Testing satellite SST capability to capture thermal features and diurnal warming on the Great Barrier Reef

Xiaofang Zhu, Peter Minnett, Ray Berkelmans, Helen Beggs, Leon Majewski, George Kruger

- Coastal satellite SST versus open ocean SST, difference and similarities, possible difficulties for retrieval
- Goal of this work:
 - Validate satellite skin SST from MODIS, AVHRR and MTSAT-1R against coastal station temperatures (at depth) on the reef
 - Test how well satellite skin SST captures diurnal warming features on the reefs

Study Region and In-situ Measurements

Study period: 120 days 1 Jan to 30 Apr 2010.

In-situ dataset includes 9 stations in the middle and southern end of Great Barrier Reef, with depths ranging from just below lowest low tide to over 10 m in depth. The temperature measurements are bottom measurements.

In-situ stations	Latitude	Longitude	depth (m)	
Davies Reef	18.807	147.669	4.4/9	Middle stations, w wind data
Myrmidon Reef	18.258	147.382	7/19	
Cleveland Bay	19.122	146.880	0	
BARRSL1	23.158	151.071	9	ר ר
ELUSIVEFL1	21.104	152.765	2	Southern
ELUSIVESL1	21.104	152.765	10	stations
HALAWS	23.154	150.938	6.5	

Satellite SST dataset

- Ikm MODIS Aqua and Terra L2 SSTskin
- 0.02° IMOS fv01 AVHRR L3C SSTskin (NOAA-17/18/19)
- 0.05° ABoM MTSAT-1R hourly L3 SSTskin

The IMOS HRPT AVHRR and ABoM MTSAT-1R SST data are derived from regression algorithms using drifting buoy matchup datasets, separate from our GBR in-situ data. The data are part of the TWP+ dataset available for January to April in 2009 and 2010

<u>(https://www.ghrsst.org/ghrsst/tags-and-wgs/dv-wg/twp/</u>).

TWP+ dataset 2010-02-14 MTSAT-1R

Data platform and processing level	Temporal resolution	Spatial resoluti on
MODIS Aqua level 2	Twice a day. Satellite overhead time (SOT) is at about 1:15 and 13:40 local time (LT)	1km
MODIS Terra, level 2	Satellite overhead time (SOT) is at about 10:50 and 22:10 UTC	1km
NOAA17, level 3	SOT is about at 9:20 and 21:00 LT.	0.02°
NOAA18, level 3	SOT is about at 1:45 and 13:55 LT.	0.02°
NOAA19, level 3	SOT is about at 2:00 and 14:40 LT.	0.02°
MTSAT-1R	Every hour	0.05°
In-situ loggers	10 minutes (30 for Cleveland Bay)	n/a

Methods and Numbers of Match-ups

For each in-situ station

 IMOS AVHRR SST: Pixels with latitudes and longitudes ≤ 0.02° from nearest pixel were examined and used if available. Quality flag ≥ 4 (5 is best).

 MTSAT-1R: SST from the nearest pixel is used if available.
Proximity flags = 5 (best quality clear sky pixel)

•MODIS L2 swath data: SST was extracted for the in-situ data if there was a pixel within 0.01° both in latitude and longitude from the in-situ station. Quality flag <=1 (0 is best)</p>

In-situ	Number of SST data points for the 4-month/120-					
stations	day period					
	NOAA	NOAA	NOAA	MODIS	MODIS	MTSAT-
	17	18	19	Aqua	Terra	1R
Davies Reef	47	45	30	67	72	433
Myrmidon Reef	42	36	32	43	89	380
Cleveland Bay	14	11	7	0	0	448
BARRSL1	50	64	49	26	35	361
ELUSIVEFL1	43	55	49	86	67	454
ELUSIVESL1	43	55	49	86	67	454
HALAWS	33	39	35	48	42	251
NKEPPSL1	31	48	43	7	11	274
PELFL1	41	61	46	66	55	232
Total for each satellite	344	414	340	429	438	3287

Sample time series of SSTskin and in-situ temperature measurements

Comparison statistics of SSTskin and in-situ measurements: IMOS AVHRR

NOAA-17 all points: <u>n=344, bias =-0.26K, std=0.56K</u> Day points (@9:20): n=137, bias= -0.46K, std=0.7K Night points (@21:00): N=207, bias=-0.14K, std=0.41K

NOAA-18 all points: <u>n=414, bias =-0.12K, std=0.6</u>7K Day points(@1:45): N=218, bias= -0.14K, std=0.87K Night points(@13:55): N=196, bias=-0.09K, std=0.37K

NOAA-19 all points: <u>n=340, bias =-0.14K, std=0.74K</u> Day points (@2:00): N=209, bias= -0.13K, std=0.87K Night points (@14:40): N=131, bias=-0.16K, std=0.47K

Note: Add 0.17K to all biases to convert AVHRR SSTskin to SSTsubskin

Comparison statistics of SSTskin and in-situ measurements: MODIS + MTSAT-1R

MODIS Aqua all points: <u>n=429, bias =0.06K, std=0.71K</u> Day points(~1:15): N=226, bias= 0.28K, std=0.78K Night points(~13:40): N=203, bias= -0.18K, std=0.53K

MODIS Terra all points: <u>n=438, bias =-0.03K, std=0.66K</u> Day points (@10:50) N=204, bias= 0.17K, std=0.56K Night points(@22:10) N=234, bias=-0.22K, std=0.7K

MTSAT-1R all points: <u>n=3287, bias =-0.04K, std=0.71K</u>

Other coastal validation works: Park et al 2014 AVHRR at Japan Sea Std=0.8-0.85K NOAA IQUAM coastal moorings compared with Reynolds SST std=0.5-0.6K, much larger datasets

Note: Add 0.17K to biases to convert MODIS and MTSAT-1R SSTskin to SSTsubskin

Local specific diurnal warming features shown in SST measurements

Similar features could be seen in in-situ data for each station

Summary of statistics

Satellite Sensor and Processing Level	Bias	Standard Devn.	Ν
Aqua MODIS, level 2 All	0.06K	0.71K	429
Day	0.28K	0.78K	226
Night	-0.18K	0.53K	203
Terra MODIS, level 2 All	-0.03K	0.66K	438
Day	0.17K	0.56K	204
Night	-0.22K	0.70K	234
NOAA17 AVHRR, level 3 All	-0.26K	0.56K	344
Day	-0.46K	0.70K	137
Night	-0.14K	0.41K	207
NOAA18 AVHRR, level 3 All	-0.12K	0.67K	414
Day	-0.14K	0.87K	218
Night	-0.09K	0.37K	196
NOAA19 AVHRR, level 3 All	-0.14K	0.74K	340
Day	-0.13K	0.87K	209
Night	-0.16K	0.47K	131
MTSAT-1R, level 3 All	-0.04K	0.71K	3287

Summary

- Objective is to assess the accuracy with which satellite-derived SSTs can represent the temperature at the depth of the corals, including diurnal fluctuations.
- Comparison of coastal polar-orbiting (AVHRR, MODIS) and geostationary (MTSAT) SST with coral top temperatures show good agreement, with bias and standard deviation similar or better than similar studies.
- Diurnal warming pattern (both timing and amplitude) shown in insitu temperature are captured well by SST data. The geostationary SST are especially useful in studying the daily warming.
- Some regional bias corrections are needed to improve SST retrievals.
- Satellite SST is a good indicator of the temperature at the coral depth, but the two are not equal. A more accurate relationship between the two requires use of models.