Impact of Extended Defects on the Yield and Performance of 4H-SiC Power Devices

Holger Schlichting

Slide 1 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects
		- c) Stacking faults Light triangle defects
		- d) Surface pits in implanted areas
		- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Slide 2 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

1. Introduction: Yield, performance and reliability of 4H-SiC power devices

- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects
		- c) Stacking faults Light triangle defects
		- d) Surface pits in implanted areas
		- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Fraunhofer **IISB**

Slide 3 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Yield, Reliability and Fab-out Device Performance

Yield and reliability are major aspect of semiconductor power-device fabrication.

T Yield is the fraction of integrated circuits on the wafer which are fully functional (within the performance specifications) at the end of the fabrication line.

$$
Y_{total} = Y_{line} \times Y_{batch}
$$

Similarly important are the failure rate in the lifetime (reliability) of a power device.

 Different failure mechanisms can lead to decrease of yield as well as increase of failure rate in other sections in the device lifetime.

Slide 4 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

P. Gupta and E. Papadopoulou, *Yield Analysis and Optimization*, The Handbook of Algorithms for VLSI Physical Design Automation, CRC Press (2008).

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- **2. Influences on yield/performance of 4H-SiC power devices**
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects
		- c) Stacking faults Light triangle defects
		- d) Surface pits in implanted areas
		- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Fraunhofer **IISB**

Slide 5 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Influences on Yield, Performance and Reliability

Slide 6 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Influences on Yield, Performance and Reliability

Slide 7 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices

(1) Process variations: A example (lithography)

- (2) Extended epitaxial defects
	- a) An overview
	- b) Stacking faults Dark triangle defects
	- c) Stacking faults Light triangle defects
	- d) Surface pits in implanted areas
	- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Fraunhofer **IISB**

Slide 8 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Influence of Technology and Design on Yield (VDMOSFET)

Yield dependent on technological restrains (here: misalignment of litho field)

 Clear influence of the pwell and nplus implantations layers (defining channel region)

Influence of cell design on yield visible (linear design is most robust)

Slide 9 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Schlichting, Holger, et al. "Design Considerations for Robust Manufacturing and High Yield of 1.2 KV 4H-SiC VDMOS Transistors." Materials Science Forum, vol. 963, Trans Tech Publications, Ltd., pp. 763–767. 2019

Reduction of Channel Length due to Misalignment

- Actual channel length calculated from process control data
- The critical channel length for a lateral 4H-SiC VDMOS is given by: $L_{crit} = 1.56 \,\gamma^{\frac{1}{7}}$ $\gamma = r_j d(W_s + W_D)^2$ 1 $\overline{\gamma}$ $\gamma = r_i d(W_s + W_D)^2$ (1)
- When $L_{channel} \approx L_{crit}$, the influence of misalignment on the breakdown voltage is increasing

Slide 10 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Schlichting, Holger, et al. "Design Considerations for Robust Manufacturing and High Yield of 1.2 KV 4H-SiC VDMOS Transistors." Materials Science Forum, vol. 963, Trans Tech Publications, Ltd., pp. 763–767. 2019

1. Introduction: Yield, performance and reliability of 4H-SiC power devices

2. Influences on yield/performance of 4H-SiC power devices

(1) Process variations: A example (lithography)

(2) Extended epitaxial defects

- a) An overview
- b) Stacking faults Dark triangle defects
- c) Stacking faults Light triangle defects
- d) Surface pits in implanted areas
- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Slide 11 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Influences on Yield, Performance and Reliability

Slide 12 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Epitaxial Defects – Surface and UVPL Mapping

- Surface inspection tool (Intego)
- Mapping for inspection and analysis
- Three different measurement stations:

UVPL: Ultra Violet Photolumincense DIC: Differential Interference Contrast BF/DF: Bright Field/Dark Field

- Stimulation wave length (UVPL): 305/340/365 nm
- Sensor spectrum (UVPL):

400 nm – 1000nm

Filters available (to distinguish different kinds of defects)

Slide 13 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Intego Datasheet

1 T. Kimoto, J. A. Cooper – Fundaments of Silicon Carbide Technology (2014) – p. 68

Epitaxial Defects - Overview

(Typical density values from investigation of industrial wafers and datasheets)

Slide 14 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Comparison and Analysis of Epitaxial Defects

Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

JBS Diode Yield Investigation – Blocking Performance

- Dark triangle defects clearly lead to change of blocking characteristic for most of the affected devices
- High density of light triangle defects lead to many affected devices, they show only slight impact on statistical performance of the devices

Slide 16 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- **b) Stacking faults - Dark triangle defects**
		- c) Stacking faults Light triangle defects
		- d) Surface pits in implanted areas
		- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Fraunhofer

Statistical Investigation VDMOS: Triangular Defects

- Dark triangle defects show clear impact on the yield of affected VDMOS devices (blocking and gate performance)
- No clear impact on output performance \rightarrow high leakage current over defects?

Slide 18 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Stacking Faults: Typical Dark Triangle Defects

- Dark, high contrast appearance in UVPL Image
- Maximum angle of 120°
- Dislocation lines coming from the defect, can cover large area (cm range)
- Dependence of the maximum defect size on the Epi thickness: $d_{Epi} = \tan \left(\theta_{off} \right) \cdot L_{TD}$ (For 30 µm Epi layer: Defect length > 430 µm)

Slide 19 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Triangular Defects - SEM Investigation

 Substrate broken along a triangular defect clearly shows the form and orientation of the defect in epi-layer

Change in crystal structure leads to different edge morphology

Slide 20 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Surface Investigation

Very deep trench along edges (~ 1 µm)

Fraunhofer **IISB**

Slide 21 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Impact of Dark Triangle Defects on Affected JBS Diodes

- For both blocking and forward characteristic, a instant increase of current is measured for affected devices
- Current leakage pass over defect and/or change of Schottky barrier

Slide 22 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Schoeck, Johannes, et al. "Influence of Triangular Defects on the Electrical Characteristics of 4H-SiC Devices." Materials Science Forum, vol. 924, Trans Tech Publications, Ltd., pp. 164–167, 2018

- Nearly always "deadly" for affected device
- Strong influence on electrical behavior of device: extremely high leakage current, changed forward characteristic
- \blacksquare Presumably different crystal structure in defect area (Polytype inclusion)
- Strong morphologic (surface) part
- Often in combination with dislocations around defect and light point in top of defect ("Down Fall")
- Origin related to epitaxial growth process

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects

c) Stacking faults - Light triangle defects

- d) Surface pits in implanted areas
- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Slide 24 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Stacking Faults: Typical light Triangle defects

- Appear more light, with less contrast in UVPL images
- Form similar to dark triangular defects (angle, orientation)
- edges more sharp, no dislocation lines, no point in top triangle
- Dependence of the defect size on the epi-thickness: $d_{Epi} = \tan (\theta_{off}) \cdot L_{TD}$ (For 30 µm epi layer: Defect length > 430 µm)

Slide 25 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Impact of Light Triangle Defects on affected JBS Diodes

- Diodes affected by light triangle defects show a wide range of change in performance
- Different impact dependent on crystal structure and surface morphology of defect

Related to substrate defects (TSD for Frank stacking faults) ²

Slide 26 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

1) Schoeck, Johannes, et al. "Influence of Triangular Defects on the Electrical Characteristics of 4H-SiC Devices." Materials Science Forum, vol. 924, Trans Tech Publications, Ltd., pp. 164–167, 2018

2) Wang, Huan Huan, et al. "Study of V and Y Shape Frank-Type Stacking Faults Formation in 4H-SiC Epilayer." Materials Science Forum, vol. 778–780, Trans Tech Publications, Ltd., Feb. 2014, pp. 332–337

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects
		- c) Stacking faults Light triangle defects
		- **d) Surface pits in implanted areas**
		- e) Influence of epitaxial defects on gate oxide performance
- 3. Conclusion

Epitaxial Defects and Implantation

 UVPL investigation after implantations and high temperature annealing (30 min @ 1700° C in Ar atmosphere)

UVPL after all ion implantations

DIC after HT-annealing

UVPL after HT-annealing

n-Epi pwell $n⁺$ D^+ n-JFET oul From 1_{mm}

DIC after TEOS oxide deposition.

Slide 28 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

• Kocher et al "Influence of Shallow Pits and Device Design of 4H-SiC VDMOS Transistors on In-Line Defect Analysis by Photoluminescence and Differential Interference Contrast Mapping." MSF 1004, 299–305, 2019 • .

Surface Pits

- Dark regions in the implanted areas can be observed in UVPL images
- Regions are limited by the device cells (closed Al-implanted areas)
- Mechanism for darkening of the limited implanted regions not understood yet (maybe connected to recombination effects?)

250 µm

UVPL image of a VDMOS with a stripes design, darker regions indicated by a yellow dashed box. 400 um

UVPL image of a VDMOS with a hexagonal design, darker regions indicated by a yellow dashed circle.

Slide 29 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

• Kocher et al "Influence of Shallow Pits and Device Design of 4H-SiC VDMOS Transistors on In-Line Defect Analysis by Photoluminescence and Differential Interference Contrast Mapping." MSF 1004, 299–305, 2019 • .

Epitaxial Defects and Implantation

- Shallow Pits in the epitaxial layers have been found as a cause for the effect
- Wider implanted regions do not show the effect in UVPL
- A correlation between darker regions on device and blocking performance could be investigated

UVPL: Zoom-in on edge region of device. Shallow pits are indicated by red dashed circle.

DIC: Zoom-in on edge region of device. Shallow pits are indicated by red dashed circle.

Slide 30 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

• Kocher et al "Influence of Shallow Pits and Device Design of 4H-SiC VDMOS Transistors on In-Line Defect Analysis by Photoluminescence and Differential Interference Contrast Mapping." MSF 1004, 299–305, 2019 • .

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects
		- c) Stacking faults Light triangle defects
		- d) Surface pits in implanted areas
		- **e) Influence of epitaxial defects on gate oxide performance**
- 3. Conclusion

Slide 31 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

Further Planed Investigations and Activities

Some defects impact gate oxide performance

E.g. high leakage current for particle (down fall) in epitaxial layer below oxide

Slide 32 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB

- 1. Introduction: Yield, performance and reliability of 4H-SiC power devices
- 2. Influences on yield/performance of 4H-SiC power devices
	- (1) Process variations: A example (lithography)
	- (2) Extended epitaxial defects
		- a) An overview
		- b) Stacking faults Dark triangle defects
		- c) Stacking faults Light triangle defects
		- d) Surface pits in implanted areas
		- e) Influence of epitaxial defects on gate oxide performance

3. Conclusion

- Different parts of device fabrication, from epitaxial growth to back-end-of line can influence yield and performance of devices
- Epitaxial defects can have a strong impact on SiC devices
- Triangular defects (various forms of stacking faults or polytype inclusions) are especially "dangerous": Still high densities, various influences
- Different types of triangular defects have to be distinguished and have different impact on devices – important factor: surface morphology
- Interesting phenomena occur in combination with implantations (when investigated with UVPL)
- Further investigation will hopefully give more information on in-line defects and the interaction of (extended) epitaxial defects and processing (e.g. implantation)

Slide 34 Holger Schlichting Devices and Reliability, 12.08.2021 © Fraunhofer IISB