
Fair Termination of Binary Sessions - Artifact

FairCheck is an implementation of the type system described in the paper Fair Termination of
Binary Sessions submitted to POPL 2022 (submission #30). A draft of the paper that also

includes the algorithmic version of the type system on which FairCheck is based is available

here (external link). FairCheck parses a distributed program modeled in a session-oriented

variant of the π-calculus and verifies that:

1. There exists a typing derivation for each definition in the program using the algorithmic

version of the type system (Section 6 of the paper and Appendix F.1 of the supplement).

2. Each process definition is action bounded, namely there exists a finite branch leading to

termination (Section 5.1).

3. Each process definition is session bounded, namely the number of sessions the process

needs to create in order to terminate is bounded (Section 5.2).

4. Each process definition is cast bounded, namely the number of casts the process needs to

perform in order to terminate is bounded (Section 5.3).

List of claims

Here is a list of claims made in the paper about the well- or ill-typing of the key examples

presented in the paper. Each claim will be discussed and checked against the implementation of

FairCheck in the corresponding section below.

1. The acquirer-business-carrier program in Example 4.1 is well typed (Example 6.1)

2. The random bit generator program is well typed (Example 6.3)

3. In Eq. (3), the process A is action bounded and B is not (Section 5.1)

4. At the end of Section 5.1, A is ill typed and B would be well typed if action boundedness

was not enforced

5. In Eq. (4) and Eq. (5), A is session bounded whereas B₁ and B₂ are not (Section 5.2)

6. The process C in Eq. (6) is well typed (Section 5.2)

7. The program in Eq. (7) would be well typed if action boundedness and cast boundedness

were not enforced (Section 5.3)

8. The same program using the definitions in Eq. (8) would be well typed if cast boundedness

was not enforced (Section 5.3)

9. The program in Eq. (9) is ill typed because it uses unfair subtyping (Section 5.3)

Download, installation, and sanity-testing

The artifact is available on Zenodo (external link) as a VirtualBox image FairCheck.ova as well

as a source code archive FairCheck-master.zip. The next sub-sections describe the steps to

be taken to compile and test the artifact in each case.

Using FairCheck.ova

file:///Users/luca/GIT/FairCheck/paper/fair-termination.pdf
https://doi.org/10.5281/zenodo.5547687

The virtual image runs Ubuntu Linux 20.04 LTS and contains all that is necessary in order to

compile the source code of FairCheck; it has been tested using VirtualBox 6.1 on MacOS 11.6.

Once the image has been downloaded and activated and the operating system has booted, open

the terminal (grey icon on the left dock) and type

cd FairCheck

to enter the directory that contains the source code of FairCheck as well as the code of all of

the examples that we are going to evaluate. This directory is in fact a clone of FairCheck GitHub

public repository (external link).

Note that the present document with all working hyperlinks can also be visualized on GitHub

(external link) or from within the virtual machine by clicking on the FireFox icon in the dock on the

left-hand side of the screen.

Using FairCheck-master.zip

These instructions assume the use of MacOS with the homebrew package manager (external link)

and a terminal running the bash shell. First of all, make sure that the Haskell compiler and the

Haskell Tool Stack are installed. If not, issuing the commands

brew install haskell-stack

will install these tools. Unpacking the .zip archive downloaded from Zenodo will create a

directory FairCheck-master. From the terminal, type

cd FairCheck-master

to enter the directory that contains the source code of FairCheck as well as the code of all of

the examples that we are going to evaluate. This directory is in fact a clone of FairCheck GitHub

public repository (external link).

Using FairCheck-master.zip on an M1 Mac

At the time this artifact is being evaluated, support for the Haskell compiler and the Haskell Tool

Stack on M1 Macs is not completely aligned with that of other architectures. In particular, it may

be necessary to use a different configuration file for the Haskell Tool Stack to compile the artifact

on an M1 Mac. To this aim, in addition to the installation instructions above, install the Haskell

compiler globally with the command

brew install ghc

then edit the Makefile and change the topmost line

https://github.com/boystrange/FairCheck
https://github.com/boystrange/FairCheck
https://brew.sh/
https://github.com/boystrange/FairCheck
file:///Users/luca/GIT/FairCheck/Makefile

YAML = stack.yaml

to

YAML = stack_m1.yaml

Sanity-testing

To clean up all the auxiliary files produced by the compiler, to (re)generate and install the

FairCheck executable, issue the command

make clean && make && make install

The compilation should take only a few seconds to complete. To verify that the FairCheck
executable has been built and installed successfully, issue the command

faircheck

to print the synopsis of FairCheck and a summary of the options it accepts. We will illustrate the

effect of some of these options in the next section. Note that the executable is installed into a

hidden local directory ~/.local/bin that is already included in the PATH variable for the

terminal shell in the virtual image. In case FairCheck is compiled from the .zip archive, it may

be necessary to add the installation directory of the stack tool to the PATH environment variable

(run stack path --local-bin to obtain the full path of this directory).

FairCheck includes a few examples of well- and ill-typed processes. To verify that they are

correctly classified as such, issue the command

make check

to print the list of programs being analyzed along with the result of the analysis: a green OK
followed by the time taken by type checking indicates that the program is well typed; a red NO
followed by an error message indicates that the program is ill typed. Depending on the size of the

terminal window, it may be necessary to scroll the window up to see the whole list of analyzed

programs, divided into those that are well typed and those that are not.

Evaluation instructions

Claim 1

The running example used throughout the paper models an acquirer-business-carrier distributed

program and is described in Example 4.1. Its specification in the syntax accepted by FairCheck
is contained in the script acquirer_business_carrier.pi and is shown below.

type T = !add.(!add.T ⊕ !pay.!end)
type S = ?add.S + ?pay.?end
type R = !add.R ⊕ !pay.!end

A(x : T) = x!add.x!{add: A⟨x⟩, pay: close x}
B(x : S, y : !ship.!end) = x?{add: B⟨x, y⟩, pay: wait x.y!ship.close y
}
C(y : ?ship.?end) = y?ship.wait y.done
Main = new (y : !ship.!end)
 new (x : R) ⌈x : T⌉ A⟨x⟩ in B⟨x, y⟩
 in C⟨y⟩

The script begins with three session type declarations defining the acquirer protocol T, the

business protocol S and the dual of the business protocol R. Next are the process definitions

corresponding to those of Example 4.1. Note that FairCheck implements a type checker, not a

type reconstruction algorithm. Hence, bound names and casts must be explicitly annotated

with session types. For example, the declarations x : T in the definition of A and y :
!ship.!end in the definition of B state that x and y have type T and !ship.!end respectively, in

agreement with the global type assignments given in Example 6.1. Also, for the sake of readability,

session restrictions (x)(P | Q) are denoted by the form new (x : S) P in Q. Only the

type S of the session endpoint used by P must be provided, whereas the endpoint used by Q is

implicitly associated with the dual of S.

Example 6.1 claims that this program is well typed. To verify the claim we run FairCheck
specifying the file that contains the program to type check. Hereafter, $ represents the shell

prompt and preceeds the command being issued, whereas any text in the subsequent lines is the

output produced by FairCheck.

$ faircheck artifact/acquirer_business_carrier.pi
OK

The OK output indicates that the program is well typed.

Claim 2

The random bit generator program described in Example 6.3 is defined in the script

random_bit_generator.pi and is shown below (in the submitted version of the paper, the B
process also uses a session endpoint y which is omitted in the script so that the program is self

contained).

type S = ?more.(!0.S ⊕ !1.S) + ?stop.!end
type U = !more.(?0.U + ?1.!stop.?end)

file:///Users/luca/GIT/FairCheck/artifact/acquirer_business_carrier.pi
file:///Users/luca/GIT/FairCheck/artifact/random_bit_generator.pi

type V = ?more.(!0.V ⊕ !1.?stop.!end)

A(x : S) = x?{more: x!{0: A⟨x⟩, 1: A⟨x⟩}, stop: close x}
B(x : U) = x!more.x?{0: B⟨x⟩, 1: x!stop.wait x.done}
Main = new (x : V) ⌈x : S⌉ A⟨x⟩ in B⟨x⟩

Example 6.3 claims that this program is well typed.

$ faircheck artifact/random_bit_generator.pi
OK

Claim 3

The purpose of the definitions in Eq. (3) is to illustrate the difference between action-bounded

processes, which have a finite branch leading to termination, and action-unbounded processes,

which have no such branch. The process A in Eq. (3) is defined in the script equation_3_A.pi.

A = A ⊕ done

This process may nondeterministically reduce to itself or to done and is claimed to be action

bounded thanks to the branch leading to done. In fact, it is well typed.

$ faircheck artifact/equation_3_A.pi
OK

The process B in the same Eq. (3) is defined in the script equation_3_B.pi.

B = B ⊕ B

This process can only reduce to itself and is claimed to be action unbounded, because it has no

branch leading to termination.

$ faircheck artifact/equation_3_B.pi
NO: action-unbounded process: B [line 1]

The NO output indicates that the program is ill typed and the subsequent message provides

details about (one of) the errors that have been found. In this case, the error confirms that B is

action unbounded.

Claim 4

The purpose of the process definitions at the end of Section 5.1 is to illustrate how action

file:///Users/luca/GIT/FairCheck/artifact/equation_3_A.pi
file:///Users/luca/GIT/FairCheck/artifact/equation_3_B.pi

boundedness helps detecting programs that claim to use certain session endpoints in a certain

way, while in fact they never do so. To illustrate this situation, consider the process B shown at

the end of Section 5.1 and defined in the script linearity_violation_B.pi.

type T = !a.T

B(x : T, y : !end) = x!a.B⟨x, y⟩

This process claims to use x according to T and y according to !end. While x is indeed used as

specified by T, y is only passed as an argument in the recursive invocation of B so that the

linearity of y is not violated. As claimed in the paper, a process like B is not action bounded and is

therefore ruled out by the type system.

$ faircheck artifact/linearity_violation_B.pi
NO: action-unbounded process: B [line 3]

A conventional session type system that does not enforce action boundedness may be unable to

realize that y is not actually used by B. We can verify this claim by passing the -a option to

FairCheck, which disables the enforcement of action boundedness.

$ faircheck -a artifact/linearity_violation_B.pi
OK

In conclusion, without the requirement of action boundedness the process B would be well typed,

despite the fact that it never really uses y.

The process A, also defined at the end of Section 5.1 and contained in the script

linearity_violation_A.pi, is a simple variation of B that is action bounded.

type S = !a.S ⊕ !b.!end

A(x : S, y : !end) = x!{a: A⟨x, y⟩, b: close x}

Just like B, also A declares that y is used according to the session type !end. This process is

claimed to be ill typed because the b-labeled branch of the label output form does not actually

use y.

$ faircheck artifact/linearity_violation_A.pi
NO: linearity violation: y [line 3]

Claim 5

file:///Users/luca/GIT/FairCheck/artifact/linearity_violation_B.pi
file:///Users/luca/GIT/FairCheck/artifact/linearity_violation_A.pi

The process definitions in Eq. (4) and Eq. (5) illustrate the difference between session-bounded

and session-unbounded processes. In a session-bounded process, there is an upper bound to

the number of sessions the process needs to create in order to terminate.

The script equation_4_A.pi contains the process A in Eq. (4).

A = (new (x : !end) close x in wait x.A) ⊕ done

The process is claimed to be session bounded, because it does not need to create any new

session in order to terminate despite the fact that it may create a new session at each invocation.

In fact, the program is well typed.

$ faircheck artifact/equation_4_A.pi
OK

The file equation_4_B.pi contains the definition of the process B₁ in Eq. (4).

B₁ = new (x : !end) close x in wait x.B₁

This process is claimed to be session unbounded. Since this process is also action unbounded

and FairCheck verifies action boundedness before session boundedness, we need to use the -a
option to disable action boundedness checking or else we would not be able to see the session

unboundedness error.

$ faircheck -a artifact/equation_4_B.pi
NO: session-unbounded process: B₁ [line 1] creates x [line 1]

FairCheck reports not only the name B₁ of the process definition that has been found to be

session unbounded, but also the name x of the session that contributes to its session

unboundedness.

Finally, the script equation_5.pi contains the definition of the process B₂ in Eq. (5).

B₂ = new (x : !a.!end ⊕ !b.?end)
 x!{a: close x, b: wait x.B₂}
 in x?{a: wait x.B₂, b: close x}

This process is claimed to be action bounded (each of the two processes in parallel has a non-

recursive branch) but also session unbounded.

$ faircheck artifact/equation_5.pi
NO: session-unbounded process: B₂ [line 1] creates x [line 1]

file:///Users/luca/GIT/FairCheck/artifact/equation_4_A.pi
file:///Users/luca/GIT/FairCheck/artifact/equation_4_B.pi
file:///Users/luca/GIT/FairCheck/artifact/equation_5.pi

Claim 6

The script equation_6.pi contains the definitions of the program in Eq. (6), whose purpose is

to show that a well-typed - hence session-bounded - process may still create an unbounded
number of sessions. The process A discussed in the previous section is already such an example

in which the created sessions are chained together, so that a new session may be created only

after the previous ones have terminated. In this example we see that sessions may also be

nested, so that a session terminates only after those created after it have terminated as well.

C(x : !end) = (new (y : !end) C⟨y⟩ in wait y.close x) ⊕ close x
Main = new (x : !end) C⟨x⟩ in wait x.done

We can run FairCheck with the option --verbose to verify the claim that the program is well

typed and also to show the rank inferred by FairCheck of the process definitions contained

therein. The rank of a process is an upper bound to the number of sessions the process needs to

create and to the number of casts it needs to perform in order to terminate.

$ faircheck --verbose artifact/equation_6.pi
OK
process C has rank 0
process Main has rank 1

We see that the rank of C is 0, since C may reduce to close x without creating any new session.

On the other hand, the rank of Main is 1, since Main may terminate only after the session x it

creates has been completed.

Claim 7

The script equation_7.pi contains the definitions of the program in Eq. (7), which illustrates

one case where "infinitely many" applications of fair subtyping may have the same overall effect

of a single application of unfair subtyping.

type S = !add.S ⊕ !pay.!end
type T = ?add.T + ?pay.?end

A(x : S) = ⌈x : !add.S⌉ x!add.A⟨x⟩
B(x : T) = x?{add: B⟨x⟩, pay: wait x.done}
Main = new (x : S) A⟨x⟩ in B⟨x⟩

The paper claims that this program would be well typed if action boundedness and cast

boundedness were not enforced. To verify this claim, we run FairCheck with the options -a (to

disable action boundedness checking) and -b (to disable both session and cast boundedness

checking).

file:///Users/luca/GIT/FairCheck/artifact/equation_6.pi
file:///Users/luca/GIT/FairCheck/artifact/equation_7.pi

$ faircheck -a -b artifact/equation_7.pi
OK

Note that the option -b disables both session boundedness and cast boundedness checking.

Nonetheless, FairCheck is able to distinguish the violation of each property independently. For

example, both B₁ and B₂ discussed in Claim 5 are flagged as session unbounded, whereas A
discussed here is flagged as cast unbounded.

$ faircheck -a artifact/equation_7.pi
NO: cast-unbounded process: A [line 4] casts x [line 4]

The error message provides information about the location of the cast that makes A cast

unbounded.

Claim 8

The purpose of Eq. (8) is to show that, if a program is allowed to perform an unbounded number

of casts, it may not terminate even if it is action bounded. The script equation_8.pi contains

the definitions of the program in Eq. (8).

type S = !more.(?more.S + ?stop.?end) ⊕ !stop.!end
type T = ?more.(!more.T ⊕ !stop.!end) + ?stop.?end
type SA = !more.(?more.S + ?stop.?end)

A(x : S) = ⌈x : SA⌉ x!more.x?{more: A⟨x⟩, stop: wait x.done}
B(x : T) = x?{more: ⌈x : !more.T⌉ x!more.B⟨x⟩, stop: wait x.done}
Main = new (x : S) A⟨x⟩ in B⟨x⟩

The paper claims that this program is action bounded and cast unbounded. Indeed, each

recursive process contains a non-recursive branch and yet it may need to perform an unbounded

number of casts in order to terminate.

$ faircheck artifact/equation_8.pi
NO: cast-unbounded process: A [line 5] casts x [line 5]

We can run FairCheck with the -b option to verify that the program is otherwise well typed, and

in particular that all the performed casts are valid ones, in the sense that they use fair subtyping.

$ faircheck -b artifact/equation_8.pi
OK

Claim 9

file:///Users/luca/GIT/FairCheck/artifact/equation_8.pi

The script equation_9.pi contains the definitions of the program shown in Eq. (9).

type S = !more.(?more.S + ?stop.?end) ⊕ !stop.!end
type T = ?more.(!more.T + !stop.!end) + ?stop.?end
type TA = !more.(?more.TA + ?stop.?end)
type TB = ?more.!more.TB + ?stop.?end

A(x : TA) = x!more.x?{more: A⟨x⟩, stop: wait x.done}
B(x : TB) = x?{more: x!more.B⟨x⟩, stop: wait x.done}
Main = new (x : S) ⌈x : TA⌉ A⟨x⟩ in ⌈x : TB⌉ B⟨x⟩

This program is claimed to be action bounded, session bounded and cast bounded, but also ill

typed because the two casts it performs are invalid.

$ faircheck artifact/equation_9.pi
NO: invalid cast for x [line 8]: rec X₄.!{ more: ?{ more: X₄, stop: ?e
nd }, stop: !end } is not a fair subtype of rec X₃.!more.?{ more: X₃,
stop: ?end }

Since FairCheck internally represents session types as regular trees, the session types printed

in error messages may look different from those occurring in the script. However, it is relatively

easy to see that the recursive session type

rec X₄.!{ more: ?{ more: X₄, stop: ?end }, stop: !end }

in the error message is isomorphic to S in the script and that

rec X₃.!more.?{ more: X₃, stop: ?end }

is isomorphic to TA. So, the error message indicates that S is not a fair subtype of TA. We can

verify that the program is well typed if unfair subtyping is used instead of fair subtyping by

passing the -u option to FairCheck.

$ faircheck -u artifact/equation_9.pi
OK

Additional artifact description

The FairCheck directory is structured in this way:

src: Haskell source code of FairCheck
examples: some examples of well-typed programs, all of which have also been discussed

file:///Users/luca/GIT/FairCheck/artifact/equation_9.pi
file:///Users/luca/GIT/FairCheck/src
file:///Users/luca/GIT/FairCheck/examples

in the previous sections

errors: exhaustive set of ill-typed programs aimed at testing all of the errors that can be

detected by FairCheck. Some (but not all) of these programs have been discussed in the

previous sections.

artifact: all of the programs discussed in the previous sections. This is a mixed bag of

well- and ill-typed programs.

Within src, the source code of FairCheck is structured into the following modules:

Common: general-purpose functions not found in Haskell standard library

Atoms: representation of identifiers and polarities

Exceptions: FairCheck-specific syntax and typing errors

Type: representation of session types

Process: representation of processes

Lexer: Alex specification of the lexical analyzer

Parser: Happy specification of the parser

Resolver: expansion of session types into closed recursive terms

Node and Tree: regular tree representation of session types

Checker: implementation of the type checker

Formula: implementation of model checker for the µ-calculus

Predicate: µ-calculus formulas used in the algorithm for fair subtyping

Relation: implementation of session type equality, unfair subtyping and fair

subtyping decision algorithms

Render: pretty printer for session types and error messages

Main: main module and handler of command-line options

The FairCheck parser accepts a syntax that is close to, but not exactly the same as, the one

used in the paper. The table below shows the grammar of scripts. Square brackets enclose

optional parts of the syntax.

Entity Definition Description

x, y non-capitalized identifier (e.g. x, y, ...) Channel name

l
non-capitalized identifier or number
(e.g. a, add, 0, ...)

Label

X capitalized identifier (e.g. S, T, ...) Type name

A capitalized identifier (e.g. A, Main, ...) Process name

π ::= ? Input polarity

! Output polarity

Script ::=
TypeDef₁ ... TypeDefₘ ProcessDef₁ ...

ProcessDefₘ

TypeDef ::= X = Type Type definition

file:///Users/luca/GIT/FairCheck/errors
file:///Users/luca/GIT/FairCheck/artifact
file:///Users/luca/GIT/FairCheck/src
file:///Users/luca/GIT/FairCheck/src/Common.hs
file:///Users/luca/GIT/FairCheck/src/Atoms.hs
file:///Users/luca/GIT/FairCheck/src/Exceptions.hs
file:///Users/luca/GIT/FairCheck/src/Type.hs
file:///Users/luca/GIT/FairCheck/src/Process.hs
file:///Users/luca/GIT/FairCheck/src/Lexer.x
file:///Users/luca/GIT/FairCheck/src/Parser.y
file:///Users/luca/GIT/FairCheck/src/Resolver.hs
file:///Users/luca/GIT/FairCheck/src/Node.hs
file:///Users/luca/GIT/FairCheck/src/Tree.hs
file:///Users/luca/GIT/FairCheck/src/Checker.hs
file:///Users/luca/GIT/FairCheck/src/Formula.hs
file:///Users/luca/GIT/FairCheck/src/Predicate.hs
file:///Users/luca/GIT/FairCheck/src/Relation.hs
file:///Users/luca/GIT/FairCheck/src/Render.hs
file:///Users/luca/GIT/FairCheck/src/Main.hs

ProcessDef ::=
A [(x₁ : Type , ... , xₙ : Type)] =
Process

Process definition

A [(x₁ : Type , ... , xₙ : Type)] ;
Undefined process

declaration

Process ::= done Terminated process

close x Signal output

wait x . Process Signal input

x π (y) . Process Channel input/output

x π { l₁ : Process , ... , lₙ : Process } Label input/output

x ! l . Process Shortcut for label output

new (x : Type) Process in Process New session

Process ⊕ Process Non-deterministic choice

⌈ x : Type ⌉ Process Cast

A [⟨ x₁ , ... , xₙ ⟩] Invocation

(Process) Bracketed process

Type ::= π end Terminated session

π Type . Type Channel input/output

π { l₁ : Type , ... , lₙ : Type } Label input/output

π l . Type Shortcur for label input/output

Type + Type
Shortcut for external choice

(label input)

Type ⊕ Type
Shortcur for internal choice

(label output)

X Type name

rec X . Type Recursive type

(Type) Bracketed type

