
Nested Virtualization meets Micro-Hypervisors:
Towards a Virtualization Architecture for User-Centric Multi-Clouds

Alex Palesandro, Marc Lacoste
Orange Labs, France

firstname.lastname@orange.com

Nadia Bennani
University of Lyon, CNRS,

INSA-Lyon, LIRIS, UMR5205,
F-69621, France

nadia.bennani@insa-lyon.fr

Chirine Ghedira-Guegan
Magellan, IAE, University of Lyon 3,

France
chirine.ghedira-guegan@univ-

lyon3.fr

1. INTRODUCTION
After a cloud computing decade, the user-centric, fully interopera-
ble, multi-provider cloud remains a mirage. In currently deployed
architectures, “horizontal” multi-cloud interoperability limitations
come on top of “vertical” multi-layer security concerns. Such is-
sues may be addressed through the virtualization architecture.

For security, two main design requirements are:
1. Minimal Trusted Computing Base (TCB) Malicious colocated-

tenants may try to exploit flaws in the huge TCB of modern vir-
tualization stacks to escape execution environment isolation.

2. User-centric Resource Control Malicious administrators may
leverage their extended privileges to snoop the private execution
state of applications, without any possible user control. User-
centric security allows the user to customize the protection of
the virtualization layer to prevent such threats.

For interoperability, two further design requirements are:
3. Interoperability An important unsatisfied property of multi-

clouds concerns the possibility to migrate execution environ-
ments across different providers as transparently as for single
clouds. This lack of flexibility is mainly due to provider lock-
ins and incompatible technological choices.

4. Legacy Support To encourage its adoption, a multi-cloud ar-
chitecture should require minimal porting effort in application
and control logic adaptation.

Existing virtualization architectures only partially such issues, and
do not provide an exhaustive solution simultaneously to vertical
and horizontal concerns (see Table 1)1.

Minimal TCB: Micro-Hypervisors (MHs) are the best design al-
ternative. General-Purpose Hypervisors (GPHs) present a TCB
bigger than 100 KLoCs, and are traditionally prone to failures due
to the size of critical code. On the contrary, Micro-Hypervisors
(MHs) [7] reduce the TCB through modularization, expelling in
user-space device drivers and other system components.

User-centric resource control: unlike the GPH monolithic ap-
proach, Component-based Hypervisors (CBH) [2] offer an inter-
esting architecture. They modularize the traditional control-plane
of GPHs (e.g. Dom0 in Xen), opening to users a fine-grained con-
trol of their deployed resources. However, this approach requires
the user to adapt his control framework to this new logic, breaking
compatibility with legacy management toolkits.

Interoperability: several GPH-based Nested Virtualization (NV)
architectures may provide a user-centric virtualization layer that
could be executed over different providers to implement a multi-
cloud virtualization layer. However, such solutions cannot imple-
ment a minimal TCB architecture or address interoperability is-
sues [1] without requiring more than two layers of virtualization.

Legacy support: NV inherits the GPH transparency, allowing to
control resources with the same interfaces, while CBH and MH
introduce a new control logic and/or hypervisor interface.

1A number of other related virtualization technologies such as
micro-hypervisors and microvisor-based architectures [4] could be
considered with intesting trade-offs.

A container-based design might represent a very good trade-
off between legacy support, interoperability, near-optimal perfor-
mance, also providing good scalability. However, security and con-
trol requirements are not completely satisfied.

In this paper, we argue that an architecture with a hybrid design
could be a viable solution. Indeed, we present a new virtualization
architecture combining MH, NV and CBH. Leveraging NV inter-
operability and legacy support, the architecture provides to users
a transparent federation of multiple-provider resources. We also
adopt a MH including CBH-like modules as NV lower-layer hyper-
visor to achieve both a minimal TCB and to enable users to directly
control hypervisor resource management components.

2. ARCHITECTURE OVERVIEW

MH Core

VMM

Legacy
IaaS LL

UL

Cloud Provider 1 Cloud Provider 2

Device
Driver

Block
Storage

Admin
Console

Resources
Multi-
plexing

Check-
Pointing

VMM
Object
Storage

Storage Service

Data
Protection

L1 Virt. Platform

GPH

VMs

L1 Virt. Platform

Container
Engine GPH

VMs

Container

L1 Virt. Platform

Storage Service

Alice’s
U-Cloud

Bob’s
U-Cloud

Container
Engine

Container

GPH

VMs

Container
Engine

Container

Figure 1: Multi-Cloud Architecture Proposal.

There are two main alternatives to service provider VM protec-
tion: (1) direct security control by the customer; and (2) protec-
tion by the cloud provider. In (1), security is managed through
customer-controlled appliances or intra-VM mechanisms, but re-
main with very limited privileges. In (2), protection is achieved
through provider-controlled appliances or hypervisor-level mecha-
nisms. The objective of the architecture is to overcome flexibility
limitations that tie infrastructure services to the provider, causing
vendor lock-in for the customer.
High-Level Design In terms of system architecture, we consider
a NV-based design to support user-centric clouds (U-Clouds) (see
Figure 1) [1]. The architecture is composed of two independent
virtualization layers: the Lower Layer (LL) (realizing the L0 virtu-
alization layer) and the Upper Layer (UL) (realizing the L1 virtu-
alization layer).

The LL is composed of a MH under provider control and of a set
of user-land infrastructure services for increased user control over
U-Clouds. Leveraging the strict modular architecture of MH, the
TCB is now reduced and some of most failure-prone components
(e.g. Device Drivers) are now outside the architecture core.

Table 1: Existing Virtualization Architectures
General-Purpose Nested Component-Based Micro-Hypervisor Containers Best Design

Design Requirements Hypervisor (GPH) Virtualization (NV) Hypervisor (CBH) (MH) Approach

Minimal TCB X (X) X X X MH
User-Centric Resource Control X (X) X X X CBH
Interoperability X X X X X NV
Legacy Support X X X X X NV

The UL federates cloud resources in a provider-independent man-
ner. It implements the interconnection between different cloud
providers. The UL also enables to realize the U-Clouds, rang-
ing from lightweight and less isolated execution environments (e.g.
Linux Containers) to typical IaaS execution environments (e.g. hard-
ware-assisted VMs). It provides the means for full U-Cloud SLA
customization, notably through configuration of the required LL-
level user-infrastructure services2.
LL Design The general LL design is hybrid between minimizing
the virtualization layer (micro-hypervisor à la NOVA [7]) and con-
trol disaggregation with several user domains (CBH à la SSC [2]).
We assume the provider-layer to be MH-based. This assumption
may hold for an open cloud provider architecture (Cloud Provider
1 on the Figure). This design choice provides a solid foundation to
meet all vertical features, notably smaller TCB size and enhanced
global security such as guaranteeing VM security even if interme-
diate layers are compromised. This assumption does not seem un-
reasonable for upcoming years as: (1) despite most current IaaS
platforms still being GPH-based (Cloud Provider 2 on the Figure),
there is a strong trend towards making the hypervisor more mini-
mal and flexible, as witnessed by disaggregation of hypervisors of
the mainstream IaaS platforms; (2) MHs themselves are becoming
component-based, with possibility of interoperability to avoid any
further risk of IaaS lock-in as shown by first multi-MH OSes.

The MH core layer provides a tiny set of key kernel features,
e.g., scheduling, MMU management, IPCs, handling VMX-related
events and interrupts. Following CBH principles, each user con-
trols a VMM and a set of user-space services. The VMM is a
lightweight implementation of the L0 hypervisor logic, with the
same reliability and security benefits as in NOVA. The VMM is
also crafted to enable NV through support for running nested VMX
instructions. User-space services enable users to customize infras-
tructure resource management for their U-Clouds. The cloud sys-
tem administrator directly controls resource management policies,
system-wide resource multiplexing, and device drivers, but without
control over the MH core.

From the user standpoint, the LL architecture increases control
over the infrastructure, adding incrementally new infrastructure man-
agement services under the hood without disrupting legacy applica-
tions. From the provider standpoint, security is strongly enhanced
due to two-level isolation by the MH core and L0 hypervisor vir-
tualization. Integrity of user-controlled L0 system services can be
guaranteed through hardware security mechanisms3.
UL Design The general UL design does not export hardware re-
sources with a single interface, but with a spectrum of interfaces of
varying abstraction levels. Indeed, the UL should allow building
U-Clouds where VM, network, and storage SLAs may be person-
alized independently from the underlying provider. Such U-clouds
may be defined at the PaaS or IaaS levels. We consider a L1 vir-
tualization platform enabling to support both VMs and containers,
and thus having a flexible virtualization interface, ranging from hy-
pervisor to OS-level virtualization on which such EEs may run [6].

2Extra arbitration components are needed in the architecture for
the customer to choose between infrastructure services under his
control and those under provider control.
3For instance, Intel TXT/SGX technologies.

Extending the library OS philosophy that adapts the OS to the ap-
plication [5], the L1 platform should adapt the virtualization tech-
nology to applications according to different trade-offs. The UL
should thus realize the widest possible spectrum for supported L1
virtualization techniques. Eventually, the UL will support dynamic
on-demand provisioning of virtual execution environments with their
GPH/container-engine. The L1-virtualization platform is GPH-based
to guarantee interoperability and other horizontal features through
an inter-cloud blanket layer [1].

3. NEXT STEPS
Ongoing work focuses in two main directions. First, we are im-
plementing a proof-of-concept prototype of this architecture using
Linux as L1 GPH and NOVA as L0 MH. NOVA appears promis-
ing for L0 due to its clean design and code availability. With this
platform, we are focusing on implementing vertical properties in a
single cloud setting4, with extension to horizontal properties in a
distributed cloud setting.

Second, we are investigating how this architecture could enable
to build a unified security management plane for multi-clouds with
the following features: (1) unified autonomic security management
of the infrastructure both across layers and providers; (2) building
U-Clouds with fully à la carte security SLAs. Indeed, such man-
agement plane will face 2D threats, vertical spanning layers, and
horizontal, spanning domains – multi-cloud being both multi-layer
and multi-domain. To implement 2D security management proper,
we intend to rely on self-protection frameworks which have been
defined for both cross-layer [8] and multi-IaaS integrated security
monitoring. Furthermore, we are investigating metrics and identi-
fying concrete evaluation criteria for the overall architecture.

Acknowledgment
This work was partly funded by the French Ministry of Education
and Research (CIFRE grant) and by the EU H2020 SUPERCLOUD
project (www.supercloud-project.eu) (grant no. 643964).

References
[1] D. Williams et al. “The Xen-Blanket: virtualize once, run ev-

erywhere”. In: EuroSys ’12.
[2] S. Butt et Al. “Self-service Cloud Computing”. In: CCS ’12.
[3] I/O Virtualization - SRIOV. URL: https://www.pcisig.

com/specifications/iov/.
[4] A. Iqbal et al. An Overview of Microkernel, Hypervisor and

Microvisor Virtualization Approaches for Embedded Systems.
Tech. rep. Lund University, 2009.

[5] A. Kivity et al. “OSv - Optimizing the Operating System for
Virtual Machines”. In: USENIX ATC 14.

[6] D. C. van Moolenbroek et al. “Towards a Flexible, Lightweight
Virtualization Alternative”. In: SYSTOR 2014.

[7] U. Steinberg et al. “NOVA: a microhypervisor-based secure
virtualization architecture”. In: EuroSys ’10.

[8] A. Wailly et al. “VESPA: Multi-layered Self-protection for
Cloud Resources”. In: ICAC ’12.

4Device drivers are a major MH issue, due to costs of development
or of adaptation to a new architecture. Such challenges may be ad-
dressed using device assignment: the L1 GPH hypervisor manages
the physical device with the proper driver now running in a lower
privilege level. To be workable, this approach would require exclu-
sive allocation to be simply implementable, e.g., using SR-IOV [3].

