth noting that it may not be possible to obtain full cov-
erage of the set of intended protected data withinACDH1 ,ACDH2

andACDH3 , i.e. there may not exist policy sets PDH1
i , PDH2

i and
PDH3

i respectively, such that M5 = 1. In order to define a pol-
icy capturing their privacy constraints, users should know the data
elements that allow the inference of the data elements to which
they wants to restrict the access and define negative authorizations
for those data elements explicitly. However, these negative autho-
rizations are not correctly interpreted by ACDH2 and ACDH3 . In
particular, they are propagated both up and down the hierarchy in

ACDH3 and up the hierarchy in ACDH2 , thus restricting the ac-
cess to data elements which the user wants to disclose. On the
other hand, when a negative authorization is defined for a data ele-
ment,ACDH1 requires the specification of a negative authorization
for the root elements of the data hierarchy. This, by propagation,
might prevent access to data elements for which access should be
allowed. Consequently, policies expressed in access control mod-
els only relying on a data hierarchy, result to be more restrictive
than what the user aims at as indicated by M4.

The experiments also show that ACNR, ACDH1 , ACDH2 and
ACDH3 do not fully protect a user from data leakages without
a comprehensive knowledge of the application domain. This be-
comes evident when we evaluate PDMi with respect to these mod-
els. WhenPDMi is evaluated withinACDH1 ,ACDH2 andACDH3 ,
there may be situations in which the user would like to deny access
but these models do not (M1), or even worse, situations in which
the access should be denied while ACDH1 , ACDH2 and ACDH3

grant access (M3), thus allowing inference of user sensitive data.
Indeed, the propagation of positive authorizations through hierar-
chies increases the number of data elements for which permission is
allowed: those permissions grant access to user’s information that
should be protected, leading to leakages of sensitive information.
Similar situations happen when PDMi is evaluated with respect to
ACNR. Since the user relies on her (limited) knowledge of the
application domain to define a policy set that covers the whole set
of intended protected data, the defined policies might not reflect
her constraints on the disclosure of sensitive information. Indeed,
there are several cases where the user would like to deny access
but ACNR does not (M1) or vice versa (M2). Moreover, a user
may explicitly grant access to a data element that allows the infer-
ence of a data element to which the user has explicitly denied the
access (M3). Comparing ACNR, ACDH1 , ACDH2 and ACDH3

with respect to the evaluation of PDMi , we can observe that, in
general,ACDH3 better captures a user’s intention thanACDH1 and
ACDH2 ; in turn,ACDH1 andACDH2 better capture a user’s inten-
tion than ACNR (M1 and M2). However, ACDH1 , ACDH2 and
ACDH3 are more prone to data leakages when a user does not have
a sufficient knowledge of the application domain and, in particular,
of inference relations (M3).

Note thatACDH2 can achieve the same level of accuracy offered
by ACDH3 . This can be explained by the fact that the it is always
possible to define a policy PDH2

i which evaluated using ACDH2



behaves as a policyPDH3
i evaluated usingACDH3 . However, such

a policy requires a larger amount of policy statements compared
to the corresponding policy for ACDH3 . On the other hand, the
maximum level of accuracy that can be reached by ACDH1 (i.e.,
for PDH1

i ) is lower than the maximal accuracy that can be reached
by ACDH2 and ACDH3 . Moreover, one can observe that PDH1

i

and PDH3
i behave in a similar way with respect to ACDH2 . This

can be explained by the fact that policy PDH1
i can be seen as an

extension of PDH3
i . In other words, it can be obtained from PDH3

i

by adding the statements needed to reduce the number of cases in
access is not properly denied (i.e., M1).

Based on these observations, we can conclude that ACDM per-
forms better than existing access control models in that it provides
full protection from data leakages with lower efforts on the user
side. In particular, it minimizes the number of policies a user has
to write while allowing full coverage of the intended protected set.

7. RELATED WORK
In this paper we have investigated the problem of preventing in-

ference of sensitive information in access control. Inference con-
trol aims to prevent indirect access to sensitive information where
a user learns sensitive information from non-sensitive one. Access
control, instead, prevents direct access to sensitive information.

In the remainder of this section, we discuss approaches that focus
on inference control and approaches that focus on the combination
of inference control and access control.

Inference Control.
Several approaches to inference control have been proposed in

the literature [1, 15, 18, 37], especially for database systems [3, 7].
The inference problem in databases occurs when sensitive informa-
tion is disclosed indirectly by combining the answers to a sequence
of non-sensitive queries. For this reason, most of the proposed ap-
proaches focus on controlling query execution at runtime. For in-
stance, Biskup and Bonatti [7] propose a technique for controlled
query evaluation, which modifies the ordinary query evaluation by
distorting answers if necessary to preserve confidentiality with re-
spect to a given confidentiality policy.

However, these techniques are computationally inefficient. Thus,
Biskup et al. [8, 9, 10] propose to reduce the problem of inference
control to access control. These approaches are based on introduc-
ing constraints which represent a combination of attribute values
in a tuple to be kept secret. If the constants in a query match the
constraints, the query asks for a secret value and therefore is not
allowed. These approaches are complementary to our approach be-
cause they consider inference deriving from the combination of dif-
ferent attribute values. In our work instead we tackle the inference
problem by adopting a semantic approach in which inference is pre-
vented on the basis of hierarchical and inference relations between
data elements.

Inference and Access Control.
Only few works have considered the issue of information infer-

ence in access control [25, 34]. For instance, Katos et al. [25]
present an approach based on the concept of inference control by
design. They model inference channels between attributes in a data
schema as a disclosure matrix that, for each attribute, represents
the probability of an attribute revealing other attributes. This ma-
trix is used to compute an access leakage matrix capturing the ef-
fective access control. The access leakage matrix is used to define
an access control policy that avoids inference channels using sepa-
ration of duty constraints. However, inference is only analyzed at

the attribute level, thus limiting the granularity of the analysis. In
contrast, our approach enables to reason on information inference
at any level of the data hierarchy. In particular, we have tackled
the problem of inference control by proposing an access control
model that adopts semantic inference relationship among data and
defines on top of these relationship authorization propagation rules
that prevent inference of sensitive information.

The key role played by semantic relationships among data in
making access control decisions has been recognized in earlier work
[12, 34, 41]. Crampton and Sellwood [12] propose a generic ac-
cess control model using relationships among entities as the basis
to specifying authorization rules. An access request is evaluated
with respect to two types of rules: principal matching rules and
authorization rules. The former express conditions on the relation-
ships that form a path between a subject s and an object o in an ac-
cess request (s, o, a); the latter specify the actions that the subject
s can/cannot perform on the object o. Similarly, in our approach
we consider (semantic) relations between data as the basis of the
evaluation of authorization policies. These relations can be consid-
ered as a special case of the relations among entities used in [12] to
define principal matching rules.

Vavilis et al. [41] use inference relations to reason on data sensi-
tivity and quantify the severity of data leakages. Similarly to [41],
our approach is based on a data model which considers both hierar-
chical and inference relations between data elements. Leveraging
these two types of relations makes it possible to detect situations in
which access control policies permit access to data from which it
is possible to infer sensitive information the user would not like to
disclose.

The closest work to ours is the one of Qin et al. [34]. This work
presents an access control model for Semantic Web, which allows
the specification of authorizations over concepts defined in ontolo-
gies and their enforcement upon data instances annotated by con-
cepts. The model makes use of semantic relationships among con-
cepts to define authorization propagation policies that prevent infer-
ence of sensitive information. The authors also show how policies
can be represented in an OWL-based access control language.

As in [34], we use domain knowledge (possibly represented us-
ing an ontology) and, in particular, the semantic relationship be-
tween data elements to define propagation rules that prevent leak-
age of sensitive information. However, there are significant differ-
ences between our work and the one in [34]. First, we discriminate
between hierarchical relations and inference relations in the defini-
tion of authorization propagation rules while Qin et al. do not make
this distinction. In particular, Qin et al. classify the relations that
can occur in an ontology (including hierarchical relations) in three
categories, namely inferable, partially inferable and non-inferable.
Based on this classification they propose four propagation rules.
These rules are used to propagate both positive and negative autho-
rizations regardless of the type of relations (except non-inferable
relations that do not propagate authorizations). In contrast, the def-
inition of our propagation rules is driven by the observation that
granting access to a data element does not imply granting access
also to the data elements from which it can be inferred. As a con-
sequence, the propagation rules proposed in [34] allow the access
to information to a wider audience than intended. Moreover, Qin
et al. propose their own language based on OWL to express access
control policies, which requires the development of an ad-hoc en-
gine for policy evaluation. In contrast, we encode policies and data
model in XACML, thus making our model directly implementable
using any existing XACML-compliant engine. More importantly,
OWL-based policy languages have inherent limitations in the ex-
pressiveness of the policies that can be enforced due to the fact that



OWL with rules is undecidable if unrestricted [26]. On the other
hand, our approach can leverage the expressivity and extensibility
of XACML for the specification of access control policies, result-
ing in a larger set of policies that can be supported by our access
control model.

8. CONCLUSION
In this paper we have presented an access control model that uses

a semantic approach to prevent inference of sensitive information.
The model is based on a data model that encodes domain knowl-
edge. In particular the data model organizes domain knowledge in
a hierarchical structure and makes inference relations between data
explicit. These relations are used to define authorization propaga-
tion rules that prevent inference of sensitive information.

We acknowledge that the proposed access control model can
only prevent inference of sensitive information based on the in-
ference relations that are explicit in the data model. Thus, our ap-
proach is complementary to non-semantic approaches to inference
control that consider inference of sensitive information as combi-
nation of non-sensitive one.

We have evaluated and compared the proposed access control
model with existing access control models which either do not con-
sider relations among data or rely only on data hierarchies to deter-
mine applicable policies. The experiments show that our model
overcomes the limitations of existing access control models in that
it provides protection against explicit secondary data leakages and
reduces the effort required by a user to specify a policy expressed
in term of number of statements that the user has to specify.

The work presented in this paper poses the basis for several di-
rections for future work. The aim of the proposed access control
model is to prevent inference of sensitive information. This, how-
ever, may result in users not being fully conscious about the side
effects that defining a certain policy may lead to. To this end, the
access control model can be complemented with transparency tools
that help users in the understanding of the consequences of the de-
fined policies. Transparency tools can be used either to analyze
users’ policies at design time, for instance based on policy analy-
sis approaches [20, 40], or at run time to provide feedback to users
when the access decision differs from the authorizations they have
explicitly specified in their policies [14].

Moreover, we are planning to conduct an extensive evaluation of
our approach with respect to different aspects. First, we want to
evaluate the effectiveness and efficiency of our approach in a con-
trolled experiment in which users specify an access control policy
using the proposed access control model, an access control model
that do not consider relations among data and one that makes use of
data hierarchies. Second, since the proposed access control model
relies on the representation of the application domain for the deci-
sional process, we want to study the impact of the representation of
the application domain has on the effectiveness of the access con-
trol model. To this end, we plan to perform experiments in which
different domain specific ontologies like FOAF for social networks,
GoodRelations [19] and CContology [24] for e-commerce are used
to instantiate the data model.
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