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In this presentation, different quantitative structure-activity relationship (QSAR) modeling approaches and their use in drug
design and ecotoxicological modeling are briefly stated. The aspects of feature selection, modeling algorithms and validation
strategies are mentioned at an elementary level. Different novel strategies for improving statistical quality and predictive ability
of QSAR models are also cursorily presented. Finally, four useful tools for QSAR model validation as developed by the Drug
Theoretics and Cheminformatics (DTC) Laboratory of Jadavpur University  are discussed. These tools are available for pub-
lic use via http://teqip.jdvu.ac.in/QSAR_Tools/ and https://dtclab.webs.com/software-tools.
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Introduction
Quantitative structure-activity relationships (QSARs) are

statistical models, which can be developed based on a simi-
larity principle to correlate the changes in the biological ac-
tivity (or property or toxicity) of chemicals (including pharma-
ceuticals, cosmetics, agrochemicals, nanomaterials, and so
on) with changes in their structural features1–5. Such changes
in the biological activity or other property of chemical com-
pounds occur in a systematic way with the changes in the
structural features or other physicochemical properties mak-
ing it possible to develop quantitative mathematical models
for structure-activity correlations. QSARs have long been
applied in drug design and predictive toxicology in addition
to their more recent applications in materials science, food
sciences, nanosciences, etc.5,6. These models are used
mainly for two purposes, prediction of the endpoint values
for untested chemicals for data gap filling, and physico-chemi-
cal and mechanistic interpretations of the structure-response
relationships. In general, classical QSAR approaches are
more efficient for the second purpose while more recent
machine learning and intelligent methods are more useful
for the first purpose7. QSARs may be regarded as a subdis-
cipline of the broader area of Cheminformatics, and in asso-
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ciation with other ligand-based (such as pharmacophore) and
structure-based (such as molecular docking) approaches,
these models may be very helpful in the design of novel com-
pounds with optimum activity profile and screening of virtual
libraries8. In order to have precise quantitative predictions, a
regression-based approach may be used while for class-wise
or graded qualitative predictions, a classification-based ap-
proach might be used. To apply statistical methods, it is nec-
essary to have the structural (and property) information avail-
able in the form of numbers, which are termed descriptors.
While descriptors can be readily computed or derived from
chemical structure or property upto the 2D level, 3D descrip-
tors require additional complexity in computation in terms of
conformational analysis and energy minimization of chemi-
cal structures. Due to availability of  a plethora of descrip-
tors9, which can be readily be computed using various avail-
able software tools, it is also important to apply a descriptor-
thinning process followed by a feature selection tool before
applying the modeling method10. For feature selection, meth-
ods like stepwise selection, genetic method, factor analysis
etc. have been used in the QSAR literature10. Among the
regression-based modeling techniques, multiple linear regres-
sion, partial least squares, principal component regression
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analysis, ridge regression etc. have been used. Among the
classification-based techniques, one can use linear discrimi-
nant analysis, k-means cluster analysis, etc. Various machine
learning tools like deep neural network, support vector ma-
chine, random forests, etc. are very popular in the current
QSAR research1.

QSAR models are extensively used for regulatory pur-
poses in chemical industries of the European Union (EU) in
view of the Registration, Evaluation, Authorisation and Re-
striction of Chemicals (REACH) regulations and other EU
regulations specific to particular uses of chemicals like cos-
metics, pigments, biocides, etc. QSARs can be used to pre-
dict the environmental properties of chemicals against sev-
eral endpoints for which experimental data are not avail-
able11–13. The regulatory QSAR models should be devel-
oped based on five point guidelines laid down by Organiza-
tion for Economic Co-operation and Development (OECD)
for QSAR model development and validation14. These guide-
lines recommend a defined endpoint for modeling (ensuring
same experimental protocol for the endpoint values), an un-
ambiguous algorithm for model development (which ascer-
tains reproducibility), a defined chemical applicability domain
of the model (which ensures that the query chemicals are
sufficiently similar to the compounds used for model devel-
opment), appropriate use of statistical measures for check-
ing fitness and predictive ability of the developed model
(which decides the acceptability of a model) and finally,
mechanistic interpretability of the model, if possible. It is nec-
essary to apply a variety of statistical methods and metrics
(depending on the regression-based or classification-based
modeling methods being used) to examine the statistical
quality of the developed models. However, the model quality
itself does not ascertain the prediction quality for which one
has to apply validation tools encompassing internal valida-
tion (including leave-one-out and leave-many-out cross-vali-
dation), Y-randomization and external validation tools15. The
predictive quality of models is expressed in terms of various
validation metrics and their recognized threshold values16,17.
For regression-based QSAR models, the quality metrics may
in general be classified into two groups, correlation based
metrics and error based metrics while the latter type gives a
more direct information about model quality18. It is also im-
portant to analyze for any bias in prediction errors in order to
identify any systemic error in the model19. In case of classi-

fication-based models, the quality metrics are derived from
a contingency matrix. In general, external validation has been
considered as the gold standard for checking predictive abil-
ity of models for new chemicals15. For this purpose, the avail-
able data set is usually divided into two parts, a training set,
which is used for model development, and a test set, which
is kept aside and never used for descriptor selection and
model development. The test set is subsequently used for
checking the quality of predictions from the developed model.
Thus, the performance of a QSAR model is always checked
against the experimental values of new or test compounds.
The division of the whole data set into training and test sets
should be done based on a principle of similarity20 while tak-
ing into account the optimum size of the training set required
for the learning process21. It is also very important to check
the applicability of a QSAR model for a new chemical, which
may actually be outside the domain of the model due to its
structural difference to the training set molecules22,23. The
concept of overfitting is also very important while develop-
ment of QSAR models. Thus, one should restrict using a
higher number of descriptors in the model to avoid limited
degrees of freedom leading to an overfitted model. However,
the issue of the number of descriptors may be less relevant
for more robust and machine learning tools, which can handle
very complex data, but the removal of noisy descriptors al-
ways increase the predictive ability of models. Among the
emerging trends in QSAR analysis, we may mention here
multi-target and multi-task QSAR analyses29,30, which would
be very promising in coming days.

There are several prerequisites for the preparation of
experimental data ready for QSAR analysis1. Usually the
concentrations or doses required for a fixed response such
as EC50, ED50, IC50 or LD50values are used as the response
for activity or toxicity based QSAR analyses. The concentra-
tion values are expressed in a molar unit and expressed in a
negative logarithmic scale so that a higher value represents
higher activity or toxicity. The logarithmic conversion can also
handle a wide span of concentration values apart from the
linearity of the log dose-response curve over an extended
range. It should be remembered that all QSAR models are
derived from statistical treatments, and they are not math-
ematical solutions. Thus, there should be a good degree of
freedom to ascertain statistical soundness of a QSAR model.
Therefore, the number of observations based on which a
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model is developed should be considerably high with respect
to the number of descriptors (constraints) used in the model-
ing. Although this aspect is less important for more robust
techniques, the use of sufficient number of training com-
pounds cannot be ignored even in case of machine learning
techniques. The issue of modeling with small data sets is
really a big problem in QSAR research, as for several end-
points, sufficient number of experimental observations might
be unavailable. Multiple linear regression (MLR) is a com-
monly used method for activity and toxicity based classical
type QSARs while it presents several problems like inter-
correlation among descriptors, bias in descriptor selection
due to a fixed composition of the training set, inability to
handle many descriptors in the model, etc. This problem may
be overcome by using a more robust modeling technique
like partial least squares (PLS)24, which converts the origi-
nal set of descriptors into a lower number of latent variables
which are functions of the original descriptors. However, the
dataset with a small number of data points needs a special
attention during modeling. A double cross-validation tech-
nique25,26 may be of help in such cases. In this approach,
the validation is done in two loops: in the inner loop, the
training set is further divided into ‘n’ calibration and valida-
tion sets resulting in diverse compositions, which are utilized
for model building and model selection, while the test set in
the external loop is exclusively used for model assessment.
In another approach, consensus predictions have been
applied in several studies as more reliable than individual
model derived predictions, as the former takes into account
contribution of maximum possible combination of important
descriptors. The final result considers the different assump-
tions characterizing each method for a more reliable judg-
ment in a complex situation. This approach can also afford
greater chemical space coverage. Recently, an intelligent con-
sensus modeling method has been reported considering that
a single QSAR model may not be equally good for predic-
tions for all query compounds27. It is also important to eva-
luate the reliability of predictions for untested compounds,
which may not be dependent solely on applicability domain.
There are different approaches in the literature, but we men-
tion here the tool “Prediction Reliability Indicator” tool for MLR
and PLS predictions28.

In the Drug Theoretics and Cheminformatics (DTC) Labo-
ratory of Jadavpur University, we have developed several
methods for QSAR model validation18,23,27,28. We have also

developed software tools for MLR and PLS model develop-
ment and validation such as MLR plus validation,
XternalValidationPlus, and Partial Least Squares. Apart from
these tools, there are several small tools, which are also very
useful before and during QSAR model building such as Nor-
malize Data, Data Pretreatment, Stepwise MLR, Genetic Al-
gorithm, etc. All these software tools have been developed
in Java by Pravin Ambure (ambure.pharmait@gmail.com;
Present Affiliation: FACULDADE DE CIÊNCIAS DA
UNIVERSIDADE DO PORTO, Portugal) and they have been
made available for public use free of cost via http://
teqip.jdvu.ac.in/QSAR_Tools/ and https://dtclab.webs.com/
software-tools. Here, we present four recent additions to this
collection of tools.

1. Applicability domain using standardization approach
Applicability Domain (AD) is defined as “the response and

chemical structure space in which the QSAR model makes
predictions with a given reliability”. The “AD using Standard-
ization approach” is a tool23 to detect outliers from training
set compounds and find out test compounds that are outside
the applicability domain. The basic principle applied in this
approach is as follows:

A QSAR model is trained from the features present in the
training set compounds. The developed model is then ap-
plied for prediction of test set compounds, which should ide-
ally be structurally similar to the training set compounds,as
the model has captured similar features present in the train-
ing set. If a small fraction of the training is very dissimilar to
the rest and most of the compounds, then obviously those
features are not properly included in the training process.
These compounds are X-outliers. If test set compounds are
similar to these small fraction of training set compounds, then
their predictions are expected to be unreliable, as the model
has not captured the features of those training set com-
pounds, which have a small representation and are different
from majority of the compounds. Therefore, these test set
compounds are expected to be outside the AD of the model.
Again, the test set compounds, which are not similar to any
of the training set compounds are also outside the AD.

Ideally, all the descriptors of the training set compounds
should follow a normal distribution pattern. According to this
distribution, 99.7% of the population will remain within the
range mean ±3 standard deviation (SD). Thus, mean ±3SD
represents the zone which most of the training set compounds
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correspond to. Any compound outside this zone is dissimilar
to the rest and majority of the compounds. Thus, after a de-
scriptor column is standardized based on the corresponding
mean and standard deviation for the training set compounds
only, if the corresponding standardized value for descriptor i
of compound k (Ski) is more than 3, then the compound should
be an X-outlier (if it is in the training set) or outside AD (if it is
in the test set) based on descriptor i. This test should run for
all descriptors present in the model. If the maximum Si value
of a compound k is lower than 3, then the compound is quite
similar to a good number of compounds in the training set
with respect to all descriptors (not an X-outlier if in the train-
ing set and is within AD if in the test set). If the minimum Si
value of a compound k is higher than 3, then the compound
is quite dissimilar to most of the compounds in the training
set with respect to all descriptors (an X-outlier if in the train-
ing set and not within AD if in the test set). If the compound
has a maximum Si value above 3 but the minimum Si value
is below 3, then the compound is similar to most of the train-
ing set compounds with respect to some descriptors and at
the same time dissimilar to most of the training set com-
pounds with respect to other descriptors. Thus, we need an
additional criterion of assessment of X-outliers or applicabil-
ity domain behavior of such compounds. Now again consid-
ering an ideal case of standardized normal distribution, the
standard score (Z) corresponding to 1.28 represents a rela-
tive frequency of occurrence of less than 1.28 times SD being
90%. Thus, in our case, if mean of the Si values of a com-
pound for all descriptors in a model plus 1.28 times corre-
sponding standard deviation (termed as Snew) is lower than
3, then there is 90% probability that the Si values of that
compound are lower than 3. Thus, when Snew value of a
compound is lower than 3, then the compound can be con-
sidered to be not an X-outlier (if in the training set) or within
the AD (if in the test set). This assumption is statistically more
valid when a higher number of descriptors are present in the
model. The dedicated web page for this tool is https://
sites.google.com/site/dtclabad/.

2. Double cross-validation
The double cross-validation process comprises two

nested cross-validation loops.These are referred to as inter-
nal and external cross-validation loops. In the outer (exter-
nal) loop of double cross-validation, all data points are di-
vided into two subsets referred to as training and test sets.

The training set is used in the inner (internal) loop of double
cross-validation for model building and model selection, while
the test set is exclusively used for model assessment. In the
internal loop, the training set is repeatedly split k times into
calibration and validation data sets. The calibration objects
are used to develop different models whereas the validation
objects are used to estimate the models’ error. Finally, the
model with the lowest prediction errors (validation set) in the
inner loop is selected. Then, the test objects in the outer
loop are employed to assess the predictive performance of
the selected model. This method of multiple splits of the train-
ing set into calibration and validation sets obviates the bias
introduced in variable selection in case of usage of a single
training set of fixed composition.

The “Double crossvalidation” tool26 performs MLR model
development using the double cross-validation technique as
mentioned above. Optionally, this tool can also simulta-
neously develop PLS models. Further, it also provides two
variable selection techniques (stepwise method and genetic
algorithm) and four different ways of selecting the optimum
model (consensus predictions, and methods based on the
least mean absolute error of the validation set, based on
best subset selection in case of MLR and using pooled de-
scriptors for PLS).  The dedicated webpage for this tool is
https://sites.google.com/site/dtclabdcv/.

3. Intelligent consensus predictor
The “Intelligent Consensus Predictor” tool27 judges the

performance of “intelligent” consensus predictions obtained
from multiple QSAR models (MLR or PLS) developed against
a particular response and compares them with the predic-
tion quality obtained from the individual models. This tool
performs four different ways of consensus predictions along
with the individual model predictions. The basic assumption
for this tool is that a single model may not be equally good
for predictions for different query compounds. Further, the
quality of predictions is judged based on several external
validation metrics. Moreover, this tool also provides few op-
tional criteria (i.e., Euclidean distance cut-off, applicability
domain and Dixon-Q test) that might help in improving the
quality of prediction for a query molecule by considering the
aspects such as the level of chemical similarity, prediction
outliers in training compounds, etc. The optimum settings
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can be fixed using the available QSAR models and corre-
sponding external set compounds with known response val-
ues, while the same setting can later be employed for pre-
dictions of newly designed query molecules. The dedicated
webpage for this tool is https://sites.google.com/site/dtclabicp/.

4. Prediction reliability indicator
The tool “Prediction Reliability Indicator”28 was developed

to indicate or categorize the quality of predictions for the test
set or external set (with or without experimental or observed
response (Y) values)  into three groups: good (with compos-
ite score 3), moderate (with composite score 2) and bad (with
composite score 1). We have used here three different crite-
ria in different weighting schemes for making a composite
score of predictions: (1) mean absolute error of leave-one-
out predictions for 10 most close training compounds for each
query molecule; (2) applicability domain in terms of similarity
based on the standardization approach; (3) proximity of the
predicted value of the query compound to the mean training
response. The tool can automatically find the optimum
weightage based on %correct predictions computed using a
test set with known observed response and thus known qual-
ity of predictions. However, the user also has an option to
select the weightage manually, especially when the experi-
mental response values (Y) are unknown. The dedicated
webpage for this tool is https://sites.google.com/site/dtclabpri/.

The above tools for QSAR model validation should be
useful for the QSAR community as evidenced from the com-
bined citation of the related four recent papers23, 26–28 being
203 on SCOPUS (https://www.scopus.com/) as on Decem-
ber 03, 2018.
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