FY-3C/VIRR SST Algorithm and Cal/Val Activities at NSMC/CMA

Sujuan Wang(wangxj@cma.gov.cn)
Xiaohu Zhang, Peng Cui, Peng Zhang, Maonong Ran, Feng Lu, Weihe Wang

National Satellite Meteorological Center, CMA

Outline

- Introduction
- SST algorithms
- The implement of FY-3C/VIRR SST
- The best algorithm to retrieve SST
- The validation of FY-3C/VIRR SST
- Summary and Future work

Introduction

- Fengyun-3 (FY-3) is the second generation of polar-orbiting meteorological satellite of China.
- The first series FY-3 includes two testing satellites, FY-3A and FY3B that were launched on 27 May 2008, and 5 November 2010, respectively.
- As the first operational polar-orbiting satellite of the second series of FY-3, FY-3C was launched on 23 September 2013, and operated in a sun-synchronous morning orbit with a local equator-crossing time of 10:00 AM in descending node.
- The visible infrared radiometer (VIRR) is a 10-channel radiometer for multi-purpose imagery with 1.1 km resolution at nadir. The swath of the VIRR is 2800 km .
- The VIRR has 3 infrared channels, CH3(3.55~3.93 $\mu \mathrm{m})$ $\mathrm{CH} 4\left(10.3^{\sim} 11.3 \mu \mathrm{~m}\right)$ and $\mathrm{CH} 5\left(11.5^{\sim} 12.5 \mu \mathrm{~m}\right)$, which can be used to estimate SST.
- At present, the operational SST algorithm of FY-3 is MCSST.

SST Algorithms

```
day \([\)
\(\begin{array}{ll}\operatorname{MCSST}(\mathrm{DN}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2}\left(T_{11}-T_{12}\right)+a_{3}\left(T_{11}-T_{12}\right)(\sec \theta-1) \\ \operatorname{QDSST}(\mathrm{DN}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2}\left(T_{11}-T_{12}\right)+a_{3}\left(T_{11}-T_{12}\right)^{2}+a_{4}(\sec \theta-1)\end{array}\)
\(\operatorname{NLSST}(\mathrm{DN}) \quad T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{F G}\left(T_{11}-T_{12}\right)+a_{3}\left(T_{11}-T_{12}\right)(\sec \theta-1)\)
\(\operatorname{TCSST}(\mathrm{N}) \quad T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{4}+a_{3} T_{12}+a_{4}\left(T_{4}-T_{12}\right)(\sec \theta-1)+a_{5}(\sec \theta-1)\)
\(\operatorname{DNSST}(\mathrm{N}) \quad T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{F G}\left(T_{4}-T_{11}\right)+a_{3}(\sec \theta-1)\)
```

T_{s} : satellite-derived SST
T_{rc} : first-guess SST
θ : satellite zenith angle
$\mathrm{a}_{0} \sim \mathrm{a}_{4}$: coefficients
$\mathrm{T}_{4}, \mathrm{~T}_{11}, \mathrm{~T}_{12}:$ brightness temperature in $3.7 \mu \mathrm{~m}(\mathrm{CH} 3)$, $10.8 \mu \mathrm{~m}(\mathrm{CH} 4), ~ 12 \mu \mathrm{~m}(\mathrm{CH} 5)$ bands

The $3.7 \mu \mathrm{~m}$ band is very transparent and is available for SST retrievals at night, while during daytime it is contaminated by solar reflectance.

SST Algorithms(cont.)

$$
\left\{\begin{array} { l l }
{ \text { day } }
\end{array} \left\{\begin{array}{ll}
\operatorname{MCSST}(\mathrm{D} / \mathrm{N}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2}\left(T_{11}-T_{12}\right)+a_{3}\left(T_{11}-T_{12}\right)(\sec \theta-1) \\
\operatorname{QDSST}(\mathrm{D} / \mathrm{N}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2}\left(T_{11}-T_{12}\right)+a_{3}\left(T_{11}-T_{12}\right)^{2}+a_{4}(\sec \theta-1) \\
\operatorname{NLSST}(\mathrm{D} / \mathrm{N}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{F G}\left(T_{11}-T_{12}\right)+a_{3}\left(T_{11}-T_{12}\right)(\sec \theta-1) \\
\operatorname{TCSST}(\mathrm{N}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{4}+a_{3} T_{12}+a_{4}\left(T_{4}-T_{12}\right)(\sec \theta-1)+a_{5}(\sec \theta-1) \\
\operatorname{DNSST}(\mathrm{N}) & T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{F G}\left(T_{4}-T_{11}\right)+a_{3}(\sec \theta-1)
\end{array}\right.\right.
$$

The Algorithm Flag and Day/Night Flag are used to identify a SST algorithm (e.g. MC_D is used to identify the daytime MCSST).

Table 1. List of acronyms of SST Algorithms used in comparison between sensors.

Algorithm	Algorithm Description	Algorithm Flag	Day/Night Flag
MCSST	split-window MultiChannel SST	MC	D/N
QDSST	split-window Quabratic term MCSST	QD	D/N
NLSST	split-window NonLinear SST	NL	D/N
TCSST	Triple-window MCSST	TC	N
DNSST	Dual-window ${ }^{\text {NLSST }}$	DN	N

The implement of FY-3C/VIRR SST: Matchup

- Quality controlled in situ data from the iQUAM(in situ Quality monitor) is used in FY3C/VIRR SST matching up procedure.
- Matchup window: within 3 km in space and 1 hour in time between in situ SST measurements and FY-3C/VIRR measurements.
- 3×3 pixel box centered on the VIRR measurements with the "confident clear" and "probably clear" flag in Cloud Mask product are matching up.

The operational MDB(matchup database) is built with a 20 days delay to insure a good collection of the in situ data.

The implement of FY-3C/VIRR SST: Regression

All the screening and outlier removal are handled in the regression code, depending on configurations in the control file. Currently the following conditions are set:

- Matchup maximum Distance: 1.1 km
- Matchup maximum Time difference: 60 minutes
- The high-accuracy drifters and tropical moorings are used
- Regression is performed separately for day and night based on the solar zenith angle (85°)
\square After all the pre-screening and screening, Least-Square Regression is used for estimating the first-guess coefficient and SST residuals.
\square Further outliers are removed using Median \pm 2STD(STD: standard deviation).
\square The final coefficients of dual regression are estimated.
In order to perform the inter-comparison, all the 3 daytime equations and 5 nighttime equations are used to estimate the SST with the same FY-3C/VIRR MDB.

The implement of FY-3C/VIRR SST:

 Retrieval- Retrieval
- SST Quality control
- Uniformity test(3*3 pixel box)
\checkmark MaxTB-MinTB <=3K
$\checkmark \mid$ SST-TB11| $<=10 \mathrm{~K}$
- Ref SST test (sst.ltm.19812010.nc)
$\checkmark|S S T-R e f S S T|<=4 K$
-SST Quality Flag
SST QC specification (packed 8-bit word)

Bit(s)	Description
1-2	SST QC: Optima1 (0) $=00$ Sub-Optima1 (1) $=01$ Poor (2) $=10$ Not processed (3) $=11$
3	No ice (O) Ice (1)
4	$\begin{aligned} & \text { No-glint (0) } \\ & \text { Glint } \end{aligned}$
5	Ocean (0) Coast (1)
6	$\begin{aligned} & \text { Night (0) } \\ & \text { Day (1) } \end{aligned}$
7	External CM Used (O) External CM Not used(1)
8	Channel value Valid(O) Channel value Invalid(1)

The best algorithm to retrieve the SST Dayime

Suffix with NP is the result from NESDIS/STAR

FY3B/C: November 2013 ~ July 2014
$\begin{array}{lll} & \text { Day } & \\ \text { FY3B } & \text { FY3C } & \text { NOAA19 }\end{array}$

For inter-sensor comparison, the same procedure are implemented to FY3B/C and NOAA19 MDB. Validation statistics are generated on a monthly basis.

- For the three daytime SST algorithms, NL_D is the best algorithm, QD_D is better than MC_D.
- FY-3B's best algorithm NL_D is better than FY-3C's NL_D.
- The precision of NOAA-19/AVHRR is better than FY-3B/VIRR and FY-3C/VIRR .
- For NOAA-19/AVHRR, STAR/NESDIS's best daytime SST algorithm NL_D(NP) is better than NSMC/CMA'S NL_D.

The best algorithm to retrieve the SST Nightime

- When solar zenith angle(SZA) between 85° and 118° the calibration of $3.7 \mu \mathrm{~m}$ band is contaminated by solar reflectance (the improvement is underway).
- So the nighttime MDB is created twice, one for SZA>85 ${ }^{\circ}$ (namely MDB_V1), another for SZA>119 ${ }^{\circ}$ (namely MDB_V2).

The best algorithm to retrieve the SST Nightime (MDB_v1) $^{\text {(Mas }}$

Suffix with NP is the result from NESDIS/STAR

- For FY3C, TC_N is the best before March 2014, after that it is worse than NL_N.
- For FY3B, NL_N is the best, QD_N is better than other three nighttime SST algorithms. TC_N is similar to $\mathbf{M C}$ _N, DN_N is the worst and is very unstable.
- For NOAA19, TC_N is the best, DN_N is better than other three algorithms, QD_N is similar to MC_N.
- Based on NOAA-19/AVHRR MDB_V1, NSMC/CMA'S best nighttime SST algorithm TC_N is similar to STAR/NESDIS's TC N(NP).

The best algorithm to retrieve the SST ${ }_{\text {Nightime (MDB_V2) }}$

- For FY3C, TC_N is the best algorithm, DN_N is similar to NL_N.
- For FY3B, NL_N is similar to TC_N. But, DN_N (also used 3.7) is still the worst one.
- For NOAA19, TC_N is the best, DN_N is better than other three algorithms.
- Based on MDB_V2,the overall performance of FY3B/C VIRR SST algorithms are better than MDB_V1.

The validation of FY-3C/VIRR SST

$>$ Validate SST against in situ data (matchup analyses)

- Coefficients are derived from MDB since November to December 2014.
- An independent MDB of January 2015 are used for validation.
- match window: within 60 minutes and 1.1km
- FY3C_SST-BuoySST(satellite SST minus buoy SST)
> Compare SST against Global gridded L4 SST : OISST
- match window: within 1 Day and 1.1km
- OISST is bilinear interpolated to sensor's pixels
- daily $0.25^{\circ} \times 0.25^{\circ}$ (lat/lon grid)
- FY3C_SST-OISST
- Statistics are generated according to quality flag

Validate FY-3C/VIRR SST against in situ data (matchup analyses 2015.1)

Mean $=0.0131$ Std. Dev. $=0.48904$
$\mathrm{~N}=6,453$

The coefficients are derived from November to December 2014 MDB, an independent MDB of January 2015 was used to assess the FY-3C/VIRR SST accuracy.

- MC_D bias: 0.01K STD:0.49K
- MC_N bias: -0.02K STD:0.54K

The validation of $\mathrm{FY}-3 \mathrm{C} / \mathrm{VIRR}$ SST(cont.)

>Validate SST against in situ data (matchup analyses)

- match window: within 60 Min and 1.1km
- FY3C SST-BuoySST
>Compare SST against Global gridded L4 SST : OISST
- match window : within 1 Day and 1 IR pixel
- OISST is bilinear interpolated to sensor's pixels
- daily $0.25^{\circ} \times 0.25^{\circ}$ (lat/lon grid)
- Statistics are based on FY3C_SST-OISST according to quality flag 2014/3/9 07:10 UTC

FY3C_SST

FY3C-QC

FY3CSST-OISST

L2 SST Analysis is based on the 5-minute granule of FY3CSST-OISST

Compare FY-3C/VIRR operational SST against Daily OISST
FY3C_SST-OISST

the time series of anomaly statistics of FY-3C/VIRR operational SST of February to October 2015 for the quality flag with optimal(0).

- MC_D bias: -0.27K STD:0.87K
- MC_N bias:-0.05K STD:0.77K

Error Analysis: Cloud Contamination

IR
Cloud Mask
SST
FY-3C VIRR 2014/3/9 02:05 UTC
After spacial uniformity test and reference SST test of FY-3C/VIRR SST retrieval, the undetected cloud is reduced. But the cloud contamination still exist.

Error Analysis: Stripe

2014/8/6 09:25 UTC

Stripe is clearly visible in VIRR level 2 SST images. It is caused by the calibration coefficients of split-window bands don't match. This can introduce SST error.

Error Analysis: Sensor Performance

Comparison of nighttime TCSST Algorithm between FY3B /C and NOAA19

$$
\operatorname{TCSST}(\mathrm{N}) \quad T_{s}=a_{0}+a_{1} T_{11}+a_{2} T_{4}+a_{3} T_{12}+a_{4}\left(T_{4}-T_{12}\right)(\sec \theta-1)+a_{5}(\sec \theta-1)
$$

$\mathrm{T}_{4}, \quad \mathrm{~T}_{11}, \mathrm{~T}_{12}$: brightness tempelature $\downarrow \mathrm{n} 3.7 \mu \mathrm{~m}(\mathrm{CH} 3), ~ 10.8 \mu \mathrm{~m}(\mathrm{CH} 4), ~ 12 \mu \mathrm{~m}(\mathrm{CH} 5)$ bands

Sat/Sensor	a0	a1	a2	a3	a4	a5	$\begin{aligned} & \text { RMS } \\ & (\mathrm{K}) \end{aligned}$	R^{2}	NOBS	Month
NOAA-19/AVHRR(NP)	-276. 60658	0.32666	1. 146	-0. 45606	0. 1306	1. 3478	$\begin{aligned} & 0.2101 \\ & 4 \end{aligned}$	0.9995	7046	201007
FY-3B/VIRR(MDB_V2)	-284. 22294	2. 12257	0. 69388	-1. 77498	0. 2324	1. 6420	0.4583	0. 9951	5939	201407
FY-3C/VIRR(MDB_V2)	-285. 34442	1. 15173	1. 01402	-1. 11001	0. 1241	1. 7967	$\begin{aligned} & 0.3434 \\ & 1 \end{aligned}$	0. 9964	7424	201407

Based on MDB of July, the best nighttime SST algorithm of FY3C/VIRR and NOAA19/AVHRR is TC_N.

- NOAA19: $\left|a_{2}\right|$ is bigger than $\left|a_{1}\right|$ and $\left|a_{3}\right|$
- FY3B: $\quad\left|a_{2}\right|$ is smaller than $\left|a_{1}\right|$ and $\left|a_{3}\right|$
- FY3C: The performance of $3.7 \mu \mathrm{~m}$ band of FY3C/VIRR is better than FY3B/VIRR, but worse than NOAA19/AVHRR.

Summary and Future work

DSummary

- The performance of $3.7 \mu \mathrm{~m}$ band of FY-3C/VIRR is better than FY3B/VIRR, but worse than NOAA-19/AVHRR.
- The best algorithm to retrieve FY-3C/VIRR SST for daytime is NL_D and for nighttime is TC_N.
- Based on the independent MDB from November to December 2014, the global accuracy of FY-3C/VIRR SST is

$$
\text { 0.01K } \pm 0.49 \mathrm{~K}\left(\mathrm{MC} _\mathrm{D}\right), \quad-0.02 \mathrm{~K} \pm 0.54 \mathrm{~K}\left(\mathrm{MC} _\mathrm{N}\right) .
$$

- Comparison with FY-3C/VIRR operational SST and daily OISST, the global accuracy of FY-3C/VIRR operational SST is

$$
-0.27 \mathrm{~K} \pm 0.87 \mathrm{~K}\left(\mathrm{MC} _\mathrm{D}\right),-0.05 \mathrm{~K} \pm 0.77 \mathrm{~K}\left(\mathrm{MC} _\mathrm{N}\right) .
$$

DFuture work

- Continue to populate MDB and do Calibration/Validation based on MDB
- Continue refinement of atmospheric correction for SST algorithm
- Work with Sensor Calibration Team to improve SST

Thank you for your attention!

