Reynolds/Chelton Spectrum Test for comparison of L4 analysis methods What, How to, and Future

# Mike Chin, Ed Armstrong, Michelle Gierach PO.DAAC, JPL, USA

GHRSST announcement on April 16, 2013 (check your email)

Download the test package from: ftp://ghrsst@podaac.jpl.nasa.gov

Get the login password by emailing: Ed.Armstrong@jpl.nasa.gov

#### Background: Reynolds/Chelton Spectrum Test

- The analysis (interpolation) methods used by NCDC/OI and OSTIA L4 products were compared in the paper by Reynolds et al (2013): "Objective Determination of Feature Resolution in Two Temperature Analysis", *Journal of Climate*.
  - Model-simulated SST fields used as the "truth".
  - Spectral decompositions to evaluate smoothness.
- Other L4 producers showed interest in the comparison study during the previous IC-TAG session (Tokyo 2012).
- Reynolds/Chelton delivered comparison data/codes to PO.DAAC in late 2012 for public distribution.

### What is it? : Reynolds/Chelton Spectrum Test

- Simulated SST data (your inputs; 4 versions in a L3-like file):
  - Fully gridded version.
  - Version with data voids.
  - Fully gridded with noise.
  - Version with data voids and noise.

daily over 2 months, January and July (1993) = 62 days.

Spectral analysis codes from Reynolds/Chelton.

5 Fortran codes to: subset your output to 6 regions, compute auto-spectra (spatial Fourier magnitudes) and coherence spectra, and compute monthly averages of the spectra.

Minimal utility codes from PO.DAAC.

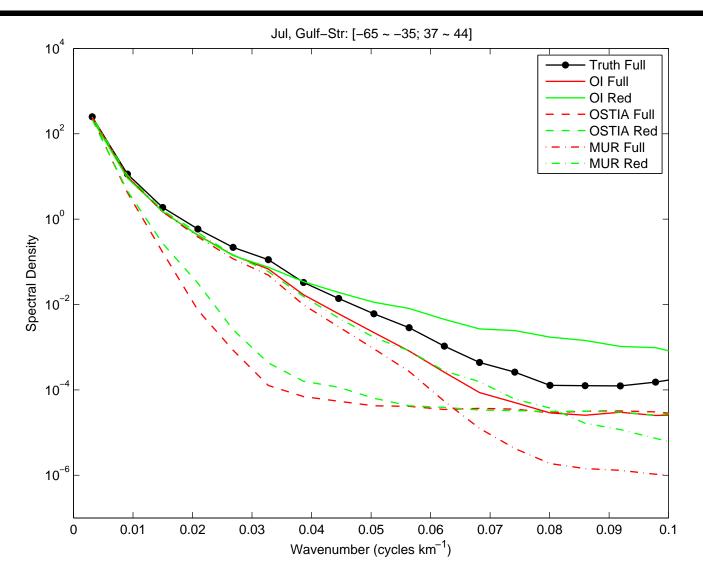
Fortran example (analysis\_template.f) to format your output for the Reynolds codes.

MATLAB codes to print and plot the spectral outputs.

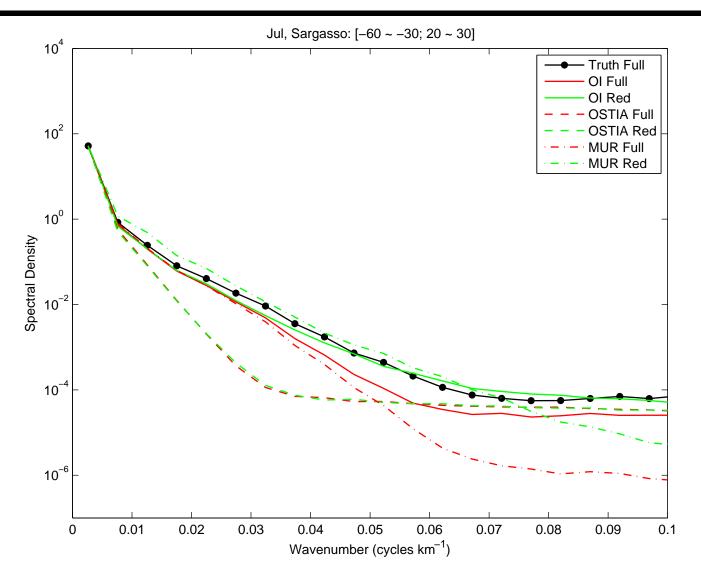
#### Contents:

HowTo.txt
Results/ (= results from Reynolds et al 2013 ?)
Reynolds\_et\_al\_2013.pdf
Simulated\_Datasets/ (= Your inputs)
spectest.zip

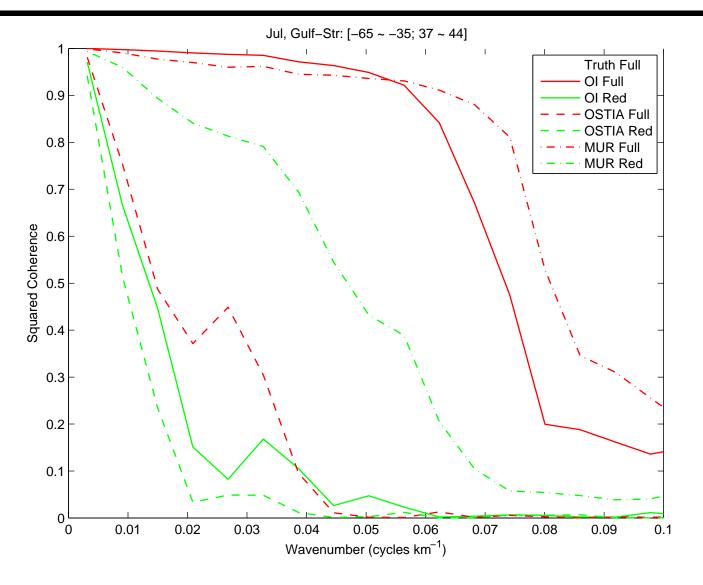
#### **Contents of** spectest/ :


| ReadMe.txt | makefile          | aspec/              |
|------------|-------------------|---------------------|
| data/      | region-2mon.f     | cspec/              |
| region/    | daily-auto-spec.f | analysis_template.f |
| aspec-day/ | daily-co-spec.f   | listaspec.m         |
| aspec-ave/ | month-auto-spec.f | plotaspec.m         |
| cspec-day/ | month-co-spec.f   | listcspec.m         |
| cspec-coh/ |                   | plotcspec.m         |

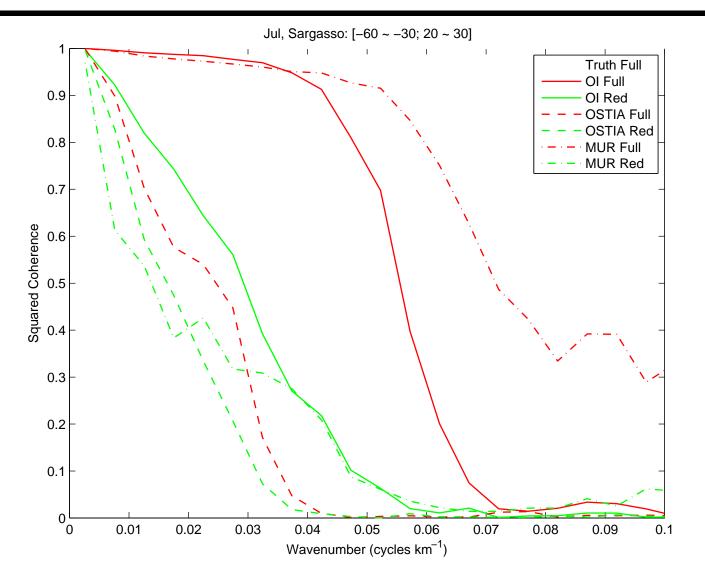
#### Test Procedure (What you would do):


- Download the simulated data.
- Feed the data set (each of 4) to your analysis routine.
- Re-grid your analysis output to "4km Pathfinder grid": a  $8192 \times 4096$  grid where  $\Delta \text{lon} = 360/2^{13}$ ,  $\Delta \text{lat} = 180/2^{12}$ .
- Save your results in spectest/data/ directory, using certain file names.
- Apply the given 5 Fortran codes, and find the results in aspec-ave and cspec-coh directories.

4 inputs  $\times$  6 regions  $\times$  2 months = 48 spectra ... for each of auto- and coherence-spectral procedures.


#### "Fig. 6" (auto-spectra) Gulf Stream ...




#### "Fig. 6" (auto-spectra) Sargasso Sea ...



#### "Fig. 7" (coherence spactra) Gulf Stream ...



#### "Fig. 7" (coherence spactra) Sargasso Sea ...



#### Summary, comments, and future

- Reynolds/Chelton codes are distributed with minimal intervention for authenticity (w.r.t. the journal article).
- Any L4 procedure can be compared to the article results.
- Some particular discrepancies to the figures in the article
   —> update the Results directory contents?
- Possibly cumbersome to use, e.g.: regridding of your output; input data are not L2 format.
- Fourier analysis not applied to the entire region (currently only along the center latitude).

## ... future (potential improvements?)

- Flexible Fourier analysis routine to:
  - eliminate regridding the output (keep your grids).
  - average the spectra over the entire region.
- Sample the simulated SST ("the truth") more realistically (not pre-binned), e.g., sample in time (to simulate L2 better). Perhaps higher spatial resolution.
- Do you want PO.DAAC to do all the spectral analysis?
   You would download the input data and submit your L4 analysis; PO.DAAC does the rest and post/update the results. Do you want that? (Really?)