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1 Introduction  

1.1 Context and Background 

Environmental degradation and specifically land degradation is caused by various factors, including 

climatic variations and human activities such as agriculture. At the same time, as the world population 

continues to increase, pressure on soil also escalates and the natural capital of soil faces continuing 

decline (Koch et al., 2013, Montanarella et al., 2016), for example Soil Organic Carbon (SOC) loss is 

one of the main causes of soil degradation on the planet (Lal, 2004). International policy makers have 

recognized this and a range of initiatives to address it have emerged over recent years. Several EU 

policies and worldwide efforts have underscored the importance of soil monitoring to maintain 

healthy soils. Land and soil degradation is a global concern and land degradation neutrality is one of 

the targets of the UN Sustainable Development Goals.   

Considering the above, the spatiotemporal monitoring of soil properties and the provision of a cost 

effective method, for the estimation of the environmental indicators is of vital importance. In this 

regard, and since conventional methods for soil monitoring are time consuming and expensive, we 

propose a novel framework aiming to enable the combination and synergistic use of Earth 

Observation (EO) systems with open-access soil spectral libraries (SSLs) and local spectral 

measurements to be used within the scope of the DIONE project. Using memory-based learning 

algorithms the above combination can provide an alternative to contemporary approaches that 

require laborious soil sampling and use of analytical techniques, that is inexpensive and accurate and 

can provide targeted large scale mapping of soil properties such as SOC, pH, electrical conductivity, 

etc. 

In the past decade, researchers in the EU and throughout the world have been focusing on finding an 

easy, time-efficient, and inexpensive way to map, monitor and estimate soil use and soil property 

changes by developing beyond the state of the art, innovative methodologies, services and tools. EO 

data arising from satellite sensors and in-situ measurements (archived or updated) are a unique source 

of knowledge, whereas the combination of them with state-of-the-art (SotA) methods can give 

information regarding the soil properties, even in remote locations. The role of the Global Earth 

Observation System of Systems (GEOSS) is instrumental for this: the GEOSS Platform promotes the 

use of common technical standards so that data from thousands of different instruments can be 

exploited free of charge and combined into coherent data sets.  

Traditionally, geostatistical techniques have been used to map soil properties by spatially interpolating 

the properties obtained through analytical techniques in discrete points. This task however is not cost-

effective, while the quality of the resulted layer depends on either the amount of data and the 

harmonised geographic distribution. By exploiting EO data, the various satellite imagery band 

combinations in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) may be used to 

identify the concentration of various soil properties. The image optical spectral data, and particularly 

the hyperspectral data, have been proven good indicators for the prediction and mapping of the 

spatial variability of soil properties such SOC (Ben-Dor et al., 2009; Chabrillat et al., 2019). The variation 

of the different spectral profiles and the contribution of artificial intelligence models (and in particular 

through the use of machine and deep learning models), can give an insight on differences occurring in 

soils due to the various factors, such as the slope inclination, the land use categories and others. Apart 

from the satellite imagery, also field data is of crucial importance in order to provide field information, 

mainly for calibration and validation purposes. In this regard, contemporary soil spectral libraries 

(SSLs) in combination with local in-situ measurements, collected through portable/handled 
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spectrometers built with microelectromechanical systems (MEMS), can be transformed in soil 

properties and used as reference data, enabling the prediction of the soil property maps, through the 

exploitation of the satellite data. 

1.2 Purpose of the deliverable 

The overarching object of the current deliverable is to present the methodological framework of the 

soil monitoring in which DIONE operates. Additional information is presented regarding the 

requirements that is mandatory for the integration of existing open SSLs and the spectral profiles from 

the multispectral satellite data, in order to deliver quantitative and spatially explicit soil indicators, 

and thus enable the continuous monitoring of the soil ecosystem.  

In DIONE deliverable D4.1. Technical specifications of the in-situ soil scanning system (SSS), data 

processing system and farmer’s geo-tagged photos framework the in-situ soil scanning system was 

described, which encompasses: (i) the MEMS spectrometers which capture in-situ spectra, and (ii) the 

database to which these data are delivered. The present deliverable thus continues with the 

processing of these data, in conjunction with other historical and open EO data from other sources, 

to arrive at the end-product (i.e. the soil property maps).  

The deliverable aims to cover the synergistic use of Earth Observation techniques (spaceborne and in-

situ data) with a clear focus on the estimation of soil properties. These innovative tools and techniques 

can support the monitoring of the soil ecosystem and thus address goals and targets of major 

international frameworks, such as the Sustainable Development Goals (SDGs), the Common 

Agricultural Policy (CAP), and the new European Green Deal. 

The rest of the document is organised as follows. Section 2 presents a literature review of the most 

widely used methods on soil spectroscopy analysis and soil property mapping. Section 3 illustrates the 

novel approach, in which DIONE soil monitoring framework will operate. Technologies and modelling 

procedures are explored to achieve a reliable and cost effective scalable approach to soil property 

map production. Finally, in section 4, we provide a short summary of the current work. 
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2 Review on past methodologies for soil property mapping 

The availability of soil information in the Member States of the European Union varies greatly in many 

regards; evidently, as the soil ecosystem requires constant monitoring to prevent its degradation and 

promote its sustainable management, this lack of in-situ data in some regions may hinder the accurate 

estimation of its status. This section focuses on past techniques that have been developed in the 

literature that pertain to the mapping of soil properties in order to assess its spatio-temporal variance. 

2.1 Factorial models, environmental similarity, and environmental 

correlation 

Traditionally, the process to develop a digital soil map (depicting the spatial distribution of a given 

physicochemical property or of a class) for a region entails the following steps (Keskin and Grunwald, 

2018; Minasny and McBratney, 2016): 

1. Sampling locations for the region to be mapped are selected via stratification. 

2. A field campaign takes place in order to extract the physical soil samples from the pre-selected 

locations. 

3. The field samples are sent to a chemical laboratory which estimates the properties of the 

samples via analytical techniques. 

4. A geostatistical model is then applied which makes use of ancillary data (e.g. topographic 

indices, climatic, geomorphological, and other pedological data, or a single band or an index 

from satellite data) to correlate them with the analytically measured properties, and thus be 

able to estimate the properties in the whole region. 

However, this approach is not cost efficient and cannot provide a scalable and interoperable model, 

which could be exploited by anyone. In other words, it has low transferability. Moreover, the cost 

associated with the chemical laboratory is considerable. It should also be noted that in order to 

generate a new map to examine the temporal differences, a new field campaign needs to be 

implemented as this approach only presents “a static snapshot” of the current time of sampling. Thus, 

a more systematic approach is necessitated to generate soil maps on larger temporal and spatial 

scales.  

2.2 Techniques based on VNIR–SWIR spectroscopy 

2.2.1 Laboratory-based point spectroscopy 
As a first step, it should be noted that the cost associated with the chemical laboratory may be 

substantially decreased through the use of laboratory-based spectroscopy, (Nocita et al., 2015). The 

traditional chemical analysis of soil samples to estimate their physicochemical properties is laborious 

and costly in terms of resources. Diffuse reflectance spectroscopy, especially visible and near infrared 

spectroscopy (VNIR–SWIR, 400–2500nm) is a very popular technique, widely recognized as a simple, 

accurate, time- and cost- efficient method of soil analysis, (Stenberg et al., 2010). A single spectrum 

may contain comprehensive information on various soil components, and it can thus be used to 
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predict these simultaneously. To infer the properties, a suitable chemometric model is developed, 

(Figure 1).  

This research area is very-well studied due to the advantages that the controlled laboratory conditions 

offer, enabling models to attain high precision, (Tsakiridis et al., 2020). The disadvantage is that 

physical samples need still to be collected and transferred to a laboratory, and that the samples need 

to undergo a treatment (drying and sieving) which may take some time spanning from a few days to 

couple of weeks) depending on the number of samples.  

2.2.2 In-situ spectroscopy 
Moving from laboratory-based point spectroscopy to in-situ point spectroscopy where soil spectral 

measurements are acquired in the field, we can reduce the cost associated with the aforementioned 

processing steps, while on the contrary any offered advantage will be missed. More concretely, the 

steps that include (i) performing soil sampling, (ii) sending the samples to the laboratory, and (iii) 

processing the samples (drying and sieving), are longer necessary. 

Of course, this means that the advantages offered by the laboratory are now no longer offered by this 

methodology. Two factors heavily effect the spectral reflectance when it is acquired in-situ: (i) the soil 

moisture content (Error! Reference source not found.) (Lesaignoux et al., 2013; Lobell and Asner, 2

002) and (ii) the soil roughness. Several methodologies have been developed to overcome these 

effects (Minasny and McBratney, 2016; Nocita et al., 2013; Rodionov et al., 2014). The most popular 

ones rely on External Parameter Orthogonalization (EPO) and Direct Standardization (DS), and they 

both have shown to be effective strategies to mitigate the effects of soil water content (Roudier et al., 

2017).  

Evidently, these approaches do not generate maps; they can only generate point-like data where the 

soil properties at distinct locations (i.e. those corresponding to the sampling locations or the locations 

where the in-situ measurements took place) are known. Thus, they replace only the chemical 

laboratory; in other words, in order to generate maps from these point data another step is still 

necessary 

Figure 1: High level overview of diffuse reflectance soil spectroscopy 
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. 

 

2.2.3 EO-based image spectroscopy 
On the past decades, satellite remote sensing has been proven a valuable tool and a cost-effective 

solution, and thus the continuous provision of such kind of data with high revisit time and with high 

spatial and spectral acquracy, lead to innovative and scalable sollutions in various scales (local-national 

scale). In particular, hyperspectral imaging (HSI) has enabled a variety of applications in Earth studies, 

providing significant improvements on spectral measurement capabilities over conventional systems. 

It contributes to the identification of different materials, especially retrieving, and quantifying their 

chemical and structural characteristics as well as their temporal and spatial variations. Numerous of 

studies (Ben-Dor et al., 2009; Chabrillat et al., 2019) have analysed the critical importance of 

reflectance spectroscopy, as it gives continuous measurements over the monitored area, and thus 

reveal information of the soil properties and their temporal variation. It provides important 

information for integrated approaches combining satellite data with specific tools and modelling 

techniques. Satellite imagery is a cost-effective evaluation over extensive areas which can provide 

data with high revisit times, whereas in-situ measurements are more resource demanding but 

important to provide ground truth and validation data.  

The use of optical remote sensing observations and in particular reflectance spectroscopy at the 

remote sensing scale, referred to as imaging spectroscopy (IS) or hyperspectral imaging, have been 

shown to be powerful techniques for the quantitative determination and modelling of a range of soil 

Figure 2: The effect on soil moisture on the reflectance spectrum of two soil samples in VNIR–SWIR (spectral data taken from 
i-BEC’s data repository) 
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properties. These soil properties include topsoil mineralogical composition such as SOC content, 

textural composition, iron or carbonate content, and other physicochemical properties.  

HSI opposed to the multispectral imaging (MSI), (Figure 3) have the ability to exploit the spectral 

information received in tens or hundreds narrows of the spectral bands, from the visible to the short-

wave infrared (400-2500nm) part of the electromagnetic spectrum (EMS). Therefore, the combination 

of the HSI datasets with in-situ measurements can estimate the presence of certain soil properties in 

additional areas. The attractiveness of imaging spectroscopy is that measurements are rapid and 

estimates of soil properties are inexpensive compared to conventional soil analyses, as it exploits the 

information carried out by the visible and near-infrared (Vis–NIR or VNIR: 400–1100 nm) and 

shortwave infrared (SWIR: 1100–2500 nm) part of the electromagnetic spectrum. Especially, in the 

SWIR several overtones and combinations of absorbance features (whose fundamental absorption 

bands reside in higher wavelengths) may be found due to the presence of a number of soil 

chromophores.  

 

In the case of the identification of the bio-physico-chemical properties of soils in croplands, (Error! R

eference source not found.), a cloud-free EO image is used and the following processing steps are 

implemented. In particular, the workflow processing chain is initiated through the identification of the 

bare soil areas in a cloud-free EO-based image of an area, which can be achieved through various 

techniques as shown in section 3.1.1. A recent study has showcased how often this takes place in the 

European continent for cropland soils throughout the year (Figure 4). After that, the spectral 

signatures of the bare soil fields may be extracted, where for each different parcel it is possible to 

have multiple acquisitions within each year. If multiple image acquisitions are examined, then this 

gives rise to another significant issue vis-à-vis the selection of which spectral signature (or which 

combination thereof) should be used. In any case, the spectrum recorded is then prone to the same 

effects as the in-situ proxy spectra acquired during field visits: those of soil moisture and soil 

roughness, that pose a challenge to the inference process. 

Figure 3 Comparison of MSI (left) and HSI (right) spectral signatures, (source: https://www.harrisgeospatial.com) 

https://www.harrisgeospatial.com/
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Figure 4: (a) A full synthetic soil image of croplands over the European extent; (b) the equivalent bare soil frequency 
(Safanelli et al. 2020). 
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3 DIONE Methodological Framework for Soil Monitoring 
The following flowchart (Figure 5) illustrates the DIONE’s methodological framework for soil 

monitoring, in which the approach operates as follows. On the basic layer historical and open EO data 

will be used (data tier), -interaction between the tools and the data (modelling tier) as well as how 

everything is brought together in order to determine soil properties (knowledge tier part) in map 

output format. 

The present section outlines the approach in three distinct tiers: 

1. Data tier: Exploitation of historical and open EO data, detailed in Section 3.1 which describes 

on the one hand the space-borne data that will act as the basis on which the soil maps will be 

developed, and on the other hand all relevant data from the in-situ component; 

2. Modelling tier: Described in Section 3.2 where the processing of the data takes place and; 

3. Knowledge tier: and Described in Section 3.3, presenting the final products. 

 

3.1 Historical and open EO data tier development and processing 

3.1.1 Earth Observation data and products 
In the context of DIONE, a fusion of various data is implemented using either archive or open-accessed 

EO data of both multispectral sensors (Landsat-8 and Sentinel-2) and SAR sensors (Sentinel-1), (Figure 

6). Geospatial information from the SoilGrids global soil repository, is additionally used. 

In general, Copernicus Sentinel missions which have been launched by the European Commission since 

2014, have been proven the cornerstone of the recent scientific community, providing the most 

accurate and cost-efficient solution in land applications, which enables the development and 

deployment of various models and services in multiple scientific domains (e.g. risk management, 

human health, environmental resilience, urban sustainability, etc.). The aforementioned satellite 

missions were deployed under the same rationale with the open-accessed information of Landsat 

missions. In particular, Landsat satellite missions (4TM-8OLI) are part of the Landsat Data Continuity 

Figure 5: DIONE soil monitoring methodological framework schematic diagram conscerning the derivation of spatially 
explicit soil carbon indicator based on the spiked bottom-up approach. 
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Mission (LDCM) and were developed as a collaboration between the National Aeronautics and Space 

Administration (NASA) and the U.S. Geological Survey (USGS) in order to provide services in numerous 

domains and scientific fields. Subsequently, SoilGrids is a global digital soil mapping system that makes 

use of global soil profile information, covariate data and state-of-the-art machine learning methods 

to map the spatial distribution of soil properties across the globe1. 

 

3.1.1.1 SoilGrids 
Recently the international community has paid an increasing attention to improving legacy soil data 

resources in support of sustainable development (Folberth et al., 2016; Montanarella and Vargas, 

2012). In order to contribute to the Global Soil Partnership initiative and to reduce the gap between 

soil data demand and availability, the International Soil Reference Information Centre (ISRIC) – World 

Soil Information, released a Global Soil Information system called SoilGrids2. It is a collection of global 

soil property maps at six standard depth intervals at a spatial resolution of 250 meters, produced 

using state-of-the-art machine learning methods. SoilGrids uses global models that are calibrated 

using all available input observations and globally available environmental covariates. SoilGrids spatial 

predictions (layers) are produced using a reproducible soil mapping workflow and can therefore be 

regularly updated as new soil data or covariates become available, after quality control and data 

standardization/harmonization. Prediction models are fitted using over 230.000 soil profile 

observations from the WoSIS database and a series of environmental covariates. 

SoilGrids provides global predictions for the following standard numeric soil properties: pH, soil 

organic carbon content, bulk density, coarse fragments content, sand content, silt content, clay 

content, cation exchange capacity (CEC), total nitrogen as well as SOC density and SOC stock. Data are 

 
1 https://www.isric.org/explore/soilgrids  
2 https://soilgrids.org/ 

Figure 6: The EO ecosystem in which DIONE methodological framework operates 

https://soilgrids.org/
https://www.isric.org/explore/wosis/faq-wosis
https://www.isric.org/explore/soilgrids
https://soilgrids.org/
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available and visualizing through a web GIS platform (soilgrids.org) and can be downloaded in raster 

format via FTP, or through RESTful services of the Soil Info App. Ledo et al., 2019 used the 

aforementioned datasets in order to take information about the soil texture and the chemical 

properties. Undoubtfully, SoilGrids dataset is proven to be the most successful approach resulted from 

the synergistic use of satellite imagery (primarily derived from MODIS land products) and machine 

learning methods, in order to produce digital soil maps at global-scale. Therefore, until now there isn’t 

any upgrade regarding the spatial resolution of the delivered soil products, as they are available in in 

MODIS coarse resolution (250m), (Figure 7). Thus, although it is a great attempt as end-product it does 

not meet the needs presented in D5.1 Environmental Monitoring Framework for monitoring soil 

properties at a parcel level. Considering the above, in DIONE we aim to exploit the open-access 

satellite data and further leverage on the super spectral imagery at finer spatial resolution in order to 

estimate the soil properties in the examined areas, at finer spatial resolution. 

 

 

 

Figure 7: SOC concentration around Europe using the SoilGrids open access platform. https://soilgrids.org/ 

https://soilgrids.org/
https://soilgrids.org/
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3.1.1.2 Satellite optical Multispectral data 
Multispectral satellite sensors capture spectral data in different parts of the EMS, but usually in VNIR- 

SWIR parts. MSI data received from Landsat-8 and Sentinel-2 allow the implementation of a timeseries 

analysis, revealing the diachronic evolution of the organic matter, whereas based on this detailed 

maps of soil properties (e.g. SOC maps) can be retrieved in finer spatial resolution. In this regard, 

Figure 8: Cyprus area with  (a) Soil Grids SOC concentration (b) Sentinel-2 NDVI from EO broswer. 
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sensors on Sentinel-2 and Landsat 8 satellites have considerable potential for detailed mapping of soil 

properties like SOC (Žížala et al., 2019). Studies have already confirmed this potential (Ben-Dor et al., 

2008; Castaldi et al., 2019b, 2016; Gholizadeh et al., 2018). Considering the above, Castaldi et al., 

(2019b) evaluate the validity of the spatial resolution of Sentinel-2 for SOC mapping both in local and 

regional scale. In the context below additional information is given regarding the two satellite 

missions, their characteristics and capabilities, as well as their synergic use in terms of estimating the 

soil properties in various examined areas.  

Description of Landsat-8 data  

Landsat 8 provides datasets over Earth’s terrestrial and polar regions in VNIR–SWIR and thermal 

infrared. Landsat 8 includes a multispectral image scanner-OLI (Operational Land Imager) and a 

thermal image scanner-TIRS (Thermal InfraRed Sensor), receiving data at the spatial resolution of 30m 

and 100m respectively. Additionally, the Landsat imagery includes the panchromatic spectral band 

which covers the visible wavelength at finer spectral resolution (15m)3. The OLI provides two 

additional spectral bands, one tailored especially for detecting cirrus clouds and the other for coastal 

zone observations. The TIRS collects data for two more narrow spectral bands in thermal region.  

Description of Sentinel-2 data  

Sentinel-2’s Multi-Spectral Instrument (MSI) features 13 spectral bands from the visible and near-

infrared (VNIR) to the short-wave infrared (SWIR), featuring four at 10 m, six at 20 m and three at 60 

m resolution. The best compromise in terms of user requirements and mission performance, cost and 

schedule risk, it provides enhanced continuity for Spot and Landsat, with narrower bands for 

improving identification of features, additional red channels for assessing vegetation, and dedicated 

bands for improving atmospheric correction and detecting cirrus clouds. This way, recent studies 

exploits the Sentinel-2 imagery for applications mainly in land monitoring, emergency management 

and security4. Furthermore, the twin Sentinel’s (Sentinel-2A and Sentinel-2B) were launched, 

providing capabilities of continuous monitoring over the globe with high temporal resolution (10 days 

at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions which results 

in 2-3 days at mid-latitudes). In this project, the spectral bands of 1, 9 and 10 will be excluded for the 

further processing as they mainly contribute to applications related to the atmospheric correction 

(e.g. precise aerosol and cirrus correction).  

Synergies between MSI data and applicationsThe multispectral data from the Landsat-8 has been 

utilized into a promising framework to map soil texture based on a powerful data mining procedure 

to retrieve spectral reflectance signatures (Demattê et al., 2018). In addition, recent studies (Castaldi 

et al., 2019b; Taghadosi et al., 2019; Vaudour et al., 2019) have paved the way to the exploitation of 

Sentinel-2 data which along with advanced regression analytics reveal similar results as the 

hyperspectral data from HySpex, on estimating the soil properties (e.g. SOC) of the examined area, 

(Figure 9). 

 
3 https://www.mdpi.com/2072-4292/8/3/180/htm  
4 https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/applications  

https://www.mdpi.com/2072-4292/8/3/180/htm
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/applications
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Additionally, synergies of Sentinel-2 and Landsat 8 offer a great opportunity for accurate estimation 

of soil properties, (Error! Reference source not found.) as they cover the VNIR–SWIR region, a spectral r

egion where the soil characteristics (e.g. colour, grain size, etc.) can be identified through the presence 

of chromophores which have been noted to absorb radiation in various wavelengths5. Continuing, 

Gholizadeh et al., (2018) extracted spectral signatures from Sentinel-2 bands, from four independent 

study areas involving different types of agricultural areas and used a support vector regression 

algorithm to produce spatial distribution maps of soil properties. Each pixel was enriched with 

additional features resulted from various band combinations, while this enhanced dataset provide 

high-quality information on variations in SOC comparing to airborne sensors.  

Sentinel-2 constellation offers great functionalities in data mining techniques, while in collaboration 

with the low cost, portable spectrometers (MEMS), predictions of soil organic matter can be achieved 

with great accuracy. In details, the RGB bands can improve of bare soil extraction and give better 

coverage of the study area (i.e. more accurate parcel discrimination). It should be noted that the 

Sentinel 2 data can be super-resolved so that the bands of coarser spatial resolution can match the 

finer ones (see Deliverable D3.1 Analysis of the software specifications). Landsat-8 with the additional 

source of thermal information illustrate a promising capabilities on the estimation of the soil moisture 

content, which alters the reflectance values (presence of spectral absorptions, or reduce of the 

reflectance response), and effects on the prediction accuracy, (Karyotis et al., 2020). 

 
5 https://www.researchgate.net/publication/200458942_Soil_Reflectance  

Figure 9: Soil organic carbonm (SOC) maps of a singular field in Demmin-C area obtained by HySpex (a) and real Sentinel-2 
(b) data. On the right hide side (c), the SOC map at regional scale retrieved from Sentinel-2 data in the Demmin_C and 

Demmin_S sub regions (Castaldi et al. 2019). 

https://www.researchgate.net/publication/200458942_Soil_Reflectance
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3.1.1.3 Satellite Radar Data 
The Sentinel-1 is a Synthetic Aperture Radar (SAR) instrument. It operates C-Band in four exclusive 

imaging modes with different resolution (down to 5 m) and coverage (up to 400 km). It provides dual 

polarization capability, very short revisit time and rapid product delivery. The mission is composed of 

a constellation of two satellites, Sentinel-1A and Sentinel-1B, sharing the same orbital plane6.  

Sentinel-1 have the ability to transmit and receive the backscatter signal either with single polarisation 

(VV or HH) or with cross-polarisation (VH or HV). Sentinel-1 data are sensitive in three physical factors, 

the surface roughness and the local topography and the dielectric constant, where the last on make 

them very promising indicators for the estimation of the soil structure and the soil moisture content.  

In details, the estimation of soil moisture over bare soil areas or areas with sparse vegeration is 

implemented using the SAR signal as an input in physical or statistical models. The procedure of site-

specific calibration is not required for physical models making them a method to simulate the 

backscattering coefficients from radar configuration and soil parameters, (Hajj et al., 2017). Recent 

 
6 https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument 

Figure 10: Spatial distribution SOC based on prediction using (a) Landsat 8, (b) Sentinel-2. Where (c) and (d) study site 

location (Žížala et al., 2019) 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument
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studies have evaluated the capabilities of Sentinel-1 data in the estimation of soil moisture and soil 

structure. (Ambrosone et al., 2020; Ayehu et al., 2020; Tziolas et al., 2020a). Additionally, their ability 

of penetrating the clouds and the receiving data both in day and night, prevents significant drawbacks 

in model’s performance due to the cloud presence. Considering the above, Sentinel-1 data will be 

exploited in DIONE, as they will contribute in reducing of cloud artifacts over the examined areas and 

in the identification of areas affected by the presence of the soil moisture and soil structure. 

3.1.2 Soil Spectral Libraries 
Moving from the remote sensing domain to the in-situ component, the soil libraries and soil spectral 

libraries (SSLs) are further used. Along with the growing availability of EO data, the open-access SSLs 

have enabled a data-driven approach to effectively describe soil, both qualitatively and quantitatively, 

finding robust statistical associations between laboratory spectral signatures and soil properties 

(Ballabio et al., 2016; Nocita et al., 2015). Furthermore, SSLs provide, in addition to spectral data, 

analytical data on a number of soil variables, allowing the calibration of multivariate models covering 

larger soil variability than the models calibrated using local libraries. Among the most up-to-date and 

historical European datasets are the European Soil Data Centre (ESDAC) Land Use and Cover Area 

frame Survey (LUCAS) and the GEO-CRADLE Soil Spectral Library (GSSL) which in this work will be used 

for implementation based on the major advantages that can  offer in the framework of this project.  

Moreover, Global Soil Laboratory Network  (GLOSOLAN) SSL which is a future globally calibrated soil 

dataset will be explored for potential use since data are not yet available. 

3.1.2.1 GLOSOLAN 
The GLOSOLAN was established in 2017 to build and strengthen the capacity of laboratories in soil 

analysis and provide a modern solution to the need of soil spectral data harmonization. GLOSOLAN is 

working to improve the proficiency of soil laboratories in both wet and spectroscopy, while the areas 

of interest are extended over the two following pillars: 

• the harmonization of Standard Operating Procedures (SOP) for known methods of wet 

chemistry and  

• the development of a global, and representative Soil Spectral Library over MIR spectra.  

The developed SSL will contain Global MIR Soil Spectral measurements with matched conventional 

soil property data. Both spectral and wet chemistry data will measured in one gold standard 

laboratory, and will provide estimates of soil properties of increased accuracy. The library will be freely 

available to laboratories around the world. This effort will leverage agricultural productivity and 

mitigate land degradation through providing information regarding soil health.  

Although, GLOSOLAN can be characterized as more than worthwhile, unfortunately, the product is 

still not available, making its use within the DIONE’s framework, impossible. Therefore, the use of 

existing SSLs will be utilized as described in the following sections. 

3.1.2.2 LUCAS 
The statistical office of the European Union (EUROSTAT) organizes a triennial survey of land use, land 

cover and changes over time across the member-states of the European Union, known as the Land 

Use and Coverage Area Frame Survey (LUCAS), with the latest survey conducted in 2018. The LUCAS 

Programme started in 2001 as an area frame survey organized and managed by Eurostat and is 

considered the largest harmonized open-access tool of topsoil properties at global scale, with data 

freely available from the ESDAC. In 2009, the European Commission extended LUCAS to additionally 

collect topsoil samples and analyse their key topsoil properties in 23 member-states. This survey is 



H2020-SPACE-2019               D.4.2 Inventory of historical and open EO data and techniques to be used 
 

 Page | 22  
 

based on the visual assessment of parameters that are deemed relevant to agricultural policy. The 

topsoil sampling locations were selected using a Latin hypercube-base stratified sampling design from 

the LUCAS master sample grid of 2 km by 2km, (Castaldi et al., 2019a). This topsoil survey was an 

attempt to build a consistent database using standard sampling and analytical techniques, where the 

analysis of all soil samples was carried out by a single chemical laboratory. 

The LUCAS 2009 topsoil dataset is a large European soil spectral library (about 20.000 samples from 

25 EU countries), which was collected in the framework of the European land use/cover area frame 

statistical survey in 2009 (Tóth et al., 2013). The latest LUCAS surveys were undertaken in 2015 and 

2018 and covered the 28 EU Member States with sampling expanded to cover locations at altitudes 

above 1000m and with 21.859 total number of data points, (Figure 11). The 2015 LUCAS data became 

publicly available during the final stages of the preparation of this document (early October 2020). It 

should be pointed out that this delay between the actual data sampling and the time the data are 

available for research use is another obstacle inserted by the traditional approach; a modern approach 

should provide results in a more timely fashion, which can enable end-users to take the appropriate 

action swiftly. The output format of LUCAS SSL is in CSV files to facilitate use of the data and XLS and 

ESRI point shapefile.  

 

Given the sufficient spatial distribution and representatives of LUCAS data archive across the European 

continent, we leverage on the reference soil data as the source for the soil texture information. It is 

an available library under the Open Data Base License with a big number of samples and in more 

Figure 11: Overlap of LUCAS 2015 points around Europe region. DIONE pilot areas (Lithuania and Cyprus) are also appear in 
the map with the total number of samples. 
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specific context will be used for large scale mapping needs. In addition, the dataset includes laboratory 

soil spectral samples (VNIR–SWIR) that covers the same spectral range of the MEMS, and thus enables 

the model calibration of soil properties estimation. In the same context, the modelling procedure is 

largely supported, by allowing the resampling process to be performed in order to achieve the spectral 

configuration of the MEMS in accurately and reliably way. 

3.1.2.3 GEO-CRADLE 
The GEO-CRADLE Soil Spectral Library (GSSL) was developed in the context of the GEO-CRADLE EU 

funded project7. For the first time an open and standardized regional SSL was developed, as a 

complement to the EU Soil Sample Data Base. The GEO-CRADLE SSL further provided detailed thematic 

soil maps by analysing soil spectra with Sentinel-2 data. 

The GSSL was created quite recently and contains 1754 soil samples and their corresponding soil 

properties (SOC, Texture, CaCo3, CEC, NO3, pH) in a very well spatial distributed area across nine 

countries in the North Africa, Middle East and Balkan region (Figure 12). The samples were selected 

from national soil data archives or collected through field surveyors during the project’s lifetime, 

following general guidelines, standards, and protocols to ensure consistent data collection and 

analysis. The GSSL is in compliance with GEOSS data principles and Open Database License standards 

and is publicly available through the GEO-CRADLE’s project regional datahub8. The GSSL follows a 

standardization process, which allows spectral measurements from different spectrometers to be 

comparable, thus it is future-proof and expandable. The need for the application of standard 

measurement protocols and internal soil standard methods amongst the collaborating actors, to 

optimally allow the processing of the collected set of heterogeneous data due to diverse sources and 

spectrometers, towards the enhancement of predictive performance has been highlighted in previous 

studies (Kopačková and Ben-Dor, 2016; Romero et al., 2018). Contrarily with the GSSL, LUCAS SSL 

follows no such inter-calibration procedure.  

The development of the GEO-CRADLE SSL facilitates further development of a global soil property and 

spectral database and supports the regional contribution to global soil mapping activities and other 

regional GEOSS hubs. In this regard, GSSL shows the way to take advantage of other efforts and actions 

that are in process such as the H2020 Soils for Africa program that is going to develop a soil spectral 

database for the African continent but only if there is the same structure for data development.  

The GSSL datasets are provided in csv formats per country SSLs or as a complete standalone file. The 

data in the library are diverse, comprising soils of 18 soil classes of the world. Approximately 58% of 

the soil samples belong to the top soil layer (0-30cm), 20% at depths within 30-60cm, and 20% from 

60 to 100cm, while the rest 2% originate from samples collected at depths >100cm. The soil samples 

were collected with geographical coordinates in the World Geodetic System (WGS84).  

Taking the above advantages that the GSSL can provide into consideration, and with combination of 

I-BEC’s team expertise on know-how of how to best apply the SSL and derive products, GSSL’s use is 

considered more than determinant for the implementation of this work as it will take an active part in 

the modelling processes by feeding the MEMS with the same measurement standardization protocol. 

 
7 http://geocradle.eu/en/  
8 http://datahub.geocradle.eu/dataset/regional-soil-spectral-library 

http://geocradle.eu/en/
http://datahub.geocradle.eu/dataset/regional-soil-spectral-library
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3.1.3 Micro Electro Mechanical Systems 
Moving from the laboratory to in-situ measurements, i.e. captured directly at the field during the 

visits, the next component is the spectral measurement using the low-cost MEMS sensors. Micro 

Electro Mechanical Systems (MEMS), which are low-cost portable and handled spectrometers in the 

visible and near-infrared (VNIR) range, can contribute with an effective way in soil monitoring. They 

offer some advantages over the contemporary approaches, and thus they support decision makers in 

agricultural systems by providing spatial explicit information, which can assist in the protection of the 

soil ecosystem, help farmers by maximizing yields, and also promote the sustainable production. 

Because of their portable use, MEMS are able to improve the farming productivity by bringing real-

time information of soil status, through a wireless connection with the sensors, while this will 

dramatically reduce the cost associated with the laboratory soil analysis. For more technical 

information the reader is referred to D4.1. Technical specifications of the in-situ soil scanning system 

(SSS), data processing system and farmer’s geo-tagged photos framework.  The aforementioned soil 

data in collaboration with novel machine learning techniques can estimate with efficient accuracy 

levels the physical and chemical status of soils, including: SOC, particle size distribution (sand, silt, 

clay), electrical conductivity, pH, total nitrogen, etc.  

Figure 12: Location of the 1754 sample sites with reflectance spectra in the GEO-CRADLE SSL  
(Tziolas et al., 2019). 
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Moreover, their integration with satellite and other EO data via transfer learning techniques can then 

enable the large-scale mapping of soil properties. Finally, the continuous data flow can further enable 

the analysis on the temporal domain, which can e.g. identify normal/abnormal situations, perform 

novelty detection, and map and monitor land degradation intensity. A very interesting notice, 

regarding the MEMS cost, is that it is still unclear if spectrometers at lower costs can provide sufficient 

prediction accuracy in certain soil analysis applications, as no comprehensive analysis has been 

performed regarding the usefulness of these instruments, (Tang et al., 2020). However, based on our 

preliminary analysis, we ensure that the soil properties will be predicted at great levels of accuracy. 

Figure 13 presents a typical representation of a MEMS point field measurement with wireless 

connection to a mobile. 

 

One of the most important thing that must be taken into account is the distributive nature of the 

significantly lower cost and portable MEMS VNIR spectrometers and their in-situ usage will diminish 

the large cost associated from expensive VNIR spectrometers and expensive soil sampling campaigns. 

In addition, the need to calibrate, verify, and supplement the information provided from satellite data 

in a cost effective way makes the use of the MEMSs crucial in the whole DIONE’s soil monitoring 

methodological framework, particularly pertaining to the spiked bottom up approach (see section 

3.2.2) in order for the satellite imagery to provide accurate and reliable data in near real-time. 

As already mentioned in the DIONE’s D4.1. Technical specifications of the in-situ soil scanning system 

(SSS), data processing system and farmer’s geo-tagged photos framework, the important wavelength 

regarding the soil properties to be predicted, are from 1750 to 2150nm giving in that way the selection 

of the suitable sensor as well as the simple and quick protocol for the acquisition of the spectra.. 

Moreover, in the same Deliverable technical specifications of the data pre-processing system, 

including how the server ensures data integration and validity, are provided. In short, the suitable 

sensor is Spectral Engines NIRONE Sensor S (D2.2) works at 1750 to 2150nm with a quick measurement 

protocol that increases the default measurement height to 2.4cm and ensures inter- and intra-

calibration between measurements and instruments. 

Figure 13: A typical represention of a MEM point field measurement with wireless connection to a mobile device.  

https://www.spectralengines.com/products/nirone-sensors
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3.2 Modelling tier development and processing 

3.2.1 Processing EO data 
With the rapid development of EO technology and continuous launch of new satellites, the amount of 

the EO data is getting higher and thus the need of new processing techniques seems mandatory, (Xia 

et al., 2018). From the technological perspective, focus has been given on the development of service-

oriented architectures, facilitating the linkage between data resources and processing. The following 

sections (3.2.1.1 and 3.2.1.2) present the proposed algorithms that are proposed to implement 

regarding the bare soil masking as well as methods to handle the big EO data. 

3.2.1.1 Bare soil masking 
Considering the extraction of the soil properties maps, first we need to identify and process areas 

described with vegetation absence. However, in terms of cropland monitoring, the bare soil areas are 

usual occurred at least one per annum, (Figure 14). 

 

Figure 14: Variation of semi-covered parcel as captured by Sentinel-2 images (source: Sinergise Ltd) 

In order to control this process, a masking processing step will be performed to differentiate the 

vegetated areas from the exposed soil. A wide range of activities will be performed to mask out bare 

soil pixels. These range from research works (Demattê et al., 2018). An example of this process is the 

Demattê et al, (2018) analysis which used spectral indices derived from Landsat datasets (NDVI & 

NBR2) and a thresholding process to construct a bare soil map at global scale, as a proxy for soil 

monitoring. Similarly, SCMaP processor (Rogge et al., 2018) delivers a geospatial layer, where the 

permanently vegetated areas are identified, and compared with the non-vegetated areas. This 

product is assigned to areas with temporary exposed soils, such as croplands. SCMaP used a modified 

NDVI that also integrates the visible blue for the reduction of cloud presence.  

Furthermore, for the spectral modelling approach over semi-bare soil areas, additional indices can be 

evaluated for best results depending on chlorophyll content for the correction of saturated 

conventional vegetation indices such as NDVI. In that context, Sinergise LTD developed the bare soil 

marker to identify ploughing events by detecting exposed bare soil. A decision tree classifier is trained 

to identify the bare-soil areas, using a set of EO derived features9 (NDVI, Bare soil index-BSI, 

Normalized Difference Vegetation Index with Red Edge 3 – NDVIRE3, and chlorophyll index with Red 

Edge - CLRE).   

 
9 medium.com/sentinel-hub/create-useful-and-beautiful-satellite-images-with-custom-scripts-8ef0e6a474c6 
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Figure 15: An overview of the bare-soil classifier overCyperus, taken on 2020–05–13. The red color marks the detected bare 
soi (credit: European Union, contains modified Copernicus Senitnle data 2020, processed with EO browser)l. 

Within the framework of this project we are going to perform a bare soil filtering based on NDVI and 

NBR2 thresholds to acquire the raw soil surface spectrum. In this context, to exclude vegetated and 

mixed pixels, NDVI values will be derived from the Sentinel-2 imagery data, using the B4 and B8 bands. 

Additionally, the differences between B3 and B2 as well as B4 and B3 will be derived to remove some 

of the erroneous data by keeping only the ones with positive differences in these bands. Lastly, the 

NBR2 related to the dry vegetation presence in the pixels has been used in support of the selection of 

representative bare soil areas (Demattê et al., 2018). The optimum values of NDVI and NBR2 indices 

were selected by examining the correlation statistics between the corresponding resampled LUCAS 

soil spectral signature and the median surface reflectance of Sentinel-2 values from the selected bare 

soil pixels, in a previous study (Tziolas et al., 2020a). In that regard, we defined the NDVI and NBR2 

thresholds eqal to 0.25 and 0.075, respectively.Further, for the spectral modelling approach over 

semi-bare soil areas, additional indices will be evaluated for best results depending on environmental 

conditions for the correction of disturbing factors such as soil moisture detection with the Non-

Dimensional Water Index (NDWI), possible soil roughness albedo correction measures to minimize 

introduced uncertainties.  

It should be noted that the synergetic use of index based approaches, such as SCMaP, and Sinergise’s 

classification product is expected to be more advantageous than the single ones, hence, difference 

between both approaches and their synergy should be tested during the implementation of 

deliverable “D4.4 Implementation and development of systems; SSS, data processing and geo-tagged 

photos framework alpha versions”. 

3.2.1.2 Big data management 
In the era of Big Data, where a tremendous wealth of information is captured daily, the combined 

impact of new computing resources and techniques with an ever-increasing avalanche of large 

datasets, is transforming many research areas. The Earth Observation has a pivotal role in the Big data 

era, and is a prime example of the recent Big Data technologies. The services of Copernicus and 
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Landsat produce over 15 TB of open data daily that need processing and storage. Pursuing exploitation 

of these data as part of the EO downstream sector requires innovative application of mature ICT 

solutions; they are essential to address the related issues pertaining to both EO data processing, also 

characterized by the Big Data four Vs: volume, velocity, variety, veracity. 

The Copernicus Data and Information Access Services (DIAS) are cloud-based platforms  providing  

centralized  access  to  Copernicus  data  and  information,  as  well as to processing tools, thus 

facilitating and standardizing the access to the open Copernicus EO data. The DIAS10 online platforms 

allow users to discover, manipulate, process and download Copernicus data and information. All DIAS 

platforms provide access to Copernicus Sentinel data, as well as to the information products from 

Copernicus’ six operational services, together with cloud-based tools (open source and/or on a pay-

per-use basis). In essence, the DIAS platforms are solve the accessibility problems to these large data 

repositories by providing easy and fast access as well as a variety of sophisticated processing tools and 

resources for users, without the need to download vast amounts of satellite data to a local computer 

(Figure 16). 

 

Figure 16: The DIAS platforms and where to reach them 

Google Earth Engine is a geospatial processing service deployed on the Google Cloud Platform, 

enabling users to perform geospatial processing at scale. Its purpose is to (i) provide an interactive 

platform for geospatial algorithm development at scale, (ii) enable high-impact, data-driven science, 

and (iii) make substantive progress on global challenges that involve large geospatial datasets. The 

Earth Engine's public data archive includes more than forty years of historical imagery and scientific 

datasets, updated and expanded daily. Some of its datasets include the Copernicus data catalogue 

(Sentinel data, CORINE land cover, etc.), data from Landsat and MODIS, climate and weather data, and 

other geophysical data. 

 
10 https://www.copernicus.eu/sites/default/files/Copernicus_DIAS_Factsheet_June2018.pdf 

https://www.copernicus.eu/sites/default/files/Copernicus_DIAS_Factsheet_June2018.pdf
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Figure 17: The Google Earth Engine platform 

The Open Data Cube (ODC) is an Open Source11 Geospatial Data Management and Analysis Software 

project that enables user to harness the power of satellite data. At its core, the ODC is a set of Python 

libraries and PostgreSQL database that helps user work with geospatial raster data. It provides the 

foundation of several international, regional to national scale data architecture solutions, such as 

Digital Earth Australia, Africa Regional Data Cube, and others. The Data Cube works well with Analysis 

Ready Data (ARD), pre-processed, as well as ready to use data made available by data providers. Any 

data available to the users can be installed to their own cube instance, including commercial, in situ, 

or otherwise derived products, without the need to share sensitive information and deploy them 

elsewhere. The Open Data Cube system is designed to: (i) catalogue large amounts of Earth 

Observation data, (ii) provide a Python based API for high performance querying and data access, (iii) 

give scientists and other users easy ability to perform Exploratory Data Analysis, (iv) allow scalable 

continent scale processing of the stored data, and (v) track the provenance of all the contained data 

to allow for quality control and updates. 

 
11 https://www.opendatacube.org/ 
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Figure 18: The ODC ecosystem 

 

3.2.2 Spiked bottom-up approach  
The European’s Union Copernicus programme already highlighted an important problem which refers 

to the necessity of design effective integration strategies of data from satellite and airborne with 

ground-based measurements. In this context, a methodological framework is proposed leveraging on 

the data mining techniques with soil datasets will be estimated with the integration of in-situ and 

remotely sensed imagery data.  

A spiked bottom-up approach is proposed to be implemented in the context of DIONE, integrating 

information from existing open SSLs and spectral imagery data, towards the delivery of quantitative 

and spatially explicit soil indicators (Tziolas et al., 2020b). This scheme is built upon the works of 

Castaldi et al., (2018) and data spiking, Brown (2007), in which local spectroscopic calibrations of soil 

properties are implemented based on novel machine learning NN and the combination of archive and 

updated local spectral information. In addition, a comparison between the spiked bottom-up 

approach methodology and other approaches such as traditional approach and a bottom up approach 

without spiking of site-specific samples, has been performed and present in Figure 19 (Tziolas et al., 

2020b). Moreover, a study from Ward et al., (2019) built models based on the LUCAS soil spectral 

library and on few spectral measurement of local samples in order to develop an approach which is 

applicable to remote sensing imagery. Their approach benefit was the replacement of expensive wet 

chemistry analyses of soil samples from local study site, needed to calibrate remote sensing models, 

by soil spectroscopy.  

The important point that we must underscore is that the spiked bottom up approach in its original 

format uses for the part of local spectral measurements the procedure of a laboratory soil analysis. 
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The extra advantage in this approach is the novel use of the MEMS in the whole methodology instead 

of the spectroscopy/chemical laboratory soil analysis. This contribution is beyond the state of the art, 

making in that way the final approach a methodology without any laboratory soil analysis, spectra or 

chemical, and giving further speed to the observation but also even lower cost of use.  

The spiked bottom-up approach scheme that will be utilized in DIONE, (Figure 20) involves two main 

parts: 

1. Prediction of soil properties using MEMS point spectral signatures at the specific soil areas. 

2. Prediction of soil properties using imaging spectroscopy across the whole site, using the 

predicted soil properties resulted from the part 1. 

 

 

Figure 19: Comparison maps of SOC as generated by the (i)bottom-up, (ii)spiked bottom-up and (iii) traditional aprroaches 
from the AisaFenix image, with the points indicating ground soil samples used for validation purposes (Tziolas et al., 2020b).  
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First step: point data for spiking 

The first step in DIONE’s spiked bottom up approach is the MEMS spectral signatures in the field under 

certain protocols (see DIONE Deliverable D4.1). After this procedure and by using modelling 

techniques (machine/deep learning), spectral signatures will be transformed in soil properties.  

One of the most promising families of machine learning algorithms are the deep learning approaches, 

with the convolutional neural network (CNN) being one of its most prominent representatives. 

Tsakiridis et al., (2020) proposed a localized multi-channel 1-D CNN which scored significantly better 

than four other machine learning methodologies commonly employed in soil spectroscopy, namely 

the PLS, Cubist, SVR and SBL algorithms (Figure 21). 

A strong advantage of this CNN is that has some degree of interpretability, and allows the 

identification of key spectral signatures as well as interesting feature regions. Considering the above, 

we propose to use this approach in order to provide soil properties from MEMS spectral signatures.   

In general, the main goal of the proposed algorithm is to incorporate the extra MEMS point soil data 

to the existing SSL (spiking approach) in order to augment it and thereby assist the machine learning 

techniques to provide more accurate predictions. 

 

Figure 20: Overall DIONE spiked bottom-up approach. The number of pixels in figure’s study area pixel grid is indicative. 

Figure 21: Visualization of the precision results (R2, higher is better) for the 1-D CNN and the competing approaches 
(Tsakiridis et al., 2020). 
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Second step: development of maps from spiked datasets 

In the second step of spiked bottom-up approach, the estimated values from the MEMS will be used 

as an input to the calibration a model for the estimation of soil properties, such as SOC concentration. 

In details, a data-driven technique will be applied in order to extract the bare soil areas, based on 

approaches presented in Karyotis et al., (2020) and Tziolas et al., (2020a). To begin with, the model 

consists of a neural network architecture which learns higher level features from the raw bands of the 

satellite data, which enable to better identify the relation between the EO data and the examined soil 

properties. Following the aforementioned procedure, the additional processing of both Sentinel 1 and 

Sentinel 2 data will be examined to overcome the effects of soil moisture and roughness on VNIR–

SWIR (Figure 22). 

 

Figure 22: Development of soil maps from a combined use of Sentinel 1, Sentinel 2, and existing SSLs Tziolas et al., 2020a.. 

3.3 Knowledge tier development and processing 

Understanding, the need for an accurate prediction of soil properties, we propose a methodological 

framework of cost-effective soil monitoring using various data from multiple data sources with the 

ultimate goal of producing soil property maps.  

DIONE will finally generate spatially explicit indicators of the soil properties as raster data (e.g 

GeoTIFF), that will be ingested into the DBMS described in D4.1. Technical specifications of the in-situ 

soil scanning system (SSS), data processing system and farmer’s geo-tagged photos framework 

alongside with its relevant metadata, enabling external actors to access it and integrate it into their 

own applications. Using the interface of the DBMS for example, these soil maps will be integrated into 

the environmental performance tool of DIONE (Task 5.3 Development of the DIONE Environmental 

Performance Tool). 

Among the above indicators, we must highlight the importance of SOC. SOC is recognized by the 

European Union, who considered the decline of SOC in European soils, as one of the main threats for 

soil degradation (CEC, 2006). In addition, understanding its spatial distribution is necessary to maintain 

food security and improve environmental quality in the context of global environmental change 

(Gholizadeh et al., 2018; Zeraatpisheh et al., 2019).  
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Moreover, we should also mention that DIONE deliverable D.5.1 – Environmental metrics 

methodology for ML-system, focused on addressing environment and climate priorities within the 

framework of CAP implementation and recognized that the soil organic matter is the primary and 

fundamental indicator of soil’s quality in regard to land productivity and climate change. It is also an 

indicator that gets affected by mismanagement, thus reflecting the management practices in arable 

land. 

4 Discussion - Conclusion 
Pressure on soils such as climate change and intensive agriculture lead to soil degradation (e.g. loss of 

organic carbon). Careful monitoring of this non-renewable resource is therefore mandatory as 

stressed by many European and international policies, e.g. the Common Agricultural  policy, the 

Sustainable Development Goals, etc. However, spatial resolution of existing soil maps for most parts 

of the European continent are too low to support policy-related payments and ecosystem services 

markets (e.g. agricultural domain). Despite the progress achieved in the development of robust digital 

coverage of soil properties at finer resolutions using EO means and novel algorithms the generated 

products are still not optimal (Safanelli et al., 2020). This is partly because in situ information 

integration at a scale sufficient to support calibration of the prediction models, has until now been 

demanding and expensive to be collected. DIONE recognizes the need of accurate soil maps with as 

fine a resolution as possible (spatially) and as often as possible (annually updated). In this context, we 

present and propose the innovative spiked bottom up approach, which integrates information from 

the synergy of existing open SSLs and space borne imagery data, towards producing soil quantitative 

assessments and corresponding mapping over large geographical areas. 

DIONE makes use of already available SSLs (see part 3.1.2) without prioritizing the need to develop a 

new calibration database. In this context, we demonstrate the usefulness of the proposed spiked 

bottom-up approach for predicting soil attributes by facilitating the access to and integration of 

untapped soil data archives with EO-sources such as Copernicus into novel user oriented applications 

within the European territory. In this context, considering a plan for longer term sustainability of 

DIONE applications, existing and/or forthcoming spectral calibration libraries (e.g. FAO - GLOSOLAN12) 

can be leveraged to meet the demand for information at new regions of interest and implement the 

proposed methodology at scales ranging from continental to global level.  

Soil organic carbon has been prioritized as an indicator to address environment and climate priorities 

within the framework of Common Agricultural Policy (CAP) implementation (D.5.1 – Environmental 

metrics methodology for ML-system). The foreseen timeline for the introduction of carbon farming in 

the EU exceeds five years at minimum. The DIONE technologies and methodologies after their 

validation (Task 6.2 DIONE pilot demonstration in the National Paying Agency of Lithuania; Task 6.3 

DIONE pilot demonstration in the Cyprus Agricultural Payments Organization) will produce a blueprint 

of the requirements, as well as a web-based service of soil organic carbon maps that can be utilized 

by several users to expand carbon sequestration on farms and further develop the associated carbon 

credit market. The soil properties prediction framework is going to be developed in a modular way 

allowing its future extension to additional soil indices (e.g. salinity or soil contamination from heavy 

metals). 

The DIONE soil property maps at 10m will be produced via an automated prediction framework. The 

DIONE’s low-cost, easy to use, smart and portable soil sensing tools (D4.1. Technical specifications of 

the in-situ soil scanning system (SSS)) convert the spectral data recorded in the filed to useful 

 
12 http://www.fao.org/global-soil-partnership/glosolan/soil-analysis/dry-chemistry-spectroscopy/en/ 
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information that can be augmented into the proposed spiked bottom up approach. Hence, the soil 

grid products will be regularly updated and improved using these in-situ soil predictions derived from 

the MEMS sensors. These enhanced soil services can be interfaced with the DIONE’s Environmental 

Performance tool (D5.3 DIONE Tool for CAP Environmental performance) making available capabilities 

for Member State Paying Agencies and potentially other stakeholders (farmers, farmers’ cooperation’s 

etc.) to monitor certain environmental parameters (related to soil ecosystem) within the framework 

of data-driven farming. Moreover, commercial actors (e.g. farm advisors, developers of digital 

solutions) could offer these services as additional solutions to download and/or visualize, enabling the 

integrated farm management concept and supporting agriculture innovations (e.g. variable rate 

application). Last but not least, knowledge gained from DIONE’s spatial soil indicators can be upscaled 

and integrated in the FaST digital services13 which aims to deliver a Nutrient Management tool for 

Europe. In that regards, farmers or advisors will be in a position to access information at proper scales 

in order to answer “What fertilizers can they use?”  in response to the available organic carbon in their 

fields. In the light of the above DIONE paves the way to offer services that can support digitally farmers 

and paying agencies in their farm management and policy making respectively, in the post-CAP period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
13 https://fastplatform.eu/ 
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