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Abstract. Kernel machines are a powerful class of methods for classifi-
cation and regression. Making kernel machines fast and scalable to large
data, however, is still a challenging problem due to the need of storing
and operating on the Gram matrix. In this paper we propose a novel ap-
proach to sample condensation for kernel machines, preferably without
impairing the classification performance. To our best knowledge, there is
no previous work with the same goal reported in the literature. For this
purpose we make use of the neural network interpretation of kernel ma-
chines. Explainable AI techniques, in particular the Layer-wise Relevance
Propagation method, are used to measure the relevance (importance) of
training samples. Given this relevance measure, a decremental strategy
is proposed for sample condensation. Experimental results on three data
sets show that our approach is able to achieve the goal of substantial
reduction of the number of training samples.

1 Introduction

A fundamental result of learning theory is the family of representer theorems
[7], which lead to the powerful kernel machines. Although trained to have zero
classification error, kernel machines generalize well to unseen test data [4]. Com-
pared to deep neural networks (DNN), they can be interpreted as two-layer NNs.
Despite the simplicity, however, kernel machines turned out to be a good alterna-
tive to DNNs, capable of matching and even surpassing their performance while
utilizing less computational resources in training [8,9].

Making kernel machines fast and scalable to large data is still a challeng-
ing problem. A major limiting factor is the need of saving all training sam-
ples, computing the corresponding Gram matrix, and solving the related linear
equation system (see Section 2). In this paper we thus consider the problem of
condensing the training samples, preferably without impairing the classification
performance. Based on the interpretation of kernel machines as two-layer neural
networks, we make use of explainable AI techniques [15], in particular Layer-
wise Relevance Propagation (LRP) [14], as a means to measure the relevance
(importance) of training samples. A decremental strategy is proposed to use
this measure for sample condensation.
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Sample condensation has been studied in other contexts, where the whole
training set has to be saved and used for classification. Starting from the pioneer
work [6], more advanced techniques have been proposed to boost the performance
of nearest neighbor based classifiers [2,12]. In addition, nearest neighbor conden-
sation has been applied to speed up the training of support vector machines [1]
and convolutional neural networks [12].

The remainder of the paper is organized as follows. In Section 2 we introduce
the fundamentals of kernel machines and discuss the need of sample condensa-
tion, thus motivating our work. Our sample condensation method is described
in Section 3. Experimental results are reported in Section 4. Finally, Section 5
concludes the paper.

2 Kernel machines

Kernels are an efficient way to compute the similarity of two samples in a higher
dimensional space. In this section we introduce a technique to fully interpolate
the training data using kernel functions, known as kernel machines. Let X =
{x1, x2, . . . , xn} ⊂ Ωn be a set of n training samples with their corresponding
targets Y = {y1, y2, . . . , yn} ⊂ T n in the target space. A function f : Ω → T
interpolates this data iif

f(xi) = yi, ∀i ∈ 1, . . . , n (1)

Representer Theorem [7]. Let k : Ω×Ω → R be a positive definite kernel, X
and Y a set of training samples and targets as defined above, and g : [0,∞)→ R
a strictly monotonically increasing function for regulation. We define E as an
error function that calculates the loss l of f on the whole sample set with

E(X,Y ) = E((x1, y1), ..., (xn, yn)) =
1

n

n∑
i=1

l(f(xi), yi) + g(‖f‖) (2)

Then, the function f∗ that minimizes E, f∗ = argminf{E(X,Y )}, has the form

f∗(z) =

n∑
i=1

αik(z, xi) with αi ∈ R (3)

We now can use f∗ from Eq. (3) to interpolate our training data. Note that
the only learnable parameters are α = (α1, . . . , αn). Learning α is equivalent to
solving the system of linear equations

K(α∗1, ..., α
∗
n)T = (y1, ..., yn)T (4)

where K ∈ Rn×n is the Gram matrix with elements Kij = k(xi, xj). Since
the kernel function k is assumed to be positive definite, the Gram matrix K is
invertible. Therefore, we can find the optimal α∗ to construct f∗ by

(α∗1, ..., α
∗
n)T = K−1(y1, ..., yn)T (5)
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After learning, the kernel machine then uses the interpolating function from
Eq. (3) to make prediction for test samples. In this work we focus on classification
problems. In this case f(z) is encoded as a one-hot vector f(z) = (f1(z), . . . ft(z))
with t ∈ N being the number of output classes. When predicting a test sample
z, the output vector f(z) is not a one-hot vector, in fact not even a probability
vector, in general. The class which gets the highest output value is considered as
the predicted class. If needed, e.g. for the purpose of classifier combination, the
output vector f(z) can also be converted into a probability vector by applying
the softmax function.

The practical usability of kernel machines strongly depends on the size n of
training set. Solving the optimal α∗ in (5) in a naive manner requires compu-
tation of order O(n3) and is thus not feasible for many applications. Recently,
a highly efficient solver EigenPro has been developed [13] to enable significant
speedup for training on GPUs.

Sample condensation is another way of efficiency boosting, which is required
even when using high-performance solvers like EigenPro. After training, the
testing using (3) still needs the whole set of training samples, which is similar
to the situation with nearest neighbor based classifiers. In complex domains
like strings and graphs the kernel computation may be costly [3,11,18] so that
the need of considerably reducing the number of samples remains. Even in case
of easy-to-compute kernel functions, it can be typically expected that not all
training samples are relevant to the classification. This observation has been
made before, e.g. when working with nearest neighbor based classifiers [2,12].
Thus, there is a general need of sample condensation for kernel machines. In this
work we propose a novel approach tailored to sample condensation for kernel
machines. To our best knowledge, there is no previous work with the same goal
reported in the literature.

3 Sample condensation method

We make use of the neural network interpretation of kernel machines and apply
the Layer-wise Relevance Propagation method to measure the relevance of train-
ing samples. Given the relevance estimation of training samples, a decremental
strategy is then applied to select the most relevant samples out of a training set.

3.1 LRP for relevance measure of kernel machine

The kernel machine (3) can be seen as a network with one hidden layer. Let
z be the test sample to which the target f(z) should be computed. Given a
training sample xi out of the training set X ⊂ Ωn, we denote αit as the trained
weight between xi and the value in the output ft(z). Figure 1 shows the network
architecture of a kernel machine. The input z is represented by a single input
neuron. Each training sample is represented by a single neuron in the hidden layer
and connected to the input by a special connection applying the kernel function.
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Fig. 1: Neural network representation of a kernel machine.

Each output class is represented by a neuron in the output layer, connected by
the individually learned weight αit.

The recent research on explainable AI has spawned many techniques, e.g. for
studying the influence of hyper-parameters on training deep neural networks [5]
and interpreting the behavior of neural networks [15]. In particular, it is possi-
ble to estimate the relevance of features (also hidden neurons) to the network
decision. We apply such relevance estimation, concretely Layer-wise Relevance
Propagation (LRP) [14], to determine the relevance of training samples.

Overall, the relevance estimation in our proposed approach consists of two
steps. In the first phase the optimal α∗ in (3) is computed, by means of a highly
efficient solver like EigenPro [13] if needed. In the second phase a set of validation
samples is used to estimate the relevance of training samples, which builds the
foundation for sample condensation described in Section 3.

We apply LRP to propagate the relevance back from the output layer to
the hidden layer and so assign each training sample a relevance measure. The
formula to compute the relevance of a neuron xi with connection to neurons xt
on a given validation sample z is given by

R(xi, z) =
∑
t

xiw
+
it∑

i′ xi′w
+
i′t

·R(xt) (6)

where w+ = max(w, 0). Since xt is in the output layer, its relevance is the target
itself R(xt) = ft(z). The weight wit between the neurons representing xi and
xt is given by the weight of the kernel machine wit = αit. The activation on
the neuron representing xi is given by the kernel function k(z, xi). We thus can
express the relevance R(xi, z) of a training sample xi to the output f(z) on a
given validation sample z by

R(xi, z) =
∑
t

k(xi, z)α
+
it∑

i′ k(xi′ , z)α
+
i′t

· ft(z) (7)

The target vector f(z) is a one-hot vector in our case, i.e. the value in the vector
corresponding to the correct target class t∗ is 1 and all others are 0. Therefore,
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we do not need to apply the outer sum but only calculate it for t∗ since all other
elements in the sum would be 0, which leads to

R(xi, z) =
k(xi, z)α

+
it∗∑

i′ k(xi′ , z)α
+
i′t∗

(8)

Eq. (8) only focuses on the relevance of one validation sample z. To get
a good estimation of the general relevance of a training sample xi, we split
the training set X ⊂ Ωn in two distinct subsets Xtrain and Xval with X =
Xtrain ∪ Xval, Xtrain ∩ Xval = ∅. We train a kernel machine only using the
set Xtrain. For each training sample xi ∈ Xtrain we then add all relevances on
validation samples xj ∈ Xval

R(xi) =
∑

xj∈Xval

R(xi, xj) =
∑

xj∈Xval

k(xi, xj)α
+
it∗∑

i′ k(xi′ , xj)α
+
i′t∗

(9)

3.2 Relevance-based sample condensation

Given the relevance estimation of training samples, we first sort the training
samples by the relevance measure. A decremental strategy is then applied to
select the most relevant samples out of a training set Xtrain by slowly eliminating
the least relevant samples until only m (< n) samples are left.

The idea is to select the m samples with the highest relevance scores. A prob-
lem with this simple approach is a proper choice of the parameter m. If m is
chosen too small, the selected samples will not suffice to reach a model of good
accuracy. On the other hand, if m is chosen too big, the selection is sub-optimal
since the same accuracy could be reached with fewer samples. Therefore, we de-
fine a parameter µ that expresses the minimum share of the original score (on the
whole training set) that we like to retain. This means that for the whole training
set Xtrain, the selected samples Xselectedm ⊂ Xtrain, and a score measure s, e.g.
the accuracy, the following should apply

s(Xselectedm) ≥ s(Xtrain) · µ (10)

We assume that the evolution of the score is approximately monotonously rising,
i.e. the score is in general higher for greater m, but may have small local noise,
which is however small enough to be ignorable. Later in Section 4 we will show
that the score indeed is of such a form.

A possible way to find m samples that represent the data best is to drop the
∆ least relevant samples in each step. We train a new kernel machine in each step
with the remaining samples and re-calculate the relevances with this machine.
In general, we hope that in each step there is less redundancy. For example, a
medium relevant sample can become more relevant in the next iterations, when
other samples that are similar to it are dropped out. In each iteration, we thus
train a kernel machine and drop the least relevant ∆ samples regarding to the
validation set. The algorithm is depicted in Algorithm 1. Due to the fact that a
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Algorithm 1 Decremental sample condensation

1: procedure Decremental selection(
. Xtrain, Ytrain, Xval, Yval, Xtest, Ytest, k,∆, µ)

2: model = train km(Xtrain, Ytrain, k)
3: score = test km(model,Xtest, Ytest, k)
4:
5: scorei = score
6: while scorei > score ∗ µ do
7: relevances = get relevances(
. model.α,Xtrain, Xval, Yval, k)

8: Xtrain = argsort(Xtrain, relevances) . Sort by the relevances
9: Ytrain = argsort(Ytrain, relevances)

10:
11: Xtrain = Xtrain[1 : −∆] . drop the last m elements
12: Ytrain = Ytrain[1 : −∆]
13:
14: model = train km(Xtrain, Ytrain, k)
15: scorei = test km(model,Xtest, Ytest, k)
16: end while
17: return Xtrain, Ytrain, scorei
18: end procedure

new kernel machine is computed in each iteration and its weight vector is used
in the next iteration, the runtime therefore is always of order O(ntrain

∆ ).
Another way to find m samples that represent the data best is to start at

the other side of the set, i.e. add the ∆ most relevant samples in each step.
This incremental strategy, however, turns put not to be competitive against the
decremental strategy [17] and is thus not further discussed in this paper.

4 Experimental validation

4.1 Data sets

For our purposes, we have chosen three data sets for image classification that
are broadly used and well studied. The MNIST data set contains 60,000 hand-
written digits (graylevel images are of 28 × 28 pixels) for training and 10,000
handwritten digits for testing, written by 250 different people. The MNIST-
Fashion data set has the same structure as the original MNIST data set (i.e.
60,000 training images and 10,000 test images, all of size 28×28). It contains im-
ages of clothes of 10 different classes (t-shirt/top, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, ankle boot). The CIFAR-10 data set is formed by
selecting and labeling proper images out of the 80 million tiny images data set.
It contains 50,000 training images plus 10,000 designated test images, each being
a 32× 32 RGB-image and labeled with one of the ten classes (airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, truck). The objects in the images were
captured from different view points and from different distances, which leads to
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(a) MNIST (b) MNIST-Fashion (c) CIFAR-10

Fig. 2: Accuracy with selected training samples for the three data sets.

Data set µ approach
decremental random

MNIST 0.998 2,500 26,000
0.999 3,000 35,200

MNIST-Fashion 0.98 8,400 14,200
0.99 9,700 22,900

CIFAR-10 0.98 16,600 25,600
0.99 21,600 33,900

Table 1: Required number of samples to reach a certain accuracy level.

more variety in the data set compared to the other two data sets. For all three
data sets, 90% is of the training data is really used as training data while the
remainder 10% serves as validation data for relevance estimation.

The state-of-the-art classification results on these data sets can be found in
[10,16,20], respectively. It is important to emphasize that it is not our goal to
beat these results. Instead, we use them to study the ability of our approach to
sample condensation without impairing the classification performance of kernel
machines. The power of kernel machines themselves as classifier has already been
demonstrated in the literature [4,9].

4.2 Results

Since convolutional neural networks (CNN) are powerful in feature learning, we
train a CNN with all the samples and resort to using the learned features from
the convolutional layers as input to a kernel machine. In all our experiments

we use the Laplacian kernel k(x1, x2) = exp
(
− ||x1−x2||

2σ

)
with a bandwidth

σ = 7. We chose the bandwidth σ = 7 since the experiments only show minor
improvements with larger bandwidths.

In Figure 2 we show the performance of our approach on the three test sets
(the step size is set to ∆ = 100). For comparison purpose, we also show the
performance of the same number of randomly selected samples. We marked the
original accuracy with the whole test set and µ = 99% and µ = 98% of this
accuracy as stop criterion described in the algorithm. Note that for the MNIST
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Fig. 3: Runtime with decremental approach on MNIST.

Data set number of samples selected samples random samples

MNIST 2,500 0.9799 0.9580
3,000 0.9831 0.9654

MNIST-Fashion 8,400 0.8067 0.8698
9,700 0.8449 0.8779

CIFAR-10 16,600 0.7191 0.7436
21,600 0.8146 0.8108

Table 2: Comparison of the accuracies of CNN trained using the selected samples.

set we alternately chose µ = 99.9% and µ = 99.8% since the accuracy for this set
was still high even with only 2,500 of 60,000 samples left. The required number
of samples to reach a certain accuracy is shown in Table 1.

When decreasing the number of samples (i.e. reading the figures from right
to left), the accuracy of the randomly selected samples considerably decreases,
while the accuracy of the samples selected with our approach only decreased
slowly (CIFAR-10) or stays static (MNIST and MNIST-Fashion). For MNIST-
Fashion, reducing the samples even increases the accuracy slightly.

To produce the data for the decremental approach in Figure 2 we reduced
the training set down to 2,000 samples. This took 7.9h for the two MNIST data
sets and 11.6h for CIFAR-10 because the feature vectors contain more elements
here. Note that the runtime is recorded on a computer with 16 GB memory and
Nvidia GTX 760. As an example, Figure 3 shows the accumulated runtime in
dependency to the number of samples left on the MNIST data set.

We now investigate if the selected samples have a higher expressiveness in
general or if it is limited only to our special experiment with kernel machines.
Therefore, we only use the individual selected samples to train the original CNN
and compare the accuracy of the resulting model to the accuracy with a model
trained of the same number of randomly selected features. Table 2 shows the
result of this comparison for the samples selected with our approach. We can see
that the selected samples do not seem to have a higher expressiveness in general.
Only for the MNIST data set, where we managed to select very few samples, the
accuracy of the selected samples is higher. On the other data sets, the accuracy
is mostly the same or slightly worse.
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Overall, our LRP-based sample condensation technique can reduce the num-
ber of training samples while still preserving the high accuracy of kernel ma-
chines. As input for these studies we have chosen the output of the convolutional
(feature learning) part of a CNN, which was trained once with the whole data
set. In the comparison shown in Table 2, the CNN, especially its convolutional
part, was only trained with the remaining, selected samples of the previous ex-
periments. Since we could not show that the selected samples do lead to greater
accuracy than randomly selected ones, we come to the following conclusion: The
convolutional (feature learning) part of a CNN really benefits from a large base
of training samples, whereas for the fully connected (classification) part a smaller
base on training samples is sufficient.

It is important to mention that achieving a general higher expressiveness
of the selected training samples is not the goal of this work. In fact, it cannot
necessarily be expected since our approach is tailored to kernel machines. Our
goal is to reduce the number of training samples to store for model inference and
classification of unseen patterns, which is clearly achieved. We could reduce both
the size of the model and the complexity of computation for kernel machines.
To maintain 99% (99.9% for MNIST) of the original accuracy, we could reduce
the number of training samples to 5% of the original training set for an easier
task like MNIST and 43% for a more complex task like CIFAR-10.

5 Conclusion

This work intends to achieve substantial reduction of training data to store for
model inference and classification of unseen patterns for kernel machines. Based
on the neural network interpretation of kernel machines, we apply explainable AI
techniques, in particular the Layer-wise Relevance Propagation method, to mea-
sure the relevance (importance) of training samples. A decremental strategy has
been proposed for sample condensation. Our experimental results demonstrated
the ability of our approach to considerably condense the training set without
impairing the classification performance. Currently, we apply a rather straight-
forward decremental strategy for the condensation purpose. More sophisticated
techniques can be studied in future. For instance, the concept of sparse repre-
sentations [19] may be an option to model the importance of training samples.

To our best knowledge, our work is the first contribution to sample con-
densation tailored to kernel machines. As such it contributes to making kernel
machines fast and scalable to large data. In addition, it also represents a novel
application of explainable AI techniques.
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