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ABSTRACT
Accurate fertilization management is a present-day challenge and can conciliate profitability
and sustainability in agriculture production. This study presents topsoil concentrations of
P2O5 and K2O in apple orchards and vineyards in South Tyrol, Italy. Sixteen thousand
georeferenced soil samples were collected and spatialized using ordinary local kriging.
Measured average and maximum concentrations of P2O5 were 260 and 1500 mg/kg,
respectively, in apple orchards, and 280 and 880 mg/kg, respectively, in vineyards. Similarly,
measured average and maximum concentrations of K2O were 210 and 1040 mg/kg,
respectively, in apple orchards, and 250 and 820 mg/kg, respectively, in vineyards. Overall,
K2O concentration was mostly within the recommended thresholds, while P2O5

concentration was frequently higher than the target level for optimal production. The
resulting maps (1:25,000 scale) of P2O5 and K2O showed modest accuracy with RMSE of
115.7 and 78.3 mg/kg, respectively. These maps can support evidence-based decision making
by multiple stakeholders.
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1. Introduction

Soil productivity and food production are directly
linked to soil fertility and plant nutrition (Munson,
2018). Farmers commonly use fertilizers to sustain
crop yield and profitability (Havlin, Beaton, Nelson,
& Tisdale, 2005). On the one hand, fertilizer pro-
duction costs are increasing, and therefore they
may become less accessible to farmers (Cordell,
Drangert, & White, 2009). On the other hand, exces-
sive fertilization management can lead to detrimental
environmental impacts and indirect costs to ecosys-
tems (King et al., 2015). Therefore, a present-day
challenge is to conciliate intensive agriculture pro-
duction with profitability and environmental sustain-
ability (Tilman, Cassman, Matson, Naylor, & Polasky,
2002). Integrated farming has become a widely
adopted sustainable agriculture practice worldwide
(Hendrickson, Hanson, Tanaka, & Sassenrath, 2008;
Morris & Winter, 1999). It establishes guidelines
aiming to promote optimal nutrient management
through detailed knowledge of in-situ soil properties
and nutrient availability. Integrated farming may
eventually allow farmers to reduce application
rates of synthetic chemicals, thus preserving the
self-maintenance of soil functions (Vogel et al.,
2019). Soil testing is the best management tool to
ensure optimal fertilization recommendations, as it
quantifies phytoavailable nutrients in soil samples.

The macro elements Potassium (K) and Phosphorus
(P) are essential for plant health and growth, and are
assimilated by plants to the largest extent after Nitrogen
(N) (Hawkesford et al., 2012; Lawlor, 2004; Zörb, Sen-
bayram, & Peiter, 2014). Therefore, knowledge of K
and P phytoavailability support optimal fertilizer appli-
cation that favours optimal yields and sustainability.
Note that P and K are known to be very mobile; while
optimalmanagement of P would support the protection
of nearby surface and groundwater resources from
eutrophication due to P runoff and leaching (Carpenter,
2008; Conley et al., 2009), the efficient K fertilization
would reduce use of K fertilizer without compromising
soil fertility (Dhillon, Eickhoff, Mullen, & Raun, 2019).
To support best management practices in agriculture,
the Association of German Agricultural Analytical
and Research Institutes (VDLUFA) has proposed five
classes according to ranges of nutrient concentrations
in soil. The classes range from A (lowest level) to E
(highest level), with Class C being the target class for
optimal production (VDLUFA, 1991). The continuous
monitoring of phytoavailable soil nutrients at a plot-
scale in South Tyrol has resulted in a large dataset of
observations covering the whole region (Della Chiesa
et al., 2019). The dataset can be used to generate infor-
mation and trigger actions at larger spatial scales.

Digital soil mapping (DSM) of chemical–physical
properties is an additional tool for sustainable farming,
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and it is becoming crucial for large-scale assessment of
soil security, environmental health and soil ecosystem
service assessment (Adhikari & Hartemink, 2016;
Carré, McBratney, Mayr, & Montanarella, 2007;
McBratney, Field, & Koch, 2014). DSM turns pointwise
soil surveys into continuous maps through robust
interpolation methods (McBratney, Mendonça Santos,
& Minasny, 2003; Minasny & McBratney, 2016). Sev-
eral interpolation methods have been extensively tested
by various authors (Hengl, Heuvelink, & Stein, 2004;
Scull, Franklin, Chadwick, & McArthur, 2003); kriging
has been proven to have good predictive capability for
continuous variables such as K and P (Bogunovic, Per-
eira, & Brevik, 2017, Bogunovic, Trevisani, Seput, Juz-
basic, & Durdevic 2017). However, spatial
interpolation models require robust input data for
high prediction accuracy (Li & Heap, 2014). Data qual-
ity and consistency can be achieved by following stan-
dardized protocols to conduct soil sampling and testing
(Jordan-Meille et al., 2012; Tóth, Hermann, Da Silva, &
Montanarella, 2016). Della Chiesa et al. (2019) showed
that demand for agricultural sustainability allows the
development of sustainable farming programmes
with standard protocols and guidelines for soil infor-
mation data sourcing. The latter can provide compre-
hensive datasets ideal for DSM and can overcome the
challenge of developing detailed spatial–temporal
maps of soil physical–chemical properties in agricultu-
rally managed ecosystems (McBratney et al., 2003).
Thus, maps of spatial and temporal concentrations of
P and K can provide a base of knowledge to manage

P and K fertilization in permanent crop systems,
including apple orchards and vineyards (Aggelopou-
lou, Pateras, Fountas, Gemtos, & Nanos, 2011; Blan-
chet et al., 2017; Bogunovic, Pereira, et al., 2017;
Jordan-Meille et al., 2012). Moreover, knowledge of
the P spatial distribution allows the assessment of the
risk of diffuse P losses (Fischer, Pöthig, & Venohr,
2017).

By exploiting the promising framework in Della
Chiesa et al. (2019), this study fills knowledge gaps of
detailed spatially-distributed information of phytoa-
vailable P and K in the form of P2O5 and K2O, respect-
ively, in apple orchards and vineyards in South Tyrol,
Italy.

2. Materials and methods

2.1. Study area

This study covered agricultural soils cultivated with
permanent crops (i.e. apple orchards and vineyards)
on the floors of the Venosta/Vinschgau and Adige/
Etsch valleys, in the Province of Bolzano/Bozen,
South Tyrol, Italy, between 46°20′N and 46°70′N and
10°50′W and 11°45′W (Figure 1). South Tyrol is Eur-
ope’s largest apple-growing area, covering nearly
19,000 ha, while vineyards cover about 5500 ha.
South Tyrol lies on the southern side of the main
Alpine ridge; the study area has a typical continental
Alpine precipitation regime with mean annual precipi-
tation of ca. 723 mm and mean annual temperatures of

Figure 1. Study area in the Venosta/Vinschgau and Adige/Etsch valleys in South Tyrol, Italy.

556 S. DELLA CHIESA ET AL.



12.9°C (1987–2017 mean data from the Meteorological
Station of Bolzano/Bozen, Hydrographic Office, South
Tyrol). The prevalent soil types on the valley floor are
gleyic Cambisols (partially calcaric), Fluvisols, or Gley-
sols (Grashey-Jansen, 2010).

2.2. Soil sampling

In South Tyrol, most of the farmers and viticulturists
practice integrated farming. They are required to regu-
larly submit soil samples to a centralized public chemi-
cal laboratory of the Research Centre for Agriculture
and Forestry, Laimburg (Dalla Via & Mantinger,
2012), which analyses the samples following common
protocols and standards. The Centre stores digital
soil data from across South Tyrol from 2006. The cur-
rent study focuses on nearly 16,000 georeferenced soil
samples collected from apple orchards and vineyards
located in the Venosta/Vinschgau and Adige/Etsch val-
leys during the years 2006–2013. Each soil sample was
analysed to determine phytoavailable P2O5 and K2O
soil concentrations (mg/kg). Further details on soil
sampling design and georeferencing can be found in
(Della Chiesa et al., 2019). Nutrient concentration
was measured in an extract of calcium-acetate-lactate
(CAL), according to ÖNORM L 1087:2012
(ÖNORM, 2012).

2.3. Spatial interpolation

Georeferenced soil concentrations of phytoavailable
P2O5 and K2O were spatialized using ordinary local
kriging (OLK) in the R environment (Gräler, Pebesma,
& Heuvelink, 2016; Pebesma, 2004). The data distri-
bution of P2O5 and K2O were investigated for normal-
ity; a log-transformation before spatial interpolation
was necessary to reduce skewness and thus minimize
the influence of spurious points (Mcgill, Tukey, & Lar-
sen, 1978).

The OLKmethod computes the spatial continuity of
the dataset by variogram analysis. The model training
consists of fitting a suitable model variogram on an
experimental variogram. The optimal parameters for
the model variogram were estimated using auto-cali-
bration in the training process; the geospatialisation
algorithm was run 400 of times to fine-tune the
model parameters extracted within user-defined
thresholds. The optimal parameters were assessed
using a 5-fold cross-validation approach (Hastie,

Tibshirani, & Friedman, 2009). The parameter set
that returned the best root mean square error
(RMSE) was selected for final interpolation. HydroPSO
(Zambrano-Bigiarini & Rojas, 2013) within the R soft-
ware package was used for auto-calibration. The final
validation of the maps was performed leaving out
20% of the samples as a validation set. A raster mask
using the land use map of South Tyrol was adopted
to constrain the interpolation to only agricultural
fields on the valley bottom. Thus, urban areas, indus-
trial sites, and forests were masked out to avoid inac-
curate or invalid spatial predictions for these land uses.

3. Results and discussion

3.1. Exploratory statistics

Exploratory statistics of the measured P2O5 and K2O
concentrations are summarized in Table 1. The raw
data highlighted that the P2O5 and K2O distributions
are slightly skewed. P2O5 ranged from 10 to
3200 mg/kg, with a mean of 270 mg/kg and standard
deviation of ±168. P2O5 showed a slightly skewed dis-
tribution, with a moderate positive skewness of 2.9 and
large kurtosis. K2O ranged from 10 to 1400 mg/kg with
a mean of 222 mg/kg and standard deviation of ±114.
K2O showed lower positive skewness of 2.1 and rela-
tively lower kurtosis. The investigated parameters
showed moderate variability, and P2O5 showed rela-
tively higher variability with a coefficient of variation
(CV) of 62.2% in comparison to K2O’s CV of 51.6%
(Zhang, Sui, Zhang, Meng, & Herbert, 2007).

3.2. Mapping soil properties

The remarkably high number of about 16,000 soil
samples with a mean sampling interval of about
143 m ensures adequate sampling design in terms of
sample number and density (Brus, Kempen, & Heuve-
link, 2011; Stahl, Moore, Floyer, Asplin, & McKendry,
2006), satisfying the requirements for the best possible
performance of the interpolation models (Li & Heap,
2014). Figure 2 shows the model semivariograms and
Table 2 presents the parameter for the OLK model
and overall cross-validation. The exponential model
performed better than other models. In agreement
with similar studies (Liu, Zhang, Zhang, Ficklin, &
Wang, 2009; Robinson & Metternicht, 2006), the nug-
get value is small for all the variables, which indicates
adequate sample number and spatial variability. The

Table 1. The table shows the statistical summary of the raw data for P2O5 and K2O.
Min. Q1 Mean Q3 Max. Skew. Log. Skew. Kurt. CV Std.

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (%) (mg/kg)

P2O5 10 170 270 340 3200 2.9 −0.8 27 62.2 168
K2O 10 150 222 270 1400 2.1 −0.3 12 51.6 114

Notes: Min: minimum value, Max: maximum value, Mean: mean value, Median: median value, Q1: first quartile value, Q3: third quartile value, Skew.: Skewness
value, Log. Skew. Log Skewness value, Kurt. Kurtosis value, Std: Standard deviation, CV: Coefficient of variation.
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range is 112.30 m for P2O5 and 45.91 m for K2O; both
values are lower than the mean sampling distance,
which may indicate the irregular spatial structure of
the sample set (Marchant & Lark, 2006). Comparison
between predicted and measured P2O5 and K2O con-
centrations showed a relatively low R2 of 30% with
RMSE of 115.7 mg/kg and R2 of 32% with RMSE of
78.3 mg/kg, respectively. When the data density is
very high, as in this study, diverse interpolation
methods generally do not improve the prediction accu-
racy (Bogunovic, Mesic, Zgorelec, Jurisic, & Bilandzija,
2014; Burrough, 1986). The low accuracy is likely
linked to the nature of the parameters investigated in
this agro-system, which are highly variable with large
spatial heterogeneity due to different management
practices (Blanchet et al., 2017; Roger et al., 2014). In
addition, despite the data were produced following
the same extraction methods and homogenous proto-
cols for soil sampling, the data used in this study had
been collected over 8 years, and may thus contain sea-
sonal and annual differences.

Indeed, the maps of P2O5 and K2O exhibit high
spatial variability, which suggests large local differences
in fertilization. Considering the nugget/sill ratio
(Cambardella et al., 1994), P2O5 shows a moderate
spatial dependence with a nugget/sill ratio of 0.33, as
reported in other studies (Bogunovic et al., 2014),
while K2O has a very high spatial dependence, with a
nugget/sill ratio of nearly zero. This analysis corrobo-
rates that the K2O distribution is strongly controlled
by extrinsic factors, such as intense agricultural prac-
tices (e.g. uneven fertilization). Finally, the fact that

the range for both variables is lower than the mean
sampling distance indicated that most of the variance
represents differences from field to field. A deeper
understanding of the driving forces behind this high
spatial variability may be achieved by adopting more
advanced geostatistical techniques. Regression kriging
(Hengl, Heuvelink, & Rossiter, 2007; McBratney
et al., 2003), combined with a set of sound predictors,
such as detailed spatial distributed information of
land management and farming practices, can improve
prediction accuracy (Blanchet et al., 2017; Roger et al.,
2014). However, such data are rarely publicly available.

Probability density distributions of P2O5 and K2O
concentrations for apple orchards and vineyards high-
light similar distributions, which may support the
speculation that intensive agriculture has homogenized
nutrient availability over large areas. However, vine-
yards show overall higher mean and median values
but lower variability; in contrast, apple orchards show
lower mean and median values but larger variability
(see Table 3). This is to be expected, as the two perma-
nent crops have diverse nutrient needs.

Although no eutrophication has ever been reported
along the main river in the Venosta/Vinschgau and
Adige/Etsch valleys (Chiogna et al., 2015), available P
and K in soils frequently exhibit higher values in com-
parison with other studies (Aggelopoulou et al., 2011;
Fischer et al., 2017). In fact, optimal P concentrations
in soil should range from 120 to 200 mg/kg while K
should range from 60 to 350 mg/kg (see Figure 3 and
4). Figure 3 shows that P frequently exceeds the rec-
ommended maximum threshold, while Figure 4

Figure 2. Model semivariograms for P2O5 and K2O. Model fit parameters are in Table 2.

Table 2. Semivariogram parameters for the P2O5 and K2O maps and overall goodness of fit.
Model fit parameters OLK parameters Validation

Model Psill (mg/kg) Nugget (mg/kg) Range (m) Nugget/Sill Radius (m) nmax nmin omax RMSE (mg/kg) R2

P2O5 Exp. 0.29 015 112.23 0.33 1009.65 97.59 1.00 15.03 115.7 0.30
K2O Exp. 0.22 0.00 45.91 0.01 717.13 46.74 1.00 14.55 78.3 0.32

Notes: Psill (partial sill): value of semivariance at which a stationary trend is reached. Nugget: value of semivariance at distance zero. Range: distance at which
95% of the psill is reached. Radius: maximum distance for which interpolation is computed. nmax: number of points inside the radius used for prediction.
nmin: minimum number of points inside the radius to compute interpolation. omax: maximum number of points inside each quadrant within the radius.
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shows that K is mostly within the recommended
thresholds. Finally, Table 4 summarizes the percentage
of the map area below, within and above the suggested
thresholds. This highlights that P exceeds the suggested
concentration on more than 80% of the map surface.
Thus, these results suggest the need for more efficient
nutrient management and they identify source areas
of potential diffuse P losses. Note that fertility maps
of P2O5 and K2O must consider the feedback

mechanism in the soil solution of soil pH, SOM, and
soil texture. Thus, future fertility maps will be pro-
duced by using recently available auxiliary data of
pH, SOM, and soil texture (Della Chiesa et al., 2019)
for large-scale spatial prediction of micro and macro-
nutrients needs (Kerschberger, Hege, & Jungk, 1997;
VDLUFA, 1991). This study provides regional scale
information on macronutrient concentration in soils
which can be exploited as a baseline for future studies

Figure 3. P2O5 map probability density distribution for the two land uses. The vertical dashed lines refer to the ranges of the Class C
(120–200 mg/kg) defined as the target class for optimal production analysis (VDLUFA, 1991).

Figure 4. K2O map probability density distribution for the two land uses. The vertical dashed lines refer to the ranges of the Class C
(60–350 mg/kg) defined as the target class for optimal production analysis (VDLUFA, 1991).

Table 3. Statistical summary of the map density distribution for P and K of Figures 3 and 4.
Landuse Mean (mg/kg) Min (mg/kg) Q1 (mg/kg) Median (mg/kg) Q3 (mg/kg) Max (mg/kg)

P2O5 Vineyards 284.3 33.4 238.6 278 322.1 875.6
Apple Orchards 262 28.7 206 253.6 304.8 1500.6

K20 Vineyards 245.7 50 217.6 239 271.9 817
Apple Orchards 214.8 22 177.6 208.1 243.8 1040.7
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to compare fertilizer consumption and recommended
doses (Tóth, Guicharnaud, Tóth, & Hermann, 2014).

The final representation of the spatial interpolation
is digital topsoil maps of P (P2O5) (Main Map) and K
(K2O) (Main Map) in apple orchards and vineyards in
the Adige/Etsch and Venosta/Vinschgau valleys, South
Tyrol (Italy) at 20-m × 20-m pixel resolution.

4. Conclusions

Digital topsoil maps of P2O5 and K2O in permanent
crop fields in the Venosta/Vinschgau and Adige/
Etsch valleys were developed using a large soil dataset
and a geostatistical approach. Overall, available K is
mostly within the recommended optimal range while
P frequently exceeds recommended concentrations.
No specific data distribution of available P and K is
related to the different land uses, which could be a con-
sequence of intensive farming. Because of these par-
ticular environmental settings, detailed land use and
farming management as auxiliary variables are needed
to improve the prediction accuracy for highly variable
parameters such as P2O5 and K2O. This research stems
after the synergism between standard laboratory tech-
niques and digital applications, through which plot-
scale measurements are rendered to provide valuable
large-scale information to identify potential areas
suffering from nutrients mismanagement. The maps
could eventually promote for long-term planning of
sustainable use of fertilizers in South Tyrolean perma-
nents crops. These maps provide great utility for large-
scale environmental management plans affecting mul-
tiple stakeholders, including land managers, farming
consulting companies, and policy makers.

Software

The geocoded soil database was produced using Esri
ArcGIS 10.4®. Geostatistical interpolation, calibration,
validation were performed in R (www.cran.r-project.
org) using the following packages: caret, Gstat, hydro-
PSO, raster, sp, SpatialPosition. The map and layout
were produced in Esri ArcGIS 10.4®.
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