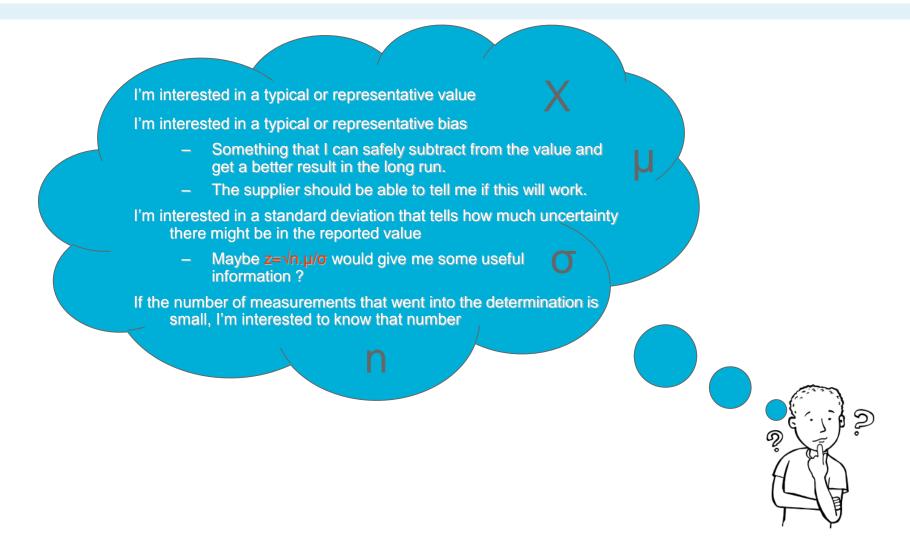


Bureau of Meteorology

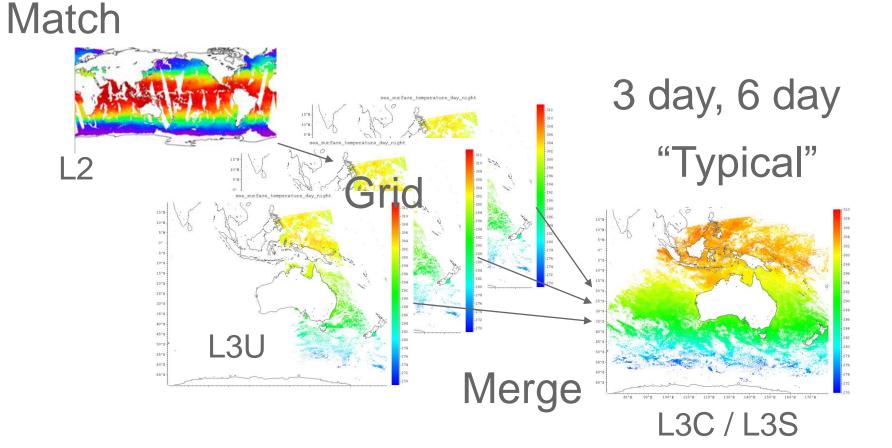
BoM Efforts to Improve SSESs for AVHRR SST Level 3 Products

Christopher Griffin^{1,2}, Helen Beggs², Leon Majewski¹,


¹Observations & Engineering Branch, Bureau of Meteorology, Australia

²CAWCR, Bureau of Meteorology, Australia

ST-VAL Breakout Session, 14th GHRSST Science Team Meeting, Woods Hole, 17-21 June 2013



Point of Use

The Processing Chain

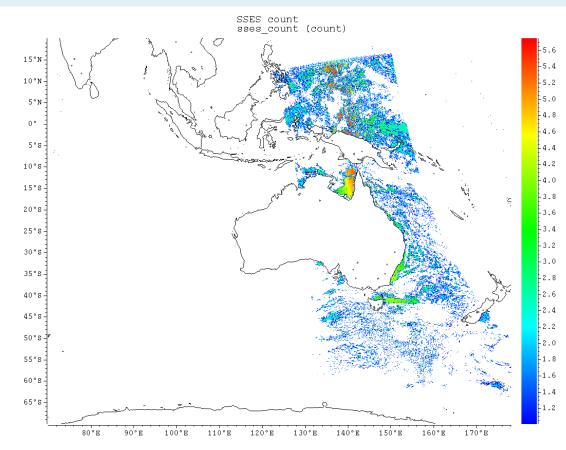
sses_count	Number of <i>in situ</i> matches that contributed to the statistics
sses_bias	Estimate of the mean of the difference between the <i>in situ</i> and satellite measurement of SST
sses_standard_	deviation Estimate of the standard deviation of the difference between the <i>in situ</i> and satellite measurement of SST

- Still match based on common satellite zenith angle, quality level and day/night
- Use 1 year historical record as the baseline (when n is small) nj 2000 1000 5000 3000 00 00 00 count 1000 ni (count 2000 20 ω 6 40 5 2

Processing L2P to L3U: Grid

- Grid
 - Choose the *best* quality pixels for the overlap
 - Weight the values, bias, and variance by the likelihood of providing a good estimate
 - The likelihood is proportional to the size of the overlapping region
 - Bias and variance are likelihood weighted
 - A representative number of degrees of freedom is determined by scaling the likelihood n_{II}

 $\sum_i w_i n_i$

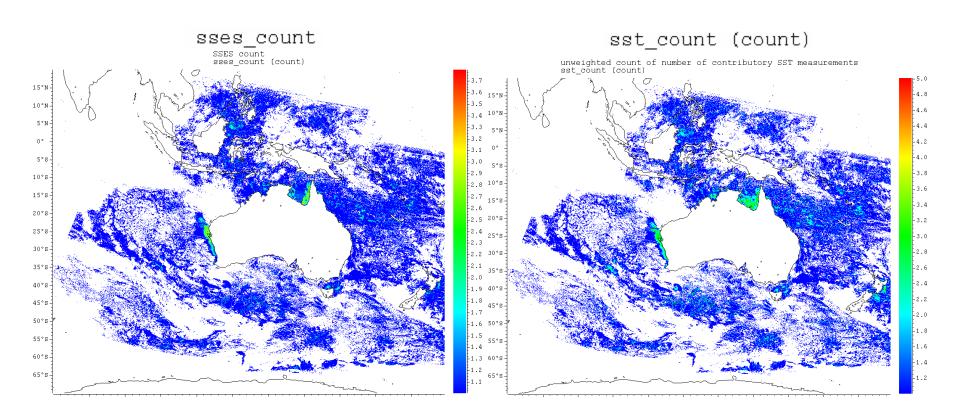

w

 $\max_i w_i n_i$

sses count

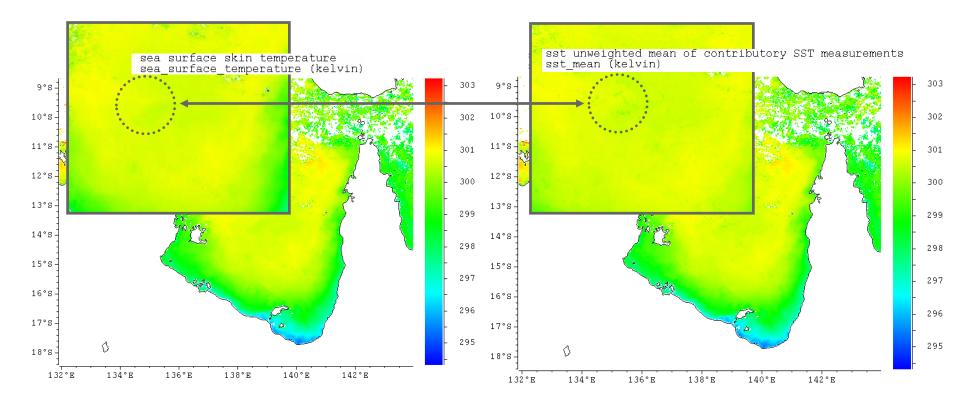
SSES L3U sses_count

"effective" number of L2P SSTs that contributed to the statistics


Processing L3U to L3C: Merge

- Merge combining data from the same sensor
 - best quality pixels give a "best typical value" over the time period
 - Weight the values by the likelihood of providing a good estimate
 - The best typical value has the most supporting measurements and the lowest uncertainty (variance)
 - Number of degrees of freedom is scaled by the maximum likelihood (as before)
 - Equally weighted SST allow the standard deviation of the SST over time to be estimated

SSES L3C sses_count and sst_count


1 June 2013, NOAA-19, L3C 3 day (night) "best typical value" contains fewer degrees of freedom. Some measurements were included with lower contribution because of higher variance

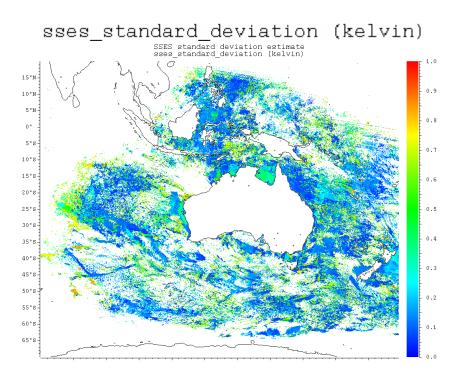
SSES L3C sea_surface_temperature and sst_mean

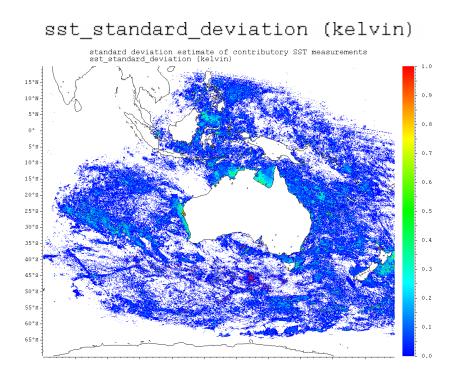
1 June 2013, NOAA-19, "best typical value" (left) compared to unweighted mean (right) over the 3 day (night) period

Processing L3C to L3S: Merge

- Merge combining data from the same sensor
 - When combining multiple L3C, consider all sources of measurement weighted by the count
 - Biases are subtracted before measurements are combined
 - The combined count is recorded

SSES L3S


Australian Government SSES_standard_deviation and sst_standard_deviation


1 June 2013, NOAA-19, L3S 6 day (night)

sses_standard_deviation
error relative to in situ measurements, of the "best typical" measurement

sst_standard_deviation

satellite measured variability

Processing L3U to L3C/S: "Typical"

- "Typical"
 - Standard error of "best typical" SST scales with $1/\sqrt{n}$
 - In situ match up error contributes as before, not decreasing with the number of measurements
 - Keeping equally weighted SST statistics allows these components to be properly accounted for

SSES L3C/S for multiple days

sst_count Number of measurements that contributed
 to the "best typical" value

sst_mean Equally weighted mean SST that contributed
to the "best typical" value

sst_standard_deviation
 Equally weighted standard deviation that
 contributed to the "best typical" value

Representative of detected diurnal variability if the files contain day and night SST

What you should be able to do

- Use the **sea_surface_temperature** as a "best typical" value over the time scale implied by the data
- Use the bias to correct for deviations from *in situ* measurements
- Use z= √n.µ/σ to give an idea about if the measurement is "unusual" or not
- Use n to inform the accuracy of μ and σ
- Use the unweighted statistics and the "best typical" value to quantify the variation seen over an extended time period

... and what might be next !

- L2P SSES estimates could be more realistic
 - Satellite and Sun zenith angles, Latitude, Longitude...
- and L2P to L3U merging could build in the correlation between neighbouring SSES
- validation of the approach and the usefulness of bias and standard deviation as a correction to the SST should be done routinely
- we can produce long period L3S files which give indications of diurnal variation as well as typical values

Thank you...

Christopher Griffin

C.Griffin@bom.gov.au

What this is about

- Rationalizing the current approach to make a little more sense from a *statistical* and *point of use* point of view.
- Respecting the *differences* in the way that data is combined in the formation of GHRSST SST SSES.
- Providing a *essential* set of fields in GHRSST files that may help to understand the uncertainties of measurement.
- Giving information which should be closer to being really usable.

What this is not about

A redefinition of SSES within GHRSST SST products.
 We are more interested in better communicating and

encouraging the "point(s) of use".

• A fundamental change to the way L2P SSES are currently estimated within ABOM products.

We have not considered changes to this apart from extending historical horizons to increase the number of *in situ* matches.

• A major change or "best" statistical solution to the problem.

Processing L2: Match

- Match
 - Use *in situ* buoy measurements to match SST measurements, look at the differences
 - Bin the differences in critical parameters (satellite zenith angle, quality level, day / night)
 - If we don't have enough data, reference historical information (past year) to make realistic estimates
 - Report the number of measurements used in the estimate