

GHRSST 2013 Annual Meeting 17–21 June, 2013, Woods Hole, MA

Preliminary analyses of Metop AVHRR, MODIS and VIIRS SST products in SQUAM

www.star.nesdis.noaa.gov/sod/sst/squam

Prasanjit Dash^{1,2}, Alexander Ignatov¹, Yury Kihai^{1,3}, Boris Petrenko^{1,3}, John Stroup^{1,4}, John Sapper¹

¹NOAA/NESDIS, NCWCP College Park, MD ²Colorado State Univ, Cooperative Institute for Research in the Atmosphere (CIRA) ³GST, Inc, MD, USA ⁴STG, Inc, MD, USA (Emails: FirstName.LastName@noaa.gov)

SQUAM objective: A global, web-based, community, quasi NRT, monitor for SST producers & users !

Level-2 SST: VIIRS/AVHRR/MODIS

- NESDIS SST Team : ACSPO (GAC: 5 platforms, FRAC: Metop-A & B, VIIRS: NPP, MODIS: Terra/Aqua)
- P. LeBorgne, H. Roquet : O&SI SAF Metop-A FRAC
- D. May, B. McKenzie : NAVO SEATEMP
- S. Jackson : IDPS (NPP)

Level-3 SST: AVHRR/(A)ATSR:

- K. Casey, R. Evans, J. Vazquez, E. Armstrong: PathFinder v5.0
- C. Merchant: ARC (ongoing effort next meeting)

Level 4 SSTs:

- R. Grumbine, B. Katz : RTG (Low-Res & Hi-Res)
 - R. Reynolds, V. Banzon : OISSTs (AVHRR & AVHRR+AMSRE)
- M. Martin, J. R. Jones : OSTIA foundation, GHRSST Median Product Ensemble, OSTIA Reanalysis
 - D. May, B. McKenzie : NAVO K10
 - J.-F. Piollé, E. Autret : ODYSSEA
- E. Maturi, A. Harris, J. Mittaz : POES-GOES blended
 - B. Brasnett
- : Canadian Met. Centre, 0.2° foundation : JPL G1SST
- Y. Chao : JPL
- H. Beggs : ABOM GAMSSA
- M. T. Chin, J. Vazquez, E. Armstrong: JPL MUR

L4s in SQUAM pipeline:

- J. Hoyer: DMI OISST; S. Ishizaki: MGDSST;
- C. Gentemann: RSS products; J. Cummings: NCODA

GHRSST support: Craig Donlon, Peter Minnett, Alexey Kaplan

Definitions of levels:

L2: at observed pixels (satellite)

L3: gridded with gaps (satellite)

L4: gap-free gridded, time-averaged

Projects and international group

GHRSST XIV Science Team Meeting. Woods Hole 17-21 June 2013 , Cape Cod, MA

2

GHRSST

SQUAM – Web interface

Locate this website: Google: "SST + SQUAM"

1. What is available in SQUAM ? - brief intro (revisit!); newer products

- a) Maps, Histograms, Stat. time-series, Dependence (daily & time-series)
- b) Compare monthly stats

[available online, access anytime anywhere and explore!]

- 2. Case study examples:
 - 2.1. Aggregated (long-term) maps of ΔT_s :

a) Any persistent cloud leakage/algorithm deficiency?

- 2.2. IDPS VIIRS and ice mask
- 2.3. WUCD event in VIIRS bands and effect on SST
- 2.4. Correlation in "independent" L2 SSTs: choose an L4 ref.
 - a) Simulated study
 - b) Real satellite (T_S) and reference (T_R) fields

3. Summary and future plans

preliminary thoughts

SQUAM

Maps Histograms Time-series Dependencies Hovmöller

Night: Suomi-NPP VIIRS (ACSPO) L2 minus OSTIA L4, 08 Jun 2013

Residual Cloud/Aerosol leakages seen in the Tropics, mid-latitudes

Maps

Histograms Time-series Dependencies Hovmöller

Maps

Histograms 7

Time-series Depe

Dependencies Hovmöller

Night 08 June 2013

ACSPO VIIRS minus OSTIA

IDPS VIIRS minus OSTIA

- Shapes close to Gaussian for both processors
- IDPS shows somewhat higher Std Dev for comparable # of obs
- Also range (max min) for IDPS is higher indicating more outliers
- Domain performance stat close to expected

Dependencies

Time-series

Histograms

1.0 Night High Resolution, Monthly (Outlier Retained) NPP(ACSPO) MetOp-A(O&SI SAF) MetOp-B(ACSPO) TERRA(ACSPO) MetOp-A(ACSPO) AQUA(ACSPO) NPP(IDPS) SST - Drifters 0.5 0.0 Mean, -0.5 -1.0 2012 2008 2009 2010 2011 2013 2014 Year SST - Drifters 8 Night High Resolution, Monthly (Outlier Retained) NPP(ACSPO) MetOp-A(O&SI SAF) TERRA(ACSPO) AQUA(ACSPO) NPP(IDPS) tOp-A(ACSPO) 6 # matchup (x 10000), 4 2 SOUAM 2008 2009 2010 2011 2012 2013 2014 Year

Maps

Hovmöller

<u>Monthly</u>** validation wrt. Drifters (night)

- a) OSI SAF and ACSPO Metop-A closely track each other – and ACSPO MODIS
- b) ACSPO VIIRS is consistent; IDPS VIIRS shows larger variance

**new functionality

- 1. What is available in SQUAM ? brief intro (revisit!); newer products
 - a) Maps, Histograms, Stat. time-series, Dependence (daily & time-series)
 - b) Compare monthly stats

[available online, access anytime anywhere and explore!]

2. Case study examples:

2.1. Aggregated (long-term) maps of ΔT_s :

a) Any persistent cloud leakage/algorithm deficiency?

- 2.2. IDPS VIIRS ice mask
- 2.3. WuCd event in VIIRS bands and effect on SST
- 2.4. Correlation in "independent" L2 SSTs: choose an L4 ref.
 - a) Simulated study
 - b) Real satellite (T_S) and reference (T_R) fields

3. Summary and future plans

2.1. Aggregated maps of ΔT_s : Persistent cloud/algorithm deficiency ?

Day: ACSPO Metop-A L2 minus OSTIA L4, May-2013

2.1. Aggregated maps of ΔT_s : Persistent cloud/algorithm deficiency ?

Day: OSISAF Metop-A L2 minus OSTIA L4, May-2013

• more cloud leakages in the tropics, less in mid-latitudes

Standard deviation of IDPS VIIRS SST increased in early 2012, when compared against several reference SST fields (due to sub-optimal ice mask)

2.3. Warm-up Cool-down event in VIIRS bands

Dependencies

Hovmöller

Time-series

Maps

Histograms

1086

3. Choose an L4 as ref. based on min. corr. error

(preliminary**; also presented in Lannion meeting)

3. Correlation of "independent" L2 SSTs (preliminary) squam <u>Simulated</u> study

3. Correlation of "independent" L2 SSTs (preliminary) **SQUAM** ACSPO (y-axis) vs. OSI SAF(x-axis) for Metop-A, Night

Residual space: bivariate ρ

State space: bivariate ρ

3. Correlation of "independent" L2 SSTs (preliminary) **SQUAM ACSPO (y-axis)** vs. OSI SAF(x-axis) for Metop-A, Night

Residual space: bivariate ρ

3. Correlation of "independent" L2 SSTs (preliminary) **SQUAM ACSPO (y-axis)** vs. OSI SAF(x-axis) for Metop-A, Night

Residual space: bivariate ρ

- Sheds light on choice of T_{ref} (minimize σ²_{corr_ref}), e.g., for night, OSTIA and Drifters show comparable corr. errors (for this particular L2-combination); ensures that is it okay to use OSTIA as a reference in SQUAM.
- Can the individual contributions be separated ? don't know! some simplifications:
 - For same Sat, different proc (ACSPO, OSISAF): σ²_{corr_algo} should be *low*
 - For different Sat (e.g., M1, M2), same proc(e.g., ACSPO/OSI SAF): σ²_{corr_meas} = 0. If not, then algorithm should be revisited.
- May be used to check if the assumption of zero correlated error is violated in related studies (e.g., Triple-C-M): $\sigma_1 \sigma_2 = \sigma_2 \sigma_3 = \sigma_1 \sigma_3 = 10^{\circ}$.

- SQUAM currently monitors major global polar L2/3 SST products from VIIRS, MODIS, and AVHRR, and >14 L4 SST products
- □ Two VIIRS SST products were added in Jan 2012: ACSPO and IDPS
- □ Metop-B is generated by ACSPO and was included (OSI SAF plans?)
- □ All SSTs are 'more or less' consistent
- Future data additions in SQUAM
 - Polar: MODIS MOD29/MYD28, (A)ATSR, OSI SAF Metop-B
 - Geostationary: MSG, MTSAT, GOES Preparation for GOES-R
 - Remaining L4 SSTs
 - More residual analyses (towards correlation issues, cloud leakages: EUMETSAT2013)

